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Abstract — Conjugate heat transfer represents the actual thermal coupling between a fluid and a solid part. It is of
prime importance in nuclear industrial applications where fluctuating thermal stresses are a concern, e.g. in case of
a severe emergency cooling (Pressurized Thermal Shock) or long-term ageing of materials such as thermal striping
occurring in T-junctions. The present paper aims at contributing to the improvement of refined RANS approaches
for conjugate heat transfer. Using wall-resolved LES of a turbulent channel flow at Reτ = 395 and Pr = 0.71, a
correlation for the discontinuity of εθ at the fluid-solid interface is proposed, based on 49 different combination of
fluid-solid thermal properties ratios.

1. Introduction
Conjugate heat transfer refers to the thermal coupling between a fluid and a surrounding solid.
It is of prime importance in industrial applications where thermal fatigue is a concern. In the
nuclear field, thermal fatigue and fluctuating thermal stresses are particularly important in case
of a severe emergency core cooling or long-term ageing of materials.

Such complex applications are often studied experimentally and numerically. However, nu-
merical investigations of turbulent flows at very high Reynolds numbers remains challenging.
CFD (Computational Fluid Dynamics) analysis of industrial applications usually relies on high-
Reynolds RANS (Reynolds-Averaged Navier-Stokes) and occasionally on wall-modelled LES
(Large Eddy Simulation).

The turbulent flow applies on the solid domain a thermal load characterized by a broad
spectrum. Qualitatively, the heat diffusion in the solid domain provides a strong damping at
higher frequencies. Therefore, smaller scales tend to apply a thermal stress in the vicinity
of the fluid-solid interface while larger scales tend to penetrate deeper in the solid. Refined
analysis actually shows that high stress amplitude events are generally associated with low
probability events (Costa Garrido et al. [1]), thus making accurate estimation of thermal fatigue
in industrial applications even more challenging as the CFD simulations should provide at least
a few minutes of operation in realistic conditions.

Analytical studies on conjugate heat transfer in turbulent flows were pioneered by Polyakov
[2] and Geshev [3]. The fundamental solutions of the heat equation in the solid domain have a
non-compact support. For instance, semi-infinite solids with a flat fluid-solid interface subjected
to a statistically steady forcing can be characterized by a compatibility condition at the fluid-
solid interface expressed as a spatio-temporal convolution (Flageul et al. [4]). Such non-local
effects are specific to conjugate heat transfer and tend to become negligible only when the
thermal properties of the fluid and of the solid differ by orders of magnitude.

Numerical studies on conjugate heat transfer in turbulent flows were pioneered by Kasagi et
al. [5] and their 2D synthetic turbulence model. The first DNS (Direct Numerical Simulation)
with conjugate heat transfer was a turbulent channel flow, performed by Tiselj et al. [6]. Follow-
ing those studies, some of the present authors and co-workers performed additional DNS of the
turbulent channel flow [4] to extract the budgets of the second moments (i.e. the turbulent heat
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fluxes and the temperature variance). This work was motivated by the global lack of validation
data for second-order RANS turbulence models (Dehoux et al. [7], [8]) in case of an imposed
heat flux, in case of a heat exchange coefficient, or in case of conjugate heat transfer: most of
the previous DNS of the turbulent channel flow have an imposed temperature at the wall.

To the best of the authors knowledge, the only RANS turbulence model designed to take into
account conjugate heat transfer — i.e. able to solve the temperature fluctuations both in the fluid
and in the solid — was published by Craft et al. [9]. It is also the only RANS turbulence model
designed to correctly handle cases with an imposed heat flux (Mangeon et al. [10]). However, it
was recently shown that the dissipation rate (εθ) associated with the halved temperature variance
(T ′2/2) is discontinuous at the fluid-solid interface in case of conjugate heat transfer (Flageul
et al. [11]). Although there is currently no coupled RANS model taking this discontinuity in
account there is a global agreement that one is needed (Shams et al. [12]).

The background on such turbulence models is given in the paper of Craft et al. [9] and in
classic textbooks on turbulence modelling. A simple — and thus approximate — sketch would
be to say that RANS models use the turbulent kinetic energy k and the associated dissipation rate
ε to model velocity fluctuations. Regarding temperature fluctuations, the halved temperature
variance T ′2/2 and the associated dissipation rate εθ are very similar to k and ε, respectively.
However, velocity fluctuations remain inside the fluid domain while temperature fluctuations
may penetrate inside solid domains adjacent to the fluid one. In case of conjugate heat transfer,
this fundamental difference must be taken into account, and the turbulence model should be
able to evaluate T ′2 and εθ in the solid domain adjacent to the fluid one.

In a previous paper, we have demonstrated the ability of wall-resolved LES to estimate the
discontinuity of εθ on heated channel flows using Code Saturne, Électricité de France in-house
and open-source CFD software (Flageul et al., [13]). In the present paper, we present deeper
analysis in the form of a power-law correlation allowing one to predict this discontinuity of εθ
on channel flows and thus impose the appropriate treatment at the interface. Wall-resolved LES
at various Prandtl and Reynolds numbers have been performed to assess the robustness of the
proposed correlation. This is a step forward towards a rich validation database for future RANS
models adapted to conjugate heat transfer (Mangeon et al., [10]).

2. Governing Equations and Cases Description
2.1. Governing equations
We consider the turbulent flow of a Newtonian fluid with constant physical properties. Further-
more, we assume that the flow is incompressible and that the physical properties in the solid
domain are constant. The subscripts f and s are used for the fluid and for the solid, respectively.

In this subsection, we omit boundary conditions for the sake of simplicity. Firstly, the con-
servation of mass in a fluid with a constant density reduces to the incompressibility condition

∂iui = 0 (1)

where ui is the velocity in direction i.
Secondly, the conservation of momentum in the fluid domain is

∂tui + ∂j (uiuj) = −
1

ρf
∂iP + ∂jσij + fi (2)

where ρ is the density, P the pressure, σij the deviatoric part of the stress tensor and fi a source
term. We use the WALE subgrid-scale model (Nicoud and Ducros [14]) as implemented in the
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version 5.0 of Code Saturne: σij = (ν + νt)Sij with

νt = 4
√
2V

2/3
cell C

2
w

(
SdklS

d
kl

)5/4
(SklSkl)

5/2 +
(
SdklS

d
kl

)5/4 (3)

where ν is the kinematic viscosity, Vcell the volume of the computational cell, Cw the model
constant, Sdij the deviatoric part of the square of ∂jui and Sij the deviatoric part of ∂jui. The
constant Cw is set to 0.25, the default value in Code Saturne.

Lastly, the energy conservation equation is

∂tTf + ∂i (Tfui) = ∂j

((
αf +

νt
Prt

)
∂jTf

)
+ fTf (4)

in the fluid domain,
∂tTs = αs∂jjTs + fTs (5)

in the solid domain and
Tf = Ts and λf∂nTf = λs∂nTs (6)

at the fluid-solid interface. Here, T is the temperature, α the thermal diffusivity, Prt the tur-
bulent Prandtl number, fT a source term and λ the thermal conductivity. The turbulent Prandtl
number is set to 0.5 in the present study (Grötzbach [15]).

As we investigate forced convection, the transported scalars — like the temperature — do
not impact the velocity field or the pressure. Thus, we can transport simultaneously an arbitrary
number of passive scalars, and each scalar can use different thermal properties in the fluid and
in the solid. This allows significant savings in terms of CPU time: up to 51 simultaneous
scalars are considered in our simulations. In addition, each passive scalar is transported by the
same velocity field. This peculiarity has eased our investigation as it reduced the impact of the
statistical uncertainty (Flageul and Tiselj [16]).

2.2. Geometry
Figure 1 is a sketch of the domain. x, y and z are the streamwise, wall-normal and spanwise
directions, respectively. The fluid domain is bounded (−δ < y < δ) and δ is the channel half-
height. The solid domains on top and bottom of the fluid one are located at y > δ and y < −δ,
respectively. Both have the same total height, δS . The exact extension of the channel in the
streamwise and spanwise directions and the height of the solid domains depends on the case
considered, as described in the subsection 2.5.. Based on previous studies, the present authors
estimate that for all the cases considered here and summarized in the Table 1, the solid domains
extension in the wall-normal direction is sufficient so that the boundary condition used at the
outer wall has no significant impact on the statistics at the fluid-solid interface.

For all the LES considered here, the size of the cells in wall-units in the streamwise and
spanwise directions is δx+ = 30 and δz+ = 15, respectively. On both sides of the fluid-solid
interface, the first cell has an extension in the wall-normal direction of 1 wall-unit. Further
away from the wall, the wall-normal extension of the cell is bigger, according to a geometric
law with a progression factor of 1.09. In the fluid, as soon as the wall-normal extension of the
cell reaches 15 wall-units, this progression factor is set to 1 so that the wall-normal extension
of the cells does not exceed their spanwise extension. All the LES use a constant time step with
a maximal instantaneous CFL number below 0.5.
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Figure 1: Channel flow with fluid-solid thermal coupling. The solid domains are on top
(y > δ) and bottom (y < −δ) of the fluid one (−δ < y < δ). Dotted lines: fluid-solid interfaces
at y = ±δ.

2.3. Source terms
The source term in the momentum equation is an imposed pressure gradient, which is constant
in space and in time. It compensates the viscous friction at the wall and keeps the flow in a sta-
tistically steady state. Using the averaged momentum equation, the no-slip boundary condition
and the vanishing νt at the wall, one can derive δfx = u2τ where uτ is the friction velocity asso-
ciated with the wall shear stress. The Reynolds number based on the friction velocity and the
channel half-height is Reτ = uτ δ

ν
. This definition, combined with the previous relation, allows

us to choose the source term fx so that the target Reτ is exactly reached.
The source term in the energy equation in the fluid domain depends on the instantaneous

streamwise velocity and on the instantaneous bulk velocity, as defined by Kasagi et al. [17]. It
is a volumetric sink term which compensates the heat input at the boundaries, so that the case
remains statistically steady. Using the previous notations and writing qw the heat flux per unit
surface inputted at the top and bottom boundaries, the source terms are:

fTf =
2αfqwLxLz

λf
∫ Lx
x=0

∫ δ
y=−δ

∫ Lz
z=0 ux

ux and fTs = 0 (7)

The subsection 2.4.further describes the boundary conditions used.
The source terms allow one to derive a theoretical friction velocity and friction temperatures

which are not plagued by any statistical uncertainty. In the present paper, those theoretical
friction values are used to express raw statistics in wall-units.

At this stage, in addition to the friction Reynolds number, we can introduce additional di-
mensionless numbers. The Prandtl number is Pr = ν

αf
. The fluid-to-solid thermal diffusivity

ratio is G =
αf
αs

. The solid-to-fluid thermal conductivity ratio is G2 =
λs
λf

. The thermal activity
ratio — which is also the fluid-to-solid thermal effusivity ratio — is K = 1

G2

√
G

. Although we
have 3 dimensionless numbers describing the fluid and solid thermal properties ratios, only 2
are independent (Tiselj and Cizelj [18]).

2.4. Boundary conditions
For the streamwise and spanwise directions, periodicity is used. In the wall-normal direction,
the 3 components of the velocity vanish at the fluid-solid interfaces. Regarding the transported
scalars, different cases are envisaged.
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Table 1: LES performed

Lx/δ 6.283 6.283 Lx/δ
Lz/δ 3.142 3.142 Lz/δ
δS/δ 0.375 0.147 δS/δ
Reτ 395 1020 Reτ
Pr 0.71 1 0.71 1 Pr

Scalars 51 5 5 5 Scalars

If the scalar is not coupled, either its value (Dirichlet boundary condition) or its flux (Neu-
mann boundary condition) is imposed at the fluid boundaries, located at y = ±δ. Actually,
an imposed value at the fluid boundary is usually a good approximation when simulating the
temperature inside a fluid in contact with a conductive solid. An imposed flux would rather
correspond to the temperature inside a fluid in contact with a solid of low thermal conductivity.

In case of an imposed value, the temperature is arbitrarily set to zero at the boundary. Such
cases will be referred to as isoT . In case of an imposed flux, its value must match the volumetric
heat sink term imposed in the fluid domain. Such cases will be referred to as isoQ. Obviously,
if a scalar is not coupled, it does not correspond to conjugate heat transfer.

For a coupled scalar (i.e. in case of conjugate heat transfer), the flux is imposed at the outer
walls, located at y = δ + δS and y = −δ − δS , respectively. Here again, the value of the flux
must match the volumetric heat sink term imposed in the fluid domain. For coupled scalars,
there is continuity of the scalar and of its diffusive flux at the fluid-solid interface. Regardless
of the case, the same boundary condition is imposed on both sides, so symmetry is preserved.

2.5. Simulations summary
All the LES presented include 2 non-coupled scalars. Those non-coupled scalars actually rep-
resent the limit of coupled cases when the solid thermal conductivity is very high, or very low,
compared to the fluid one. The Dirichlet and Neumann boundary conditions correspond to the
cases λs � λf and λs � λf , respectively. All the simulations also include at least one coupled
scalar, with the same thermal properties in the fluid and in the solid.

In the section 3., four LES are presented. The Reynolds numbers investigated are 395 and
1020. The Prandtl numbers investigated are 0.71 and 1. Table 1 summarizes the performed
simulations. The case Reτ = 395 and Pr = 0.71 includes 49 coupled scalars: 7 values of the
ratios G and K are simultaneously simulated. The other cases include 3 coupled scalars: one
with unit fluid-solid thermal properties ratios, one with G = 1.3 and K = 2.8 and one with
G = 0.1 and K = 0.23. The second case is an approximation of the thermal coupling of water
and plexiglas. The last one is an approximation of the thermal coupling of water and steel. This
is further discussed in section 3..

2.6. Discretization
Code Saturne1 is an open-source CFD solver for incompressible or weakly dilatable flows. It
is based on the FVM library and can handle unstructured meshes. The finite volume solver is
collocated. The predictor/corrector algorithm used for pressure-velocity coupling is combined

1https://github.com/code-saturne/code_saturne

https://github.com/code-saturne/code_saturne
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with a Rhie and Chow filter to avoid odd-even oscillations. Further details can be found in
Archambeau et al. [19].

For the velocity and the scalars, the convection scheme used in this study is fully centered:
the existing slope-test by default for the scalars is deactivated. Regarding time advancement, a
Crank-Nicolson scheme is used, except for the convective term which uses an Adams-Bashforth
time scheme for the transporting velocity. As our meshes are made of orthogonal hexahedra, no
gradient reconstruction sweeps are needed.

2.7. Extrapolation of statistics at the fluid-solid interface
First, we recall the definition of the dissipation rate:

εθ = α∂iT ′∂iT ′ (8)

As shown in [11], this quantity is discontinuous at the fluid-solid interface, where the ratio of
the solid and fluid dissipation rates verify

εθ,s
εθ,f

=
∂yT ′f∂yT

′
f

∂iT ′f∂iT
′
f

K2 +

(
1− ∂yT ′f∂yT

′
f

∂iT ′f∂iT
′
f

)
1

G
(9)

In Code Saturne, most of the relevant physical quantities are defined at the center of the cells.
However, the fluid-solid interface is located at the faces of the cells and not at their center. In
this subsection, we describe the strategy used to extrapolate statistical quantities at the fluid-
solid interface for coupled fields. This very important post-processing step is performed after
the simulation and uses quantities averaged in time and over homogeneous directions. In the
following, yf and ys are the coordinate of the center of the first fluid and solid cells, respectively,
and yfs is the coordinate of the fluid-solid interface.

For the streamwise contribution to εθ, one can use a first-order Taylor expansion. Combined
with the continuity of temperature and heat flux at the fluid-solid interface, one gets

∂xT ′f∂xT
′
f (y) = ∂xT ′f∂xT

′
f (yf ) + bf (y − yf )

∂xT ′s∂xT
′
s (y) = ∂xT ′s∂xT

′
s (ys) + bs (y − ys)

∂xT ′f∂xT
′
f (yfs) = ∂xT ′s∂xT

′
s (yfs)

bf = G2bs (10)

The situation is exactly the same for the spanwise contribution to εθ.
For the wall-normal contribution to εθ, the situation is different as there is no compatibility

condition for its derivative. Thus, we use the continuity at the fluid-solid interface of the one-
point correlation between the temperature and its wall-normal derivative. We define the angle
φ with

cos (φ) =
T ′∂yT ′√

T ′2
√
∂yT ′∂yT ′

(11)

The numerator and the first term in the denominator can be estimated with T ′2. In this study,
cos (φ) at the fluid-solide interface is approximated with its value at ys. Although one can es-
timate it with a combination of the values at yf and ys, the authors have observed that such
combinations tend to produce non-physical εθ at the fluid-solid interface. For instance, estimat-
ing cos (φ) at yfs with the halved sum of the values at yf and ys can produce a value of εθ,s lower
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at yfs than at ys. Such a result is not admissible: for a statistically steady case, without source
term in the solid domain, the diffusion of εθ,s must remain positive in the solid domain. For the
present case, it implies a decaying εθ,s with increasing distance to the fluid-solid interface.

To obtain the variance of the temperature (and its derivative) in the cells adjacent to the fluid-
solid interface, one can use a second-order Taylor expansion. As the LES is wall-resolved and
the flow statistically steady, we assume equilibrium between dissipation and viscous diffusion
in the budget equation of T ′2. Combined with the continuity of temperature and heat flux at the
fluid-solid interface, one gets:

T ′2f (y) = T ′2f (yf ) + af (y − yf ) + Pr (y − yf )2 εθ,f (yf )
T ′2s (y) = T ′2s (ys) + as (y − ys) +GPr (y − ys)2 εθ,s (ys)

T ′2f (yfs) = T ′2s (yfs)

af + 2Pr (yfs − yf ) εθ,f (yf ) = G2 (as + 2GPr (yfs − ys) εθ,s (ys)) (12)

Once cos (φ) at the fluid-solid interface is obtained — as already explained, we use the value
at the first solid cell — it is straightforward to estimate ∂yT ′∂yT ′ on both sides of the fluid-solid
interface. For instance, at the fluid-solid interface and on the fluid side, one gets

∂yT ′f∂yT
′
f =

 ∂y
(
T ′f

2
)
/2√

T ′f
2 cos (φ)


2

(13)

Once the quantities ∂iT ′∂iT ′ have been extrapolated on both sides of the fluid-solid interface,
it is straightforward to estimate the dissipation rates. As the extrapolation procedure proposed
here relies deeply on the continuity of the temperature and heat flux, equation (9) is automati-
cally satisfied by the reconstructed quantities.

3. New LES Results
3.1. Case Reτ = 395 and Pr = 0.71

In this subsection, the main LES performed is presented, alongside with some key results and
a correlation for the discontinuity of εθ at the fluid-solid interface. As indicated Table 1, the
simulation contains 51 passive scalars, 49 being coupled at the fluid-solid interface while the
remaining two have either an imposed value or an imposed flux at the fluid boundary. Regarding
the 49 coupled scalars, the fluid-solid thermal properties ratio investigated are described in the
Table 2. For both the fluid-to-solid thermal diffusivity ratio Gi and the thermal activity ratio
Kj , 7 values are simultaneously investigated. They vary over a range of two decades, centered
around unity. The coupled passive scalar with fluid-solid thermal properties ratios Gi and Kj is
denoted as CHTij .

The left frame of Figure 2 illustrates the impact of the thermal activity ratio K on εθ. Lower
values of K correspond to conjugate cases closer to the isoT one. Oppositely, higher values
correspond to conjugate cases closer to the isoQ one. The right frame of Figure 2 shows that
statistics, in the fluid domain, are mostly driven by the thermal activity ratio, the impact of the
thermal diffusivity ratio G being much weaker. However, inside the solid, the situation is more
complex and the impact of G on εθ is more visible. Overall, the present LES results corroborate
well the DNS results obtained at a lower Reynolds number (Reτ = 150) previously published in
[11]. The strong impact of K on the turbulent statistics probably comes from the nature of the
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Table 2: Thermal properties ratios investigated in the subsection 3.1.. Solid-to-fluid thermal
conductivity ratio G2.

Kj

0.1 0.2 0.5 1 2 5 10
0.1 32 16 6.3 3.2 1.6 0.63 0.32
0.2 22 11 4.5 2.2 1.1 0.45 0.22
0.5 14 7.1 2.8 1.4 0.71 0.28 0.14

Gi 1 10 5 2 1 0.5 0.2 0.1
2 7.1 3.5 1.4 0.71 0.35 0.14 0.071
5 4.5 2.2 0.89 0.45 0.22 0.089 0.045

10 3.2 1.6 0.63 0.32 0.16 0.063 0.032

−10 −5 0 5 10

y+

10−3

10−2

10−1

ε θ

isoQ

G = 0.2

isoT

−10 −5 0 5 10

y+

10−4

10−3

10−2

10−1

ε θ

isoQ

K = 0.2

isoT

0 2
0.0

0.1

Figure 2: Scalar dissipation rate for the wall-resolved LES at Reτ = 395 and Pr = 0.71. Left
frame: Cases G = 0.2. Right frame: Cases K = 0.2, with a focus on the near-wall behaviour
in the fluid. y+ < 0: Solid domain. y+ > 0: Fluid domain.

flow, which is dominated by wall-normal fluctuations in a turbulent channel, and may not hold
for more complex flow configurations. The reconstructed statistics at the fluid-solid interface
have a realistic behaviour: as expected, εθ monotonically decays in the first solid cell.

3.2. Proposed correlation
On top of those qualitative observations, the large number of combination of fluid-solid ther-
mal properties ratios investigated allow a more quantitative analysis. We look for power-law
correlations for statistics at the fluid-solid interface as follow:

∂yT ′f∂yT
′
f

∂iT ′f∂iT
′
f

(CHTij) =
1

1 + Cε ·Gxε
i ·Kyε

j

with Cε > 0 (14)

The main property of equation (14) is that the relative wall-normal contribution remains bounded
in [0, 1]. The resulting ratio of dissipation rates at the fluid-solid interface will thus remain
bounded between K2 and 1

G
, the theoretical bounds.

Here, the parameters Cε is derived from the case CHT44, which has unit fluid-solid thermal
properties ratios. Regarding the coefficients xε and yε, they are simply determined with a linear
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Figure 3: Contour plots at the fluid-solid interface for the wall-resolved LES at Reτ = 395
and Pr = 0.71. Left frame: Ratio of the solid and fluid scalar dissipation rates. Right frame:
Relative error for the correlation (16), in %.

regression using logarithms:

xε log (Gi) + yε log (Kj) = log

(
∂iT ′f∂iT

′
f

∂yT ′f∂yT
′
f

(CHTij)− 1

)
− log (Cε) (15)

In the present study, the linear regression is performed with the Analysis ToolPak available in
Microsoft Excel. The resulting correlation at the fluid-solid interface is

εθ,s
εθ,f

=
1

G
+
(
K2 − 1

G

)
1

1 + 0.0799 ·G0.225 ·K1.90
(16)

The right frame of Figure 3 shows that the correlation for the ratio of εθ is fairly accurate
for the range of thermal properties investigated here: the relative error is below 4 % for most of
the cases considered. However, the correlation tends to overestimate the ratio εθ,s

εθ,f
when both K

and G are low (lower-left corner), and high (upper-right corner).
Indeed, the analysis proposed here remains qualitative as a better strategy to derive corre-

lations would have been to randomly select 49 combinations of fluid-solid thermal properties
ratios inside the interval [0.1, 10]. It seems important to stress that the objective of the present
work is not to derive highly accurate correlations for turbulent channel flows as it would prob-
ably require a more complex formulation than the one in equation (14). The objective is rather
to propose a methodology, which can be adapted and applied on any configuration of interest.

3.3. Cases at higher Reτ and Pr
Regarding the simulations at a higher Reτ and Pr, only 3 coupled passive scalars were trans-
ported. The left frame of Figure 4 shows the impact of the Reynolds and Prandtl numbers on εθ
for the case with unit ratio of fluid-solid thermal properties. The Reynolds number has a very
limited impact on the profile around the fluid-solid interface while the Prandtl number has a
more pronounced impact, especially in the fluid domain.

The right frame of Figure 4 shows this impact on εθ for cases with G = 0.1 and K ≈ 0.23.
The case Reτ = 395 and Pr = 0.71 has K = 0.2 while the others have K = 0.23. This
is representative of pressurized water and steel, except for the value of G, which should be a
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Figure 4: Scalar dissipation rate for the wall-resolved LES at various Reτ and Pr. Left frame:
Cases G = 1 and K = 1. Right frame: Cases G = 0.1 and K ≈ 0.23.

decade lower. We limited it to 0.1 to remain within the bounds of validity of the correlation.
Overall, the impact of the Reynolds and Prandtl numbers is similar to what was observed at
G = K = 1. Remarkably, the case Reτ = 395 and Pr = 0.71 exhibits a lower εθ in the solid
domain. On the one hand, this might be the effect of the small difference on K. On the other, it
might be a distorsion due to the logarithmic ordinate.

More quantitatively, we can measure the relative error produced by the correlation (16). The
cases with G = K = 1 can be discarded as they all lead to a continuity of εθ at the fluid-
solid interface. The remaining cases are G = 1.3 and K = 2.8 — representative of pressurized
water and plexiglas — andG = 0.1 andK = 0.23, representative of pressurized water and steel
(except forG, as already explained). For the LES atReτ = 395 and Pr = 0.71, we measure the
error of the correlation at the approximate values of (G,K) = (1, 2) and (G,K) = (0.1, 0.2),
respectively.

At this stage, it is important to stress that the correlation (16) has no dependence on Reτ
and Pr and is thus not expected to perform well at higher Reτ and Pr. The amount of data
available so far (2 values for Reτ and 2 values for Pr) is clearly insufficient to introduce such a
dependence. As a workaround, we derive the following correlation from (16):

εθ,s
εθ,f

=
1

G
+
(
K2 − 1

G

)
1

1 + Cε ·G0.225 ·K1.90
(17)

with
1

1 + Cε
=

∂yT ′f∂yT
′
f

∂iT ′f∂iT
′
f

(Reτ , P r,G = 1, K = 1)

For the case Reτ = 395 and Pr = 0.71, this is exactly the correlation (16). For the other
cases, it uses the anisotropy of the fluctuating temperature gradient obtained at G = K = 1 to
improve the correlation, while keeping the exponents on G and K as in (16).

As shown Table 3, the modified correlation performs much better compared to the original
one. Indeed, this could have been expected for thermal properties ratios close to unity, as in
the case (G,K) ≈ (1.3, 2.8). It seems to hold quite well for ratio of thermal properties further
away from unity, as in the case (G,K) ≈ (0.1, 0.23).
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Table 3: Relative error in % for the correlations (16) and (17)

Reτ 395 1020
Pr 0.71 1 0.71 1

Correlation (16) (G,K) ≈ (1.3, 2.8) 2.19 6.49 8.69 12.7
Correlation (17) (G,K) ≈ (1.3, 2.8) 2.19 1.21 1.71 1.01
Correlation (16) (G,K) ≈ (0.1, 0.23) 11.7 13.8 15.4 17.7
Correlation (17) (G,K) ≈ (0.1, 0.23) 11.7 8.02 7.78 5.00

4. Discussion and Conclusions
In the present paper, we have developed a strategy to extrapolate statistics at the fluid-solid
interface for CFD codes based on finite volume solvers which can be applied to fields coupled
across this interface. As it is, the strategy is applicable to wall-resolved LES of statistically
steady flows. Extension to wall-modelled LES is not straightforward as the current strategy
assumes the first fluid cell is located inside the viscous sublayer.

A correlation for the discontinuity of εθ at the fluid-solid interface for turbulent channel flows
at Reτ = 395 and Pr = 0.71 is also proposed, as expressed in equation (16). The correlation
is valid for fluid-solid thermal properties ratios G and K within [0.1, 10]. Extension to thermal
properties ratios further away from unity could be achieved but special care should be taken.
First, transient might become excessively long and statistical convergence in the solid domain
might be hard to reach when G becomes too large. In addition, as the coupled case degenerates
towards an imposed temperature or an imposed heat flux, temperature fluctuations in the solid
domain might get damped over a very short distance and a very short time scale, thus requiring
a reduced time step and a very fine mesh in the solid domain.

A modification of the correlation towards cases at a higher Reynolds number and different
Prandtl number, as expressed in equation (17), is proposed and assessed with three LES. The
strategy is promising but would require more simulations to be thoroughly validated. Regarding
conjugate heat transfer in turbulent flows, the anisotropy of the fluctuating temperature gradient
at the fluid-solid interface clearly remains the key quantity, both for the proposed correlations
and for future models. This work suggests that, given a flow regime, the impact of the fluid-
solid thermal properties ratios can be clearly isolated. Indeed, much more work remains to be
done to confirm this point.
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