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Abstract. Methods for safety assurance suggested by the ISO 26262
automotive functional safety standard are not sufficient for applications
based on machine learning (ML). We provide a structured, certification
oriented overview on available methods supporting the safety argumen-
tation of a ML based system. It is sorted into life-cycle phases, and ma-
turity of the approach as well as applicability to different ML types are
collected. From this we deduce current open challenges: powerful solvers,
inclusion of expert knowledge, validation of data representativity and
model diversity, and model introspection with provable guarantees.

Keywords: functional safety, life-cycle, ISO 26262, machine learning,
explainable AI

1 Introduction

Machine learning is currently rapidly finding its way into the domain of safety
critical applications in the scope of the ISO 26262 automotive functional safety
standard. Examples are computer vision systems or trajectory planning for au-
tonomous driving (AD) [25, 39]. The reason for this advance of machine learned
models is its applicability to inherently complex, little understood problems
merely via sample data. Unfortunately, this benefit is often accompanied by
a mostly black-box character and high complexity of the final model in use,
rendering conventional methods for safety assurance insufficient or inapplicable.
For example, inductive/deductive inspection and extensive interface/unit test-
ing are inapplicable due to model complexity. The same holds for the “proven
in use” argument due to the problem complexity. The latter is reasoned in [21],
which historically derives problems for risk assessment of AI. A mathematical
deduction can be found in [39, sec. 2.2].

In [37], a complete applicability assessment of ISO 26262 methods to deep
neural networks (DNNs) was conducted. They also found that design guidelines,
model inspection techniques, formal verification and training data assessment
techniques are required. Such new methods for verification and validation were
loosely collected e.g. in the surveys [44, p. 36–37] and [19], to which we would
like to refer the reader for a more extensive method catalogue. In this paper
we proceed with the next step: Sort available methods (respectively method
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categories) into the main stages of the standard development life-cycle, and from
this systematically identify open challenges. This paper provides:

– a short overview of ML specific approaches and methods supporting a safety
case, structured by the phases of the life-cycle (see Tab. 1 for a summary).
The focus will be on DNNs as in [37] in the context of AD.

– evaluation of their applicability to different ML types.
– identification of open challenges for safety argumentation.

We claim that this novel view on ML development methodologies from a certifi-
cation perspective is a key to enable ML in safety critical applications. The view
should be seen as a top-down approach towards a safety argumentation strategy.

2 ML Specific Safety Argumentation

There are important differences between the traditional approach to the devel-
opment and certification of safety critical software and the data driven paradigm
of machine learning. This is addressed in the following, aligned to a typical life-
cycle. The details of the methods, their applicability and open challenges are
summarized in Table 1.

Our life-cycle skeleton is based on the ISO 26262 part 6 process [1, Figure 1]
for the development of automotive software-enabled components. The main idea
of the V-model suggested there is a feedback loop consisting of the phases require-
ments gathering, (model) development, and finally verification and validation
(and integration, which is not considered here). During requirements engineer-
ing the system architecture is constructed up to smallest functional units, and
for each the use-case is specified, including intended operational environment
and behavior. Both are guided by verifiable safety goals identified in an induc-
tive hazard and risk analysis. In the succeeding development phase, the model
design and implementation on hardware and software side is conducted. This
is succeeded by intense verification and validation based on the given require-
ments. The results are used to determine, whether the model (verification) or
the requirements (validation) need to be updated.

In ML, the model design is data driven and automatized, and the implemen-
tation consists of classically implemented interpreters for the generated model
definitions. We here solely concentrate on the new aspects introduced by the
design, verification and validation of (ML) models.

2.1 Requirements Engineering

Available expert knowledge and experience should be compiled into the use-case,
system and function requirements formulation, and best be formulated in special-
ized KPIs. With data driven development of (possibly non-robust) black boxes
it becomes practically hard to do this for the little available domain knowledge.
As categories of safety requirements for NNs we identified: data representativity,
such as
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– scenario coverage (for further metric suggestions see collection in [8]) ap-
plied to an input space ontology such as developed in [5] for the context of
autonomous driving;

– robustness of the algorithm, such as adversarial robustness [e.g. definition
in 22, sec. 6] of NNs;

– fault tolerance of the system, as could be increased by runtime monitoring
and traditional model redundancy [2, (E) 7.4.12] which requires a model
diversity measure;

– safety related performance requirements for the black-box, i.e. special-
ized performance measures such as detection performance for occluded ob-
jects [8];

– plausibility of the algorithm behavior, such as sensible intermediate steps,
or modeling quality of domain specific physical rules, like gravity, translation
invariance, or legal ones like collected for the definition of responsibility
sensitive safety for AD trajectory planning in [39]; and finally

– requirements arising from experience about algorithm specific faults, such
as can be found in the AD specific collection of problems and faults in [28].

These cornerstones need to be respected during requirements gathering. Data
representativity and model diversity measures are open challenges since methods
are scarce and untested.

2.2 Development

Prevention of faults by proper design choices during development are an im-
portant building block for a safety case. Some ML specific quality criteria are
collected below. Since meaningful KPIs are necessary in order to conduct quan-
titative analyses, suggestions on such are given as well.

Design based on experience All general design choices not specified in the
requirements need to be reasoned, best by experts in the field. Choices include
at least the training objective, the model type, the training method including
early stopping criteria, the micro design—e.g. activation functions, topology,
and loss function for NNs—and initialization values, for both hyperparameters
and parameters meant for optimization. An example collection of five design
problems for the machine learning area of reinforcement learning with a focus
on NN solutions can be found in [4].

Incorporation of uncertainty Most machine learning models will not provide
a proper uncertainty output, i.e. estimation of the prediction variance. [29] ad-
vises to propagate uncertainty of any component through the system to enable
monitoring of accumulated uncertainty. Examples of ML models with uncer-
tainty output are classical Bayesian networks, or for NNs Bayesian new deep
learning methods like treating weights as distributions [14], specialized loss (e.g.
[38] models classification output as Dirichlet distributions), or via learned spe-
cialized weight decay and dropout [23]. Uncertainty treatment was also shown
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to improve properties like adversarial robustness [38]. Even though available
methods are theoretically mature, there is little practical experience and a lot
of ongoing research in this direction.

Inclusion of expert knowledge Available expert knowledge should be in-
cluded into the model in a measurable way for better behavior control. Ways to
include prior knowledge are e.g. via the training data as shown in [9], which is
framework for automated counterexample generation and training data augmen-
tation; via the loss function as done for soft logic in a teacher-network approach
in [18], for fuzzy logic in [35], and for a general objective function in [13]; via
statistical model repair methods for reinforcement learning (RL) as developed in
[15]; via safe state enforcement for RL as can be achieved through the adaptive
control strategy developed in [3] and through the planner switching strategy sug-
gested in [12]; or via topology as in convolutional NNs (CNNs) or in the ReNN
architecture [42] which introduces an interpretable and verifiable intermediate
layer. All mentioned methods report to also increase performance, but yield little
guarantees and are an open field of research.

Robustness Enhancements Robustness here means the indifference of the
model output for slight (with regard to a given metric) changes for the given
data samples. Non-robust models exhibit chaotic behavior, and deprive test-
ing data of their significance since one sample generalizes to a comparatively
small input range. Furthermore, measures must be taken to increase and as-
sure robustness, as e.g. regularization and training data preparation, either by
adding adversarial counterexamples [9] or by removing non-robust features in
the data [20]. Uncertainty treatment was shown to help as well (see above).

Proper design choices during development contribute to a convincing pro-
cess argumentation. However, for data-driven automated modeling combined
with high complexity, process argumentation needs to be supported by a strong
product based argumentation based on verification and validation.

2.3 Verification

Verification is the formal check of the model against the defined (formal) require-
ments and testing data. This requires tools (e.g. solver or search algorithms) to
conduct the formal model checks on the novel ML models. Means to check prop-
erties in form of rules are:

– solvers, e.g. based on satisfiability modulo theory (SMT) [see survey in 6],
or mixed integer linear programming [10], where for both approaches the
idea is to transform the condition on the network to check into a solvable
equation system;

– output bound estimation such as ReluVal [43] optimized for networks
with ReLU activations, or the more general reachability analysis tool DeepGo [36];

– search algorithms like [31].
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The given approaches are well matured. However, they specialize on stability
properties, except for the very performance limited solvers. Therefore, we see a
need for rule checkers that can efficiently deal with first-order logic like the SMT
based solver Reluplex [22].

2.4 Validation

Validation is the task of identifying and adding missing requirements and test
cases. It takes up an essential role in a ML safety case due to the sparse specifi-
cation typical for ML tasks. We identified two aspects that need to be assessed:
The testing and training data, and the inner logic and representation of the ML
model. Methods for the latter can be categorized in qualitative and quantitative.

Data validation Test and training cases should thoroughly cover the input
space. Test cases additionally need to cover the available experience, and the
model behavior. The first two were described above. For model behavior cov-
erage, new NN specific metrics were suggested alongside a test case generation
framework in [40], and mature tools for counterexample generation [9] are avail-
able such as [16] which maximizes the model output differences for minimal
perturbations using efficient fuzzy testing.

Qualitative analysis Qualitative analysis may give experts valuable indica-
tions about misbehavior. One type is the assessment of “attention”, i.e. the as-
sessment which parts of the input most contributed to an output decision. In the
case of computer vision, heatmapping can be used to indicate attention. There
are both model specific methods available like the signal back-tracing methods
suggested in [27],as well as model agnostic ones like based on local linear approx-
imations [32, 34]or on mutual information like the attention estimator trained in
[7]. Local linear approximations are created by observing the output for slight,
spacially distinct, modifications of one given example. Such modifications can be
blending out parts like in the original LIME method [34] or e.g. more advanced
blurring techniques as in RISE [32]. Other than attention analysis, feature visual-
ization [30] for NNs gives insight into the specialization of single units. Additional
explanatory output like textual explanations as demonstrated in [26] can also
be useful. Another example of additional output is hierarchical information as
realized in [35] by additional output neurons together with logical constraints
translated into the loss function.

Quantitative analysis Methods that yield quantitative insights into black-box
NNs are scarce, especially for NNs. One is extraction of rules, either locally for
a subset of examples using inductive logic programming [33] or globally. Global
model-agnostic rule extraction like validity interval analysis [41], which itera-
tively refines valid intervals using back-propagation of outputs, is due to the
complexity of concurrent networks not applicable to NNs (see the survey on
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rule extraction for NNs in [17]). Other methods are analysis of the performance
on sub-tasks [13] and of the inherent (distributed) representation of semantic
domain concepts within the network structure [11, 24]. The latter learn the
representation of a concept within the NN from its intermediate output on a
training set for this concept. Net2Vec [11] does this by attaching an additional
output, which enables retraining for the concept, while TCAV [24] uses sup-
port vector machines to improve uniqueness. Given a representation vector of
a semantic concept, its attribution to output classes can be determined via di-
rected derivative along the found representation vector [24]. Concept analysis
could enable topological modularization as in the simple example in the ReNN
architecture [42].

3 Conclusion and Outlook

ML requires new approaches for a convincing safety argument, and such are
available for different ML types. The identification of open challenges is eased
by a structured, certification oriented overview of these methods such as sum-
marized from the above in Table 1. This now needs to be extended and aligned
with a safety argumentation strategy, to finally be established in standards and
industries.
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Table 1. Overview of method categories for the safety argumentation of ML models;
for each category examples are given, accompanied by citations for further reading and
by the applicability scope restrictions (applicable to all ML models if none are given).
The methods are categorized by the life-cycle phase they are applicable in. Major open
challenges are marked italic.

Phase & method goals Method categories Examples Scope

Requirements
Engineering
Use available domain
knowledge to formulate
use-case and safety
requirements

Data representativity
requirements

- scenario coverage [8]
- input space ontology [5] AD

Robustness requirements - adversarial robustness metric [22]

System fault tolerance
requirements

- runtime monitoring
- model diversity measure for redundancy
[2, 7.4.12]

Safety performance measures - occlusion sensitivity [8]

Plausibility requirements - AD behavior rules [39] TPa

- sensible intermediate steps
- domain specific rules (physical, legal)

Experience collection - AD pitfalls collected in [28] AD

Development
Apply reasonable design
choices at all decision
points

Design based on experience - experience on model type, training
method, initialization values

- list of pitfalls in [4] RL

Incorporation of
uncertainty [29]

- [14, 23] NNs

Inclusion of expert
knowledge

- via loss function [18, 35] NNs
- via topology [42] NNs
- model repair [15] RL
- safe learning [3, 12] RL

Robustness enhancements - regularization [see 20]
- robustification of training data [20]
- counterexample-guided data
augmentation [9]

Verification
Check against test data
and model requirements

Formal verification of rules,
model, KPIs

- solvers [6, 10] NNs
- boundary approximation [36, 43] NNs
- search algorithms [31] NNs

Validation
Find missing . . .

. . . test cases Input space coverage checks - (see data representativity method)

Experience coverage checks - (see experience collection method)

Model coverage checks - concolic testing [40] NNs
- counterexample generation [9, 16, 40] NNs

. . . requirements via
qualitative model
analysis

Attention analysis through
heatmapping [45]

- back-propagation based, e.g. [27] NNs
- model agnostic, e.g. [7, 32, 34]

Feature visualization - method collection in [30] CNNs

Explanatory output - textual explanations [26] NNs
- hierarchical information [35] NNs

. . . requirements via
quantitative model
analysis

Rule extraction - locally via ILP [33]
- global model agnostic, e.g. VIA [41]
- global NN specific methods [17] NNs

Sub-task/concept analysis - Neural Stethoscopes [13] NNs
- concept embedding and attribution
analysis [11, 24]

NNs

- ReNN modularized topology [42] NNs

a trajectory planning
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