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A wave-based numerical approach is proposed for the detection of defects in waveguide assemblies with curved joints. Within this framework, the wave finite element (WFE) method is used. It provides an efficient numerical means for computing waves in one-dimensional periodic structures (waveguides), and assessing the reflection and transmission coefficients of waves around defects and curved joints. A so-called apparent reflection matrix of the defects, which takes into account the influence of the joints on the reflected signals recorded at some measurement point at the beginning of a waveguide assembly, is proposed. This appears to be the relevant criterion for detecting defects. As it turns out, an optimization procedure for the design of curved joints can be proposed to magnify the amplitude of the reflected signals issued from defects. Numerical experiments are carried out on 2D waveguide assemblies, with one or two curved joints which are parameterized with respect to their radius and angle of curvature. Optimized values of these parameters can be found which magnify the reflected signals issued from several kinds of defects. Time response simulations are finally undertaken

Introduction

Wave-based non-destructive testing (NDT) techniques are commonly used in mechanical and civil engineering to detect small defects in waveguide structures, e.g., like bridges or pipes. Those defects are mainly due to vibration fatigue or corrosion which affect the integrity of engineering structures. For straight waveguides like beams or pipes, certain waves can travel a long distance and can be well reflected by defects. This is the key idea behind wave-based NDT, i.e., by recording and analyzing the reflected signals (echo) issued from a defect at some measurement point. A common NDT technique hence consists in generating waves (from one or several excitation points), and measuring the reflected waves to determine the occurrence, type and localization of defects [START_REF] Rose | A Baseline and Vision of Ultrasonic Guided Wave Inspection Potential[END_REF].

However, engineering structures rarely represent straight infinite waveguides, and mainly involve waveguide assemblies with curved elastic joints. These give rise to local wave reflection/transmission, even wave mode conversion, which can greatly pollute the reflected signals issued from defects (hence impacting their identification). It is therefore crucial to understand the way curved joints can impact the measurement of the reflected waves induced by the defects. This problem has been tackled in various ways in the literature. Demma et al. [START_REF] Demma | The Effect of Bends on the Propagation of Guided Waves in Pipes[END_REF] have analyzed the reflection/transmission coefficients for the waves propagating in two straight waveguides connected to a curved waveguide. Wave mode conversion phenomena among the incident and reflected/transmitted waves in the straight waveguides, around the curved waveguide, have been investigated. Sanderson et al. [START_REF] Sanderson | Inspection of pipe networks containing bends using long range guided waves[END_REF] have used a finite element (FE) model to estimate the reflection coefficients of waves, from a defect "through" a curved joint; it has been shown that the joint yields an underestimation of the severity of the defect, because of the decrease of the echo amplitude through the joint. To solve this issue, the authors have proposed a strategy to reverse the distortion of the signal induced by the joint to therefore obtain a better characterization of the defect. Verma et al. [START_REF] Verma | Interaction of low-frequency axisymmetric ultrasonic guided waves with bends in pipes of arbitrary bend angle and general bend radius[END_REF] have analyzed the effect of considering curved joints with different angles and radii of curvature. The authors have highlighted the dependency of the wave transmission coefficients on the curvature angle of the joints, and have reported the effect of constructive and destructive mode interferences. For this task, the authors have considered a time approach and a harmonic excitation. Besides, Ni et al. [START_REF] Ni | Effect of Pipe Bend Configuration on Guided Waves-Based Defects Detection: An Experimental Study[END_REF] have investigated the influence of joints of different shapes (Z-or U-shapes) to detect different kinds of defect in pipes. Finally, Sanderson & Catton [START_REF] Sanderson | The Reflection of Guided Waves from Multiple Flaws in Pipes[END_REF] have proposed a semi analytical FE approach to analyze the way by which multiple defects in pipes interact to each other.

From this literature review, it appears that curved joints are seen in a somewhat negative way, because of their impact on the detection of defects. However, none of these past works have addressed the problem of optimizing the joint properties to improve the sensitivity of the recorded signals to the occurrence of defects. This original challenge has motivated the development of the proposed approach.

It should be also emphasized that the aforementioned works make use of FE models and rely on time approaches to assess the reflection and transmission of waves. The shortcoming of these numerical approaches is that they are computationally cumbersome which is due to the need of a space-time discretization. An alternative frequency-based, low-cost, numerical approach is developed in this paper. For this purpose, the wave finite element (WFE) method is considered [START_REF] Zhong | On the Direct Solution of Wave Propagation for Repetitive Structures[END_REF][START_REF] Mencik | New advances in the forced response computation of periodic structures using the wave finite element (WFE) method[END_REF]. It provides an efficient numerical means to compute waves in periodic structures, like straight waveguides of arbitrary cross-sections, and compute the reflection and transmission coefficients of these waves at coupling elements like defects or curved joints. Several works have been made within this framework. Mencik and Ichchou [START_REF] Mencik | Multi-mode propagation and diffusion in structures through finite elements[END_REF] have expressed the scattering matrix -i.e., a matrix whose components denote the reflection and transmission coefficients -for waves around coupling elements which can be of arbitrary shapes, and are modeled by means of FE models (see also [START_REF] Ichchou | Wave finite elements for low and mid-frequency description of coupled structures with damage[END_REF][START_REF] Mencik | Model reduction and perturbation analysis of wave finite element formulations for computing the forced response of coupled elastic systems involving junctions with uncertain eigenfrequencies[END_REF]). Zhou et al. [START_REF] Zhou | Wave scattering by local defect in structural waveguide through wave finite element method[END_REF] have proposed a time-frequency description of a defect by considering an inverse Fourier transform. Schaal et al. [START_REF] Schaal | Damage detection in multi-wire cables using guided ultrasonic waves[END_REF] and Bischoff et al. [START_REF] Bischoff | Efficient wave scattering analysis for damaged cylindrical waveguides[END_REF] have proposed a hybrid WFE / boundary element method for modeling defect areas in waveguides. Finally, Mencik [START_REF] Mencik | Model reduction and perturbation analysis of wave finite element formulations for computing the forced response of coupled elastic systems involving junctions with uncertain eigenfrequencies[END_REF] and Silva et al. [START_REF] Silva | Wave finite element-based superelements for forced response analysis of coupled systems via dynamic substructuring[END_REF] have proposed reduced models of joints/junctions by using a component mode synthesis technique. One of the key advantages of the WFE method is that it works in the high frequency range when the waveguides exhibit spaceoscillating wave shapes -which are likely to be sensitive to small defects -and when the coupling elements (joints, defects) exhibit local resonance phenomena (component modes).

The present work aims at applying the WFE method to the modeling of waveguide assemblies with curved joints, and which contain a small defect. More precisely, a formulation of the apparent reflection matrix of the defect, which takes into account the influence of the joints on the reflected signals recorded at some measurement point at the beginning of a waveguide assembly, is proposed. From the physical point of view, this work aims at understanding how waves interact with the defect and the curved joints. A key issue concerns the way the joint properties can be optimized to magnify the amplitudes of the reflected signaled induced by the defect. From the knowledge of the authors, this topic has never been investigated so far.

The rest of the paper is organized as follows. In Sec. 2, the FE model of a waveguide assembly with curved joints, and which contains a defect, is proposed.

In Sec. 3, the basics of the WFE method for computing waves in periodic structures are recalled. In Sec. 4, the scattering matrices of the joints and of the defect are expressed; also, the apparent reflection matrix of the defect is formulated. In Sec. 5, the optimization strategy used to magnify the amplitudes of the reflected signals issued from the defect is presented. In Sec. 6, the strategy used to compute the time response of waveguide assemblies is proposed. Finally, in Sec. 7, numerical experiments are carried out by considering 2D waveguide assemblies, with one or two curved joints which are parametrized with respect to their radius and angle of curvature.

Problem description

The problem which is tackled here is that of wave propagation in straight waveguides which are connected to curved elastic joints and which contain one defect as shown in Figure 1. Such a waveguide assembly therefore involves several "healthy" homogeneous waveguides, one or several curved joints, and one "coupling element" -also called "defect" -which refers to the part of a waveguide with a defect.

Within the present framework, it is aimed at assessing the waves which are reflected by the defect and which are measured at some receiving points at the beginning of the structural assembly, i.e., before the joints. 2D/3D FE meshes can be used for modeling the waveguides, the joints as well as the defect. This provides a general means for assessing the wave propagation over broad frequency ranges encompassing the HF range when the waveguide cross-sections exhibit space-oscillating kinematic fields, and when the dynamics of the joints and of the 100 defect involve many contributing vibration modes.

F 0 × M Substructures K, M K j , M j K d , M d
In the present work, the waveguides are supposed to share the same material properties and the same cross-section. They are modeled by means of periodic FE meshes which are built from identical substructures as shown in Figure 1, and whose FE model is described as follows. Denote as M, C and K the mass, damping and stiffness matrices (respectively) of a substructure expressed in its local reference coordinate system. Hence, in the frequency domain, the dynamic equilibrium equation of this substructure is expressed as follows:

Dq = F, (1) 
where q and F refer to the displacement and force vectors, respectively, and D is the dynamic stiffness matrix (DSM) of the substructure, expressed by:

D = -ω 2 M + iωC + K, ( 2 
)
where ω is the angular frequency, and i is the unit imaginary number.

In the same way, the dynamic equilibrium equations of the defect and of the joints are given by:

D d q d = F d , D j q j = F j , (3) 
where D d and D d refer to the DSMs of the defect and of the joints, respectively, which are expressed by:

D d = -ω 2 M d + iωC d + K d , D j = -ω 2 M j + iωC j + K j , (4) 
where M d , C d and K d (resp. M j , C j and K j ) are the mass, damping and stiffness matrices of the defect (resp. the joints). Denote by D d * and D j * the condensed DSMs of the defect and of the joints (respectively), i.e., the DSMs once condensed on the interface degrees of freedom (DOFs), i.e., those on the coupling interfaces with the waveguides. The condensed DSMs D d * and D j * are given by:

D d * = D d ΓΓ -D d ΓI (D d II ) -1 D d IΓ , D j * = D j ΓΓ -D j ΓI (D j II ) -1 D j IΓ , (5) 
where subscripts Γ and I denote the interface DOFs and internal DOFs (i.e., those which do not belong to the coupling interfaces), respectively. Note that the computation of the condensed DSMs is usually performed by means of the Craig-internal DOFs are expanded in terms of static modes and a reduced set of fixed interface modes. As a result, the computation of the DSMs can be strongly sped up compared to the classic way when Eq. ( 5) is considered. Also, the DSM of the substructure is to be condensed on the interface DOFs, which can also be done via the CB method [START_REF] Mencik | New advances in the forced response computation of periodic structures using the wave finite element (WFE) method[END_REF].

As for the damping matrices of the substructures, of the defect and of the joints, assumption is made that they are proportional to the mass and stiffness matrices, i.e.:

C = αM + βK , C d = α d M d + β d K d , C j = α j M j + β j K j , (6) 
where α, β, α d , β d , α j and β j are positive real numbers.

A whole wave-based matrix equation which models an assembly made up of waveguides, one or several joints and one defect is proposed in the next sections.

The strategy involves considering the WFE method for expressing the wave modes which propagate in each waveguide.

WFE method

The WFE method aims at analyzing the propagation of waves along onedimensional periodic structures, i.e., structures whose FE mesh is periodic -i.e., built from identical substructures -along a straight direction as shown in Figure 2.

The WFE method starts by considering the dynamic equilibrium equation of a substructure, which is given by:

D * q Γ = F Γ , (7) 
1 k -1 k k + 1 N Interface (1) (k -1) (k) (k + 1) (N ) (N + 1)
x where D * is the condensed DSM of the substructure with respect to the substructure interfaces Γ (see Sec. 2), which are usually referred to as the left (L) and right (R) boundaries (see Figure 2). Note that, due to periodicity conditions, the left and right boundaries of the substructure are meshed in the same way, i.e., with the same number n of DOFs. As a result, Eq. ( 8) leads to:

Substructures Q Q * (k) (k + 1) d q L F L q R F R k
  D * LL D * LR D * RL D * RR     q L q R   =   F L F R   , (8) 
where q L and q R (resp. F L and F R ) are displacement (resp. force) vectors of size

n × 1. Also, D * LL , D * LR , D * RL , D * RR are square matrices of size n × n.
It is worth pointing out that the mass, damping and stiffness matrices of the substructure are symmetric, which means that the condensed DSM is symmetric and, therefore, that D * LR = (D * RL ) T . Let us denote by S the transfer matrix of the substructure, which relates the displacement/force vectors on the right boundary to those on the left boundary as follows:

  q R F R   = S   q L -F L   . ( 9 
)
The expression of the transfer matrix S follows from the dynamic equilibrium equation ( 8), i.e. (see [START_REF] Mencik | Multi-mode propagation and diffusion in structures through finite elements[END_REF]):

S =   -D * -1 LR D * LL -D * -1 LR D * RL -D * RR D * -1 LR D * LL -D * RR D * -1 LR   . ( 10 
)
Consider now three consecutive substructures k -1, k and k + 1 which are separated by two interfaces (k) and (k + 1) as shown in Figure 2. Let us denote by

(i) q (k) R and q (k+1) R
the displacement vectors on the right boundaries of the first and second substructures (respectively), (

L and q (k+1) L the displacement vectors on the left boundaries of the second and third substructures (respectively), (iii)

F (k)
R and F the force vectors on the left boundaries of the second and third substructures (respectively). In this case, the coupling conditions between the substructures are written as: (i) q

(k) R = q (k) L , (ii) q (k+1) R = q (k+1) L , (iii) F (k) R = -F (k)
L , and (iv)

F (k+1) R = -F (k+1) L
. As a result, the transfer matrix relation, Eq. ( 9), can be rewritten as follows:

  q (k+1) R F (k+1) R   = S   q (k) R F (k) R   or   q (k+1) L -F (k+1) L   = S   q (k) L -F (k) L   . (11) 
Eq. ( 11) provides a relation to link the displacement and force vectors between two consecutive substructures. It is of the form u (k+1) = Su (k) where the matrix S is d-periodic (d being the substructure length). According to Bloch's theorem, the eigensolutions of S represent waves which propagate along the waveguide, i.e., 130 the periodic structure resulting from a one-dimensional periodic array of identical substructures, as previously explained. The eigenvalues and eigenvectors of the transfer matrix S are referred to as the wave modes of the periodic structure. The eigenvalues are denoted by µ j and are referred to as the wave parameters, with the property that µ j = exp (-iβ j d) where β j stands for the wave numbers. Also, the eigenvectors are denoted by φ j and are referred to as the wave shapes, which are usually partitioned into displacement and force components as follows:

φ j = [φ T qj φ T Fj ]
T . Note that the transfer matrix S is symplectic [START_REF] Mencik | Multi-mode propagation and diffusion in structures through finite elements[END_REF], which means that the eigenvalues come in pairs, say, n eigenvalues µ j defined so that |µ j | < 1 and which denote right-going wave modes, and n eigenvalues µ j defined so that µ j = 1/µ j -i.e., |µ j | > 1 -and which denote left-going wave modes. The wave shapes can be partitioned accordingly into n right-going wave modes φ j and n left-going wave modes φ j .

Remark 1. The WFE eigenproblem is expressed by Sφ j = µ j φ j and is subject to numerical ill-conditioning. This is explained because the eigenvectors are partitioned into displacement and force components whose values are usually highly disparate, which means that the matrix of eigenvectors is ill-conditioned.

A strategy which circumvents this issue is to consider an alternative generalized eigenproblem based on the S + S -1 transformation technique [START_REF] Mencik | A wave-based model reduction technique for the description of the dynamic behavior of periodic structures involving arbitrary-shaped substructures and large-sized finite element models[END_REF]. One of the key advantages of this generalized eigenproblem is that it is "symplectic structure preserving", which particularly means that it preserves the analytical relation µ j = 1/µ j between the right-going and left-going wave modes. Hence, the numerical error made for computing the right-going and left-going wave modes can be highly reduced.

The set of wave shapes {φ j } n j=1 ∪ {φ j } n j=1 constitutes a basis on which the displacement and force vectors of the waveguide can be expanded. For a given substructure boundary (k), this writes [START_REF] Mencik | New advances in the forced response computation of periodic structures using the wave finite element (WFE) method[END_REF]:

q (k) L = q (k) R = Φ q Q (k) + Φ q Q (k) , (12) 
-F

(k) L = F (k) R = Φ F Q (k) + Φ F Q (k) , (13) 
where Φ q , Φ q , Φ F and Φ F are square n×n matrices defined by

Φ q = [φ q1 • • • φ qn ], Φ q = [φ q1 • • • φ qn ], Φ F = [φ F1 • • • φ Fn ] and Φ F = [φ F1 • • • φ Fn ],
which are full rank [START_REF] Mencik | On the low-and mid-frequency forced response of elastic structures using wave finite elements with one-dimensional propagation[END_REF]; also, Q (k) and Q (k) are n × 1 vectors of wave amplitudes.

Consider now a waveguide of finite length, i.e., which is composed of a finite number N of substructures as shown in Figure 2, and denote as Q and Q the vectors of wave amplitudes at the left and right ends of this waveguide for the right-going and left-going wave modes, respectively. It can be shown that

Q (k) = µ k-1 Q and Q (k) = µ N +1-k Q where µ = diag{µ j } n j=1
is the n × n diagonal matrix of the eigenvalues µ j for the right-going wave modes [START_REF] Mencik | New advances in the forced response computation of periodic structures using the wave finite element (WFE) method[END_REF]. As a result, Eqs. ( 12) and ( 13) can be rewritten as follows:

q (k) L = q (k) R = Φ q µ k-1 Q + Φ q µ N +1-k Q , ( 14 
) -F (k) L = F (k) R = Φ F µ k-1 Q + Φ F µ N +1-k Q . ( 15 
)

Scattering matrices

By considering the wave expansions ( 14) and ( 15), the reflection and transmission coefficients of waves around the defect and around the joints can be assessed.

The strategy is explained hereafter.

Defect Consider first, for the sake of clarity, two waveguides 1 and 2 of similar crosssections and similar material properties (see Sec. 2), with N 1 and N 2 substructures (respectively), which are connected to a defect -i.e., a waveguide part containing a defect -as shown in Figure 3(a). Denote as Γ 1 the coupling interface between the defect and waveguide 1, and Γ 2 the coupling interface between the defect and waveguide 2. Let us write the dynamic equilibrium equation of the defect as follows:

Q 1 Q * 1 Q 2 Q * 2 (a) Q 1 Q * 1 Joint Defect Q 2 Q * 2 Q 3 Q * 3 (b)
D d *   q d | Γ 1 q d | Γ 2   =   F d | Γ 1 F d | Γ 2   , (16) 
where D d * is the condensed DSM of the defect, and

q d | Γ 1 and q d | Γ 2 (resp. F d | Γ 1 and F d | Γ 2 )
are the restrictions of the displacement (resp. force) vector of the defect to Γ 1 and Γ 2 , respectively. Notice that Γ 1 matches the substructure boundary

(N 1 + 1)
(right side of the first waveguide), while Γ 2 matches the substructure boundary (1) (left side of the second waveguide) (see Sec. 3). As it turns out, the coupling conditions between the defect and the waveguides are expressed as follows:

q d | Γ 1 = q (N 1 +1) R1 , q d | Γ 2 = q (1) L2 , (17) 
and

F d | Γ 1 = -F (N 1 +1) R1 , F d | Γ 2 = -F (1) L2 , (18) 
where subscripts 1 and 2 refer to the displacement and force vectors of waveguides 1 and 2, respectively; also, the minus sign ahead of F

(N 1 +1) R1
and F

(1

)
L2 results from the action-reaction law. Hence, Eq. ( 16) yields:

D d *   q (N 1 +1) R1 q (1) L2   = -   F (N 1 +1) R1 F (1) L2   . ( 19 
)
By expanding q

(N 1 +1) R1 , q (1) 
L2 , F

(N 1 +1) R1
and F

(1)

L2 on the basis of wave modes (see
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Eqs. ( 14) and ( 15)), this yields:

q (N 1 +1) R1 = Φ q µ N 1 Q 1 + Φ q Q 1 , (20) q 
(1)

L2 = Φ q Q 2 + Φ q µ N 2 Q 2 , (21) 
F (N 1 +1) R1 = Φ F µ N 1 Q 1 + Φ F Q 1 , (22) 
F (1) L2 = -Φ F Q 2 + Φ F µ N 2 Q 2 , (23) 
where Q 1 and Q 1 (resp. Q 2 and Q 2 ) are the vectors of wave amplitudes for waveguide 1 (resp. waveguide 2), see Figure 3

(a). Introducing Eqs. (20-23) into

Eq. ( 19) leads to:

D d *   Φ q 0 0 Φ q     µ N 1 Q 1 µ N 2 Q 2   + D d *   Φ q 0 0 Φ q     Q 1 Q 2   (24) = -   Φ F 0 0 -Φ F     µ N 1 Q 1 µ N 2 Q 2   -   Φ F 0 0 -Φ F     Q 1 Q 2   .
Eq. ( 24) gives:

  D d *   Φ q 0 0 Φ q   +   Φ F 0 0 -Φ F       Q 1 Q 2   (25) = -   D d *   Φ q 0 0 Φ q   +   Φ F 0 0 -Φ F       µ N 1 Q 1 µ N 2 Q 2   ,
which can be rewritten as follows:

  Q 1 Q 2   = C d   µ N 1 Q 1 µ N 2 Q 2   =   C d 11 C d 12 C d 21 C d 22     µ N 1 Q 1 µ N 2 Q 2   , (26) 
where

C d = -   D d *   Φ q 0 0 Φ q   +   Φ F 0 0 -Φ F     -1   D d *   Φ q 0 0 Φ q   +   Φ F 0 0 -Φ F     . (27) 
Here, C d is the so-called scattering matrix of the defect. It links the vector of

amplitudes [Q T 1 Q T 2 ]
T for the outgoing waves, in waveguides 1 and 2, to the vector of amplitudes 21 is the matrix of transmission coefficients for the waves in waveguide 1 (to waveguide 2), and (iv) C d 12 is the matrix of transmission coefficients for the waves in waveguide 2 (to waveguide 1).

[(µ N 1 Q 1 ) T (µ N 2 Q 2 ) T ] T for
Remark 2. The components of the scattering matrix C d highly depend on the normalization of the wave shapes φ j and φ j , and therefore, on the norms of the matrices Φ q , Φ q , Φ F and Φ F . Hence, it is not guaranteed that the values of the reflection and transmission coefficients are less than one contrary to the academic case when simple bars or beams are dealt with. The issue is mostly linked to the 195 spatial behavior of the wave shapes over the cross-section, which is not uniform and can be oscillating. As a rule of thumb, although not mandatory, it is proposed to normalized the wave shapes w.r.t. their norms, i.e., φ j → φ j / φ j and φ j → φ j / φ j .
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Consider an assembly made up of three healthy waveguides 1, 2 and 3, a joint and a defect as shown in Figure 3(b). The scattering matrix of the joint can be derived in the same way as that of the defect. This yields:

  Q 1 Q 2   = C j   µ N 1 Q 1 µ N 2 Q 2   =   C j 11 C j 12 C j 21 C j 22     µ N 1 Q 1 µ N 2 Q 2   , (28) 
where C j is the scattering matrix of the joint. As for the defect, one has:

  Q 2 Q 3   = C d   µ N 2 Q 2 µ N 3 Q 3   =   C d 22 C d 23 C d 32 C d 33     µ N 2 Q 2 µ N 3 Q 3   , (29) 
where C d is the scattering matrix of the defect. The expressions of the scattering matrices C j and C d follow from Eq. ( 27), i.e.:

C j = -   D j *   L 1 Φ q 0 0 L 2 Φ q   +   L 1 Φ F 0 0 -L 2 Φ F     -1 (30) ×   D j *   L 1 Φ q 0 0 L 2 Φ q   +   L 1 Φ F 0 0 -L 2 Φ F     ,
and

C d = -   D d *   L 2 Φ q 0 0 L 3 Φ q   +   L 2 Φ F 0 0 -L 3 Φ F     -1 (31) ×   D d *   L 2 Φ q 0 0 L 3 Φ q   +   L 2 Φ F 0 0 -L 3 Φ F     ,
where L 1 , L 2 and L 3 are direction cosine matrices which are introduced here as a means to project the local coordinate systems of waveguides 1, 2 and 3 onto a global reference one [START_REF] Mencik | Model reduction and perturbation analysis of wave finite element formulations for computing the forced response of coupled elastic systems involving junctions with uncertain eigenfrequencies[END_REF]. By considering Eqs. ( 28) and ( 29), a whole scattering matrix of the system joint -waveguide 2 -defect can be proposed. Indeed, Eqs.

(28) and (29) lead to:

  Q 1 Q 3   =   C j 11 0 0 C d 33     µ N 1 Q 1 µ N 3 Q 3   +   C j 12 µ N 2 0 0 C d 32 µ N 2     Q 2 Q 2   , (32) and  
 Q 2 Q 2   =   0 C d 23 C j 21 0     µ N 1 Q 1 µ N 3 Q 3   +   0 C d 22 µ N 2 C j 22 µ N 2 0     Q 2 Q 2   . (33) 
Eq. (33) yields:

  Q 2 Q 2   =   I -C d 22 µ N 2 -C j 22 µ N 2 I   -1   0 C d 23 C j 21 0     µ N 1 Q 1 µ N 3 Q 3   . (34) 
Therefore, by introducing Eq. (34) into Eq. (32), this gives:

  Q 1 Q 3   = C jd   µ N 1 Q 1 µ N 3 Q 3   =   C jd 11 C jd 13 C jd 31 C jd 33     µ N 1 Q 1 µ N 3 Q 3   , (35) 
where

C jd =   C jd 11 C jd 13 C jd 31 C jd 33   =   C j 11 0 0 C d 33   +   C j 12 µ N 2 0 0 C d 32 µ N 2   (36) ×   I -C d 22 µ N 2 -C j 22 µ N 2 I   -1   0 C d 23 C j 21 0   .
The matrix C jd is to be understood as the scattering matrix of the system jointwaveguide 2 -defect. It links the vector of amplitudes

[Q T 1 Q T 3 ]
T for the outgoing waves, in waveguides 1 and 3, to the vector of amplitudes

[(µ N 1 Q 1 ) T (µ N 2 Q 3 ) T ] T
for the corresponding incoming/incident waves. More precisely, the block component C jd 11 contains the reflection coefficients for the waves in waveguide 1. It is expressed by

C jd 11 = C j 11 + C j 12 µ N 2 C d 22 µ N 2 (I -C j 22 µ N 2 C d 22 µ N 2 ) -1 C j 21 . (37) 
To derive Eq. (37), the analytical expression of the inverse of the 2 × 2 block matrix occurring in Eq. ( 36) has been invoked. The second matrix on the right hand side of Eq. (37) contains the reflection coefficients of the defect which is seen "through" the joint, i.e., by considering a measurement point located on waveguide 1. Hence, an apparent matrix of reflection coefficients for the defect can be defined as follows:

C d 11 = C j 12 µ N 2 C d 22 µ N 2 (I -C j 22 µ N 2 C d 22 µ N 2 ) -1 C j 21 . (38) 
The underlying issue hence consists in optimizing the joint properties so as to 205 maximize the amplitudes of the waves which are reflected by the defect. In other words, the question which is raised is as whether the joint properties can be tuned in an appropriate way to maximize the components of the matrix C d 11 .

Waveguide assembly with several joints

Let us consider the more general case when n j + 1 waveguides and n j connecting joints are placed between the measurement point and the defect as shown in Figure 4. In this framework, a joint j i (i = 1, . . . , n j ) connects two consecutive waveguides i and i + 1. Denote by N i and N i+1 the numbers of substructures for waveguides i and i + 1, respectively. Hence, the scattering matrix of the joint j i , which links the vectors of wave amplitudes of the outgoing wave modes to those of the incoming ones in waveguides i and i + 1, is given by:

  Q i Q i+1   = C j i   µ N i Q i µ N i+1 Q i+1   =   C j i i,i C j i i,i+1 C j i i+1,i C j i i+1,i+1     µ N i Q i µ N i+1 Q i+1   . ( 39 
)
where C j i is the scattering matrix of the joint j i , Q i and Q i+1 are the vectors of 210 wave amplitudes for the outgoing wave modes, and µ N i Q i and µ N i+1 Q i+1 are the vectors of wave amplitudes for the incoming wave modes. The scattering matrix of an assembly involving two joints j i and j i+1 connected through a waveguide i + 1 can be expressed by considering the procedure described by Eqs. (32)-(36). This yields:
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C j i -j i+1 =   C j i ii 0 0 C j i+1 i+2,i+2   +   C j i i,i+1 µ N i+1 0 0 C j i+1 i+2,i+1 µ N i+1   (40) ×   I -C j i+1 i+1,i+1 µ N i+1 -C j i i+1,i+1 µ N i+1 I   -1   0 C j i+1 i+1,i+2 C j i i+1,i 0   ,
where C j i -j i+1 is the scattering matrix of the system joint j i -waveguide i + 1joint j i+1 . Following the same procedure, the formulation of the scattering matrix C j i -j i+1 can be extended so as to incorporate an additional waveguide i + 2 and an additional joint i + 2. This yields a new scattering matrix C j i -j i+2 . Hence, an iterative scheme can be proposed to build the global scattering matrix C j 1 -j n j of an assembly involving n j joints j 1 , j 2 , ..., j n j and n j -1 connecting waveguides 2, 3, ..., n j . This yields:

  Q 1 Q n j +1   = C j 1 -j n j   µ N 1 Q 1 µ N n j +1 Q n j +1   =   C j 1 -j n j 1,1 C j1-j n j 1,n j +1 C j 1 -j n j n j +1,1 C j 1 -j n j n j +1,n j +1     µ N 1 Q 1 µ N n j +1 Q n j +1   . (41) 
Assume that the defect is located after the last joint j n j , i.e., between waveguides n j + 1 and n j + 2 as shown in Figure 4. By considering Eq. ( 38), the apparent reflection matrix of the defect which is seen in waveguide 1 through the n j joints turns out to be expressed in this way:

C d 11 = C j 1 -j n j 1,n j +1 µ N n j +1 C d n j +1,n j +1 µ N n j +1 (I-C j 1 -j n j n j +1,n j +1 µ N n j +1 C d n j +1,n j +1 µ N n j +1 ) -1 C j 1 -j n j n j +1,1 . (42)

Optimization strategy

Let us denote by α a set of joint parameters such as the internal radius of curvature, the curvature angle, the elastic modulus, and so on. Hence, introduce the following cost function g(α):

g(α) = max f ∈[f min ;fmax] C d 11 (α) max , (43) 
where It should be emphasized that the determination of the cost function g(α), for 220 a given set of joint parameters α, involves computing the matrix C d 11 (α) over a certain frequency band [f min ; f max ], i.e., at several discrete frequencies within [f min ; f max ]. The computational burden, if any, is mostly linked to the number of DOFs n which are used to discretize the substructure interfaces (in the waveguides), and the number of internal DOFs which are used to model the joints and the defect. Indeed, a large number of interface DOFs n means an eigenproblem of large size to compute the wave modes, which has to be solved at several discrete frequencies. In practice, computational issues arises as soon as n > 300 using MATLAB R . The second issue is about the number of internal DOFs of the joints and of the defect which can penalize the computation of the condensed DSMs, see Eq. ( 5). This is mostly linked to the computation of the matrix inverses (D j II ) -1 and (D d II ) -1 , and the computation of the matrix products in Eq. ( 5). As explained in Sec. 2, this issue can be overcome by considering the CB method where a reduced set of fixed interface modes are used to describe the displacement vector for the internal DOFs. These fixed interface modes can be computed using iterative eigensolvers like the Lanczos method [START_REF] Mencik | A wave-based model reduction technique for the description of the dynamic behavior of periodic structures involving arbitrary-shaped substructures and large-sized finite element models[END_REF]. In this way, the computation of the condensed DSMs can be strongly sped up.

C d 11 (α) max = max ij |(C d 11 ) ij (α)|. (44 
For the sake of clarity, the numerical tasks involved in the computation of the matrix C d 11 (α), at each frequency considered within the frequency band [f min ; f max ], are recalled hereafter:

1. Computation of the condensed DSMs of the joints and of the defect, as well as of the condensed DSM of a substructure (waveguides), Eq. ( 5).

2. Computation of the wave modes (µ j , φ j ) and (µ j , φ j ) of the waveguides, see Sec. 3.

Computation of the apparent reflection matrix C d

11 , Eq. (38) or Eq. (42).

Forced response

Recall that the key idea behind the optimization strategy proposed in Sec. 5

is to maximize the reflected signals issued from the defect at some measurement point located along the first waveguide, i.e., before the joints, when an input time force is applied to the same waveguide (see Fig. 5). Here, assumption is made that the time range analyzed is small enough so that the multiple echos due to the reflections from the left end of the first waveguide and from the right end of the last waveguide are not recorded, which means that those waveguide ends can be considered as infinite boundaries. For the sake of clarity, a schematic of an assembly involving a healthy waveguide subject to one input force, a curved joint, a second healthy waveguide, a defect and a third healthy waveguide, is shown in Fig. 5. Here, the first waveguide is to be split into two waveguides -say, waveguide 0 and waveguide 1 -which are coupled at the location of the input force. Waveguide 2 is located between the joint and the defect, while waveguide 3 is located after the defect. Hence, infinite boundary conditions are to be considered at the left end of waveguide 0, and at the right end of waveguide 3. From the numerical point of view, this is equivalent to canceling out the magnitudes of the outgoing waves, i.e., Q 0 and Q 3 . As for the coupling conditions between waveguides 0 and 1 at the location of the input force, they are given by:

F 0 Q * 0 ∞ Q 1 Q * 1 × M Defect Q 2 Q * 2 Q 3 ∞ Joint
q (N 0 +1) R0 = q (1) L1 , F (N 0 +1) R0 + F (1) L1 = F, ( 46 
)
where F is the input force vector. By considering the wave expansions ( 14) and ( 15) and the fact that Q 0 = 0, this yields:

L 1 Φ q Q 0 = L 1 Φ q Q 1 + L 1 Φ q µ N 1 Q 1 , (47) 
L 1 Φ F Q 0 -L 1 Φ F Q 1 -L 1 Φ F µ N 1 Q 1 = L 1 F, ( 48 
)
where N 1 is the number of substructures used to describe waveguide 1, and L 1 is the direction cosine matrix for both waveguides 1 and 0 (see after Eq. ( 31)).

Notice that the matrix L 1 is square and invertible, i.e., (L 1 ) -1 L 1 = I. As a result,
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Eqs. ( 47) and ( 48) lead to:

Q 0 -C q 01 Q 1 -µ N 1 Q 1 = 0, (49) 
Q 1 -C F 10 Q 0 -C F 11 µ N 1 Q 1 = F, (50) 
where 49) and (50) as well as Eqs. ( 28) and ( 29), a whole matrix equation can be formulated whose resolution yields the vectors of wave amplitudes for each waveguide (see [START_REF] Mencik | A wave finite element-based formulation for computing the forced response of structures involving rectangular flat shells[END_REF] for further details):

C q 01 = (Φ q ) -1 Φ q , C F 10 = (Φ F ) -1 Φ F , C F 11 = -(Φ F ) -1 Φ F and F = -(Φ F ) -1 F. By considering Eqs. (
              I -C F 11 µ N 1 0 0 0 -C F 10 -C j 11 µ N 1 I 0 -C j 12 µ N 2 0 0 -C j 21 µ N 1 0 I -C j 22 µ N 2 0 0 0 0 -C d 22 µ N 2 I 0 0 0 0 -C d 32 µ N 2 0 I 0 -C q 01 -µ N 1 0 0 0 I                             Q 1 Q 1 Q 2 Q 2 Q 3 Q 0               =               F 0 0 0 0 0 0               . ( 51 
)
Once the vectors of wave amplitudes

Q 1 , Q 1 , Q 2 , Q 2 , Q 3 and Q 0 are computed,
the displacement and force vectors of the waveguides can be retrieved by considering the wave expansions ( 14) and ( 15), it being understood that Q 0 = 0 and 260 Q 3 = 0 (infinite boundary conditions). The interesting feature of the wave-based matrix equation ( 51) is that its resolution is not expensive from the computational point of view, which is explained because the size of the matrix on the left hand side (Eq. ( 51)) is small compared to the total number of DOFs that would be used to discretize the whole waveguides. Hence, the displacement vectors can be quickly obtained compared to the conventional resolution techniques like the FE method. In particular, the displacement at the measurement point -namely, q mes -, where the reflected signals are recorded, can be retrieved. Indeed, if one assumes that the measurement point is on waveguide 1, this yields:

q mes = L mes Φ q µ kmes-1 Q 1 + Φ q µ N 1 +1-kmes Q , (52) 
where (k mes ) denotes the substructure boundary which contains the measurement point, and L mes is a localization matrix whose purpose is to select the measurement DOF among all the DOFs of the substructure boundary (k mes ).

The aforementioned measured displacement q mes is expressed in the frequency domain. Its expression in the time domain follows from an inverse Fourier transform, i.e.:

q mes (t) = 1 2π +∞ -∞ q mes (ω)e iωt dω. (53) 
In practice, a discrete inverse Fourier transform is performed [START_REF] Marzani | Time-transient response for ultrasonic guided waves propa-515 gating in damped cylinders[END_REF], which can be done with the fft() MATLAB R function.

Numerical results

The proposed approach is applied to two waveguide assemblies with one and two curved joints, respectively, and which contain a defect as shown in Figure The waveguides, the curved joint(s) and the coupling element embedding the defect represent thin elastic structures of height h and cross-section width b, which share the same material properties (see Table 1). The total lengths of waveguides 1, 2 and 3 (see Figure 6) are l 1 = 2 m, l 2 = 0.2 m and l 3 = 0.15 m, respectively.

Recall that, within the framework of the WFE method, the waveguides are made of identical substructures. Here, the same substructure, with a length of d = 2.5 × 10 -3 m, is used for modeling all the waveguides. As it turns out, 800, 80

and 60 substructures are used to discretize waveguides 1, 2 and 3, respectively.

The substructure, the joint(s) and the defect are meshed with four node plane stress finite elements (with two DOFs per node), except Defect B which is meshed with three nodes triangular elements.

The geometrical properties of the joint(s) and of the defect are listed in Table 2. Each curved joint is parametrized with an internal radius of curvature R int ∈ [0.01; 0.4] m and an angle θ ∈ [0; π] rad. It is surrounded by straight segments of and a waveguide assembly with two joints (f). For the sake of readability, the FE meshes displayed are coarser than those used in the numerical simulations.

d N t (a) R int θ l j a l j b N s (b) l d x d y d N d (c) l d w d t d (d) l 1 R int , θ l 2 (e) l 1 R int1 , θ 1 l 2 R int2 , θ 2 l 3 (f) 
small lengths l j a and l j b as shown in Figure 6(b). 1 Otherwise, when two joints are involved, two radii of curvature R int1 and R int2 and two angles θ 1 and θ 2 are to be considered which can be tuned in an independent way.

The substructure which is used to describe the waveguides is meshed with N t = 40 elements along the vertical direction, and does not contain internal DOFs (see Figure 6(a)). This yields n = 82 DOFs on the left/right boundaries. Also, N s = 160 elements are used to discretize the joint(s) along the circumferential direction. As for Defect A, N d = 20 elements are used to mesh the longitudinal direction, which yields 800 elements for the whole defect. Also, Defect B is meshed with 3813 triangular elements.

As was pointed out in Sec. 2, the CB method can be used to compute the condensed DSMs of the joint(s) and of the defect, leading to computational saving.

Here, a same number of 100 fixed interface modes are used for the joint(s) and the defect, which is supposed to be large enough for obtaining an accurate estimation of the condensed DSMs D d * and D j * over the frequency band analyzed. Table 1: Material and geometrical properties of the waveguides, of the joint(s) and of the defect (α and β are the damping proportionality coefficients, see Eq. ( 6)). 1 It is worth pointing out that θ = 0 rad corresponds to the particular case when the curved joint Table 2: Geometrical properties of the joint(s) and of the defect.

Reflection coefficients due to the defect

The wave modes of the waveguides are obtained by considering the transfer matrix of a substructure (see Sec. 3). The dispersion curves -i.e., the frequency evolutions of the wave numbers β j -for five "low order" modes are shown in Figure 7(a) over a frequency range [0; 40] kHz. These modes refer to the flexural wave (in red), the longitudinal wave (in yellow), the shearing wave (in bright green), and two "complex" waves 1 and 2 (in blue and purple). Also, the wave shapes for these modes, at 40 kHz, are displayed in Figure 7(b). It is seen that the wave shapes are not uniform in space, even for the first three basic waves.

More precisely, these are n = 82 right-going and left-going wave modes which are computed by means of the WFE method, and which are characterized by wave shapes which are not uniform in space and can be highly oscillating. As it turns out, the problem which is tackled here appears to be much more complicated than the simple one consisting in analyzing one-dimensional waveguides like beams, i.e., those for which the cross-section is modeled with one node only.

Let us first consider the case of two waveguides which are straightly connected to a defect, i.e., without joint. The absolute values of the reflection coefficients (C d 11 ) ij (for i, j = 1, 2, . . . , 5) induced by Defect A with a damage severity γ = 0.9 are shown in Figure 8(a). It is shown that the variation of the reflection coefficients is not monotonic. Instead, several peaks occur for several waves, which means that these waves are locally sensitive -i.e., around 16 kHz and 26 kHz in this case -to the defect. Also, the maximum value of the max-norm of the matrix C d 11 -i.e., C d 11 max -is shown in Figure 8(b) for Defect A with γ = 0.9 and γ = 0.5, and for Defect B (notch). It is seen that the magnitudes of the reflection coefficients for Defect A with a damage severity of γ = 0.5 are lower compared to the case where γ = 0.9 (as expected). However, it remains that the local sensitivities of the reflection coefficients are still well highlighted around 16 kHz and 26 kHz. As for Defect B, waves are becoming sensitive at higher frequencies, say around 26 kHz where the norm C d 11 max reaches a local maximum.

Effects of a curved joint

The absolute values of the components (C jd 11 ) ij (reflection coefficients) of the scattering matrix C jd 11 which models the system joint (radius of curvature R int = 0.1) -waveguide -Defect A (severity γ = 0.9) are displayed in Figure 9(a), see Eq. (38). The frequency evolution of the reflection coefficients appears to be complex compared to the case of a defect without joint, which might be explained because of the energy conversion which occurs between the wave modes through the joint. Also, the max-norms C jd 11 max , C j 11 max (effect of the joint only) and ) ij (i, j = 1, . . . , 5) for Defect A with γ=0.9 (a); max-norm C d 11 max for Defect A with γ=0.9 (full black), for Defect A with γ=0.5 (dashed black) and for Defect B (dashed red) (b).

26 kHz, can largely vary, say with a ratio of 3 between the cases θ = π/4 rad and θ = 3π/4 rad. It is therefore relevant to propose an adequate design of the joint to magnify the magnitudes of the apparent reflection coefficients. 

Time response

To further highlight the results of the previous subsections, the time response at a measurement point located before the joint(s) can be assessed. For the sake of simplicity, a single test case involving one curved joint and a Defect A with a severity γ = 0.9 is analyzed. Here, the angle of the joint is tuned to θ = π/2. Also, three radii of curvature are considered, i.e., R int = 0.1 m, R int = 0.158 m -which corresponds to the optimized value, see Figure 11 

Figure 1 :

 1 Figure 1: Assembly made up of homogeneous waveguides (gray), a curved joint (blue) and a defect (green). The FE mesh of each homogeneous waveguide is periodic and built from identical substructures; the curved joint and the defect involve full FE meshes. The measurement point is designated by M.

Figure 2 :

 2 Figure 2: Schematic of a periodic structure.

  on the right boundaries of the first and second substructures (respectively), and (iv) F

Figure 3 :

 3 Figure 3: Schematics of one waveguide with a defect (a), and of one waveguide assembly with a curved joint and a defect (b).

Figure 4 :

 4 Figure 4: Waveguide assembly involving n j joints (in blue), n j + 2 waveguides (in gray) and a defect (in green).

)

  Clearly speaking, g(α) represents the maximum value of the max-norm C d 11 (α) max of the apparent reflection matrix C d 11 (α) on a given frequency band [f min ; f max ]. In other words, g(α) is an upper bound of the absolute values of the components of the matrix C d 11 (α) -i.e., |(C d 11 ) ij (α)| -on [f min ; f max ]. The optimization strategy therefore consists in finding the optimal set of parameters α opt which maximizes this upper bound, i.e., α opt = argmax α g(α).(45)From the practical point of view, the fmincon() or the particleswarm() functions of the MATLAB R optimization and global optimization toolboxes can be used to solve the optimization problem (45).

Figure 5 :

 5 Figure 5: Schematic of an assembly made up of three waveguides, a joint and a defect, which is subject to an input force (first waveguide). The measurement point is designated by M.

6 .

 6 Two kinds of defects are investigated, i.e., (i) a coupling element with a local decrease of the Young's modulus -i.e., E d = E(1γ), which represents a crack of dimensions x d × y d (see Figure 6(c)) -referred to as Defect A, and (ii) a coupling element with a triangular notch of width w d = 0.01 m and depth t d = 0.01 m (Figure 6(d)) referred to as Defect B. For each case and each kind of defect, the apparent reflection coefficients of the defect which is seen through the joint(s) at the measurement point (first waveguide) are assessed. Optimization strategies are carried out by following the procedure proposed in Sec. 5. Also, the time response of the first assembly is assessed, and the effect of the variation of the joint parameters on the detection of the defect is highlighted.

Figure 6 :

 6 Figure 6: Schematics of a substructure (a), a curved joint (b), a Defect A (local decrease of the Young's modulus) (c), a Defect B (triangular notch) (d), a waveguide assembly with one joint (e)
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Figure 7 :

 7 Figure 7: Real (continuous line) and imaginary (dashed line) parts of the wavenumbers β j for five "low order" wave modes (a); wave mode shapes at 40 kHz (b).

C d 11 5 .Frequency

 115 max (effect of the defect through the joint) are plotted in Figures 9(b), 9(c) and 9(d). As it can be seen in Figures9(c) and 9(d), the energy reflected by the joint is clearly superior to that induced by the defect. Notice however that the defect remains well observable at some local frequencies as shown in Figure9(d) where the apparent reflection coefficients (components of C d 11 ) can exceed 0.The effect of the variation of the angle of the joint -i.e., for θ = π/4 rad, θ = π/2 rad and θ = 3π/4 rad -on the apparent reflection coefficients is also highlighted. It is seen that the maximum value of C d 11 max , e.g., for the peak at

Figure 8 :

 8 Figure 8: Reflection coefficients induced by a defect without joint: reflection coefficients (C d 11) ij (i, j = 1, . . . , 5) for Defect A with γ=0.9 (a); max-norm C d 11 max for Defect A with γ=0.9 (full black), for Defect A with γ=0.5 (dashed black) and for Defect B (dashed red) (b).

FrequencyFigure 9 :

 9 Figure 9: Apparent reflection coefficients (Defect A with γ = 0.9, and curved joint with R int = 0.1 m): reflection coefficients (C jd 11 ) ij for θ = 3π/4 rad (a); max-norm C jd 11 max (b) ; max-norm C j 11 max (effect of the joint) (c); max-norm C d 11 max (effect of the defect through the joint) (d).

7. 3 . 4 rad and θ 2 =

 342 Figures 10(b) and 10(d). For instance, in Figure 10(b), the parameters which yield the maximum value of g(R int , θ) on [f min ; f max ] = [15; 17] kHz are R int = 0.01 m and θ = 0.275 rad. For this set of parameters, the most contributing component of the reflection matrix is (C d 11 ) 32 , i.e., the one issued from the coupling between the incoming mode 2 and the reflected mode 3. Elsewhere on the domain [0.01; 0.4] m × [0; π] rad, the most contributing components may differ and involve different couplings, e.g., between the incoming mode 3 and the reflected mode 3 (component (C d 11 ) 33 ). Regarding for instance Figure 10(a) where the maximum of the max-norm C d 11 max is sought for f ∈ [15; 17] kHz, it is seen that, for a given value of the angle θ (which can be assigned for design purpose), the function R int → g(R int , θ) reaches its maximum for a certain value of the internal radius of curvature R int which does not necessarily matches the minimum and maximum values R int = 0.01 m and R int = 0.4 m. Results are shown in Figures 11(a) and 11(b) for

Figure 12

 12 Figure 12 displays a 2D map of the cost function g(R int1 , R int2 ) when [f min ; f max ] = [15 ; 17] kHz for a Defect A (severity γ = 0.9) located after the second joint. Here again, it is seen that the variation of the cost function is not trivial. By considering the proposed optimization approach, a clear maximum of the cost function can be determined for R int1 = 0.152 m and R int2 = 0.065 m (see blue dot in Figure 12(a)). Also, the components (C d 11 ) ij of the reflection matrix C d 11 which mostly contribute to the reflected signal can be identified as shown in Figure 12(b).In the present case, the most contributing component for R int1 = 0.152 m and R int2 = 0.065 m is (C d 11 ) 22 , i.e., the one induced by the coupling between the incident mode 2 and the reflected mode 2.

Figure 10 :

 10 Figure 10: Cost function g(R int , θ) for frequency range [15; 17] kHz (a) and corresponding most contributing component (C d 11 ) ij (b); cost function g(R int , θ) for frequency range [25; 28] kHz (c) and corresponding most contributing component (C d 11 ) ij (d).

Figure 12 :

 12 Figure 12: Cost function g(R int1 , R int2 ) for frequency range [15; 17] kHz and two joints (a) and corresponding most contributing component (C d 11 ) ij (b) (blue dot indicates maximal value: R int1 = 0.152 m and R int2 = 0.065 m).

  (b) -and R int = 0.25 m. The waveguide assembly is excited by a Gaussian pulse at 25.5 kHz along the longitudinal direction, i.e., to excite the longitudinal mode 2 which is supposed to give rise to the most contributing component (C d 11 ) 22 of the reflection matrix C d 11 (see Sec. 7.3). The measurement point is located 1 m away in front of the excitation point.

Figure 13 displays

 13 Figure 13 displays the incident signal (black curve) along with the reflected

Bampton (CB) method[START_REF] Mencik | Model reduction and perturbation analysis of wave finite element formulations for computing the forced response of coupled elastic systems involving junctions with uncertain eigenfrequencies[END_REF]. In this framework, the displacement vectors for the

Concluding remarks

A wave-based optimization approach has been proposed for detecting defects in waveguide assemblies with curved elastic joints. 2D and 3D FE/WFE models can be used for modeling the waveguides, the joints and the defect parts, which 435 appear to be suitable for predicting space-oscillating wave shapes and local resonance phenomena (cross-section modes and component modes) occurring at high