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Abstract

A wave-based numerical approach is proposed for the detection of defects in

waveguide assemblies with curved joints. Within this framework, the wave fi-

nite element (WFE) method is used. It provides an efficient numerical means for

computing waves in one-dimensional periodic structures (waveguides), and as-

sessing the reflection and transmission coefficients of waves around defects and

curved joints. A so-called apparent reflection matrix of the defects, which takes

into account the influence of the joints on the reflected signals recorded at some

measurement point at the beginning of a waveguide assembly, is proposed. This

appears to be the relevant criterion for detecting defects. As it turns out, an opti-

mization procedure for the design of curved joints can be proposed to magnify the

amplitude of the reflected signals issued from defects. Numerical experiments are

carried out on 2D waveguide assemblies, with one or two curved joints which are

parameterized with respect to their radius and angle of curvature. Optimized val-

ues of these parameters can be found which magnify the reflected signals issued

from several kinds of defects. Time response simulations are finally undertaken

Email address: vivien.denis@insa-cvl.fr (Vivien Denis)

Preprint submitted to Journal of Sound and Vibration March 14, 2019



to highlight the relevance of the proposed approach.

Key words: wave finite element method, defect detection, optimization, curved

joints, scattering matrix.

1. Introduction

Wave-based non-destructive testing (NDT) techniques are commonly used in

mechanical and civil engineering to detect small defects in waveguide structures,

e.g., like bridges or pipes. Those defects are mainly due to vibration fatigue or

corrosion which affect the integrity of engineering structures. For straight waveg-5

uides like beams or pipes, certain waves can travel a long distance and can be well

reflected by defects. This is the key idea behind wave-based NDT, i.e., by record-

ing and analyzing the reflected signals (echo) issued from a defect at some mea-

surement point. A common NDT technique hence consists in generating waves

(from one or several excitation points), and measuring the reflected waves to de-10

termine the occurrence, type and localization of defects [1].

However, engineering structures rarely represent straight infinite waveguides,

and mainly involve waveguide assemblies with curved elastic joints. These give

rise to local wave reflection/transmission, even wave mode conversion, which can

greatly pollute the reflected signals issued from defects (hence impacting their15

identification). It is therefore crucial to understand the way curved joints can im-

pact the measurement of the reflected waves induced by the defects. This problem

has been tackled in various ways in the literature. Demma et al. [2] have analyzed

the reflection/transmission coefficients for the waves propagating in two straight

waveguides connected to a curved waveguide. Wave mode conversion phenom-20

ena among the incident and reflected/transmitted waves in the straight waveguides,
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around the curved waveguide, have been investigated. Sanderson et al. [3] have

used a finite element (FE) model to estimate the reflection coefficients of waves,

from a defect “through” a curved joint; it has been shown that the joint yields an

underestimation of the severity of the defect, because of the decrease of the echo25

amplitude through the joint. To solve this issue, the authors have proposed a strat-

egy to reverse the distortion of the signal induced by the joint to therefore obtain

a better characterization of the defect. Verma et al. [4] have analyzed the effect

of considering curved joints with different angles and radii of curvature. The au-

thors have highlighted the dependency of the wave transmission coefficients on30

the curvature angle of the joints, and have reported the effect of constructive and

destructive mode interferences. For this task, the authors have considered a time

approach and a harmonic excitation. Besides, Ni et al. [5] have investigated the

influence of joints of different shapes (Z- or U-shapes) to detect different kinds of

defect in pipes. Finally, Sanderson & Catton [6] have proposed a semi analytical35

FE approach to analyze the way by which multiple defects in pipes interact to

each other.

From this literature review, it appears that curved joints are seen in a somewhat

negative way, because of their impact on the detection of defects. However, none

of these past works have addressed the problem of optimizing the joint properties40

to improve the sensitivity of the recorded signals to the occurrence of defects. This

original challenge has motivated the development of the proposed approach.

It should be also emphasized that the aforementioned works make use of FE

models and rely on time approaches to assess the reflection and transmission of

waves. The shortcoming of these numerical approaches is that they are computa-45

tionally cumbersome which is due to the need of a space-time discretization. An
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alternative frequency-based, low-cost, numerical approach is developed in this pa-

per. For this purpose, the wave finite element (WFE) method is considered [7, 8].

It provides an efficient numerical means to compute waves in periodic structures,

like straight waveguides of arbitrary cross-sections, and compute the reflection50

and transmission coefficients of these waves at coupling elements like defects or

curved joints. Several works have been made within this framework. Mencik and

Ichchou [9] have expressed the scattering matrix — i.e., a matrix whose com-

ponents denote the reflection and transmission coefficients — for waves around

coupling elements which can be of arbitrary shapes, and are modeled by means of55

FE models (see also [10, 11]). Zhou et al. [12] have proposed a time-frequency

description of a defect by considering an inverse Fourier transform. Schaal et al.

[13] and Bischoff et al. [14] have proposed a hybrid WFE / boundary element

method for modeling defect areas in waveguides. Finally, Mencik [11] and Silva

et al. [15] have proposed reduced models of joints/junctions by using a compo-60

nent mode synthesis technique. One of the key advantages of the WFE method

is that it works in the high frequency range when the waveguides exhibit space-

oscillating wave shapes — which are likely to be sensitive to small defects — and

when the coupling elements (joints, defects) exhibit local resonance phenomena

(component modes).65

The present work aims at applying the WFE method to the modeling of waveg-

uide assemblies with curved joints, and which contain a small defect. More pre-

cisely, a formulation of the apparent reflection matrix of the defect, which takes

into account the influence of the joints on the reflected signals recorded at some

measurement point at the beginning of a waveguide assembly, is proposed. From70

the physical point of view, this work aims at understanding how waves interact
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with the defect and the curved joints. A key issue concerns the way the joint

properties can be optimized to magnify the amplitudes of the reflected signaled

induced by the defect. From the knowledge of the authors, this topic has never

been investigated so far.75

The rest of the paper is organized as follows. In Sec. 2, the FE model of a

waveguide assembly with curved joints, and which contains a defect, is proposed.

In Sec. 3, the basics of the WFE method for computing waves in periodic struc-

tures are recalled. In Sec. 4, the scattering matrices of the joints and of the defect

are expressed; also, the apparent reflection matrix of the defect is formulated. In80

Sec. 5, the optimization strategy used to magnify the amplitudes of the reflected

signals issued from the defect is presented. In Sec. 6, the strategy used to com-

pute the time response of waveguide assemblies is proposed. Finally, in Sec. 7,

numerical experiments are carried out by considering 2D waveguide assemblies,

with one or two curved joints which are parametrized with respect to their radius85

and angle of curvature.

2. Problem description

The problem which is tackled here is that of wave propagation in straight

waveguides which are connected to curved elastic joints and which contain one

defect as shown in Figure 1. Such a waveguide assembly therefore involves sev-90

eral “healthy” homogeneous waveguides, one or several curved joints, and one

“coupling element” — also called “defect” — which refers to the part of a waveg-

uide with a defect.

Within the present framework, it is aimed at assessing the waves which are

reflected by the defect and which are measured at some receiving points at the95
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Figure 1: Assembly made up of homogeneous waveguides (gray), a curved joint (blue) and a

defect (green). The FE mesh of each homogeneous waveguide is periodic and built from identical

substructures; the curved joint and the defect involve full FE meshes. The measurement point is

designated by M.

beginning of the structural assembly, i.e., before the joints. 2D/3D FE meshes

can be used for modeling the waveguides, the joints as well as the defect. This

provides a general means for assessing the wave propagation over broad frequency

ranges encompassing the HF range when the waveguide cross-sections exhibit

space-oscillating kinematic fields, and when the dynamics of the joints and of the100

defect involve many contributing vibration modes.

In the present work, the waveguides are supposed to share the same material

properties and the same cross-section. They are modeled by means of periodic

FE meshes which are built from identical substructures as shown in Figure 1,

and whose FE model is described as follows. Denote as M, C and K the mass,

damping and stiffness matrices (respectively) of a substructure expressed in its

local reference coordinate system. Hence, in the frequency domain, the dynamic
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equilibrium equation of this substructure is expressed as follows:

Dq = F, (1)

where q and F refer to the displacement and force vectors, respectively, and D is

the dynamic stiffness matrix (DSM) of the substructure, expressed by:

D = −ω2M + iωC + K, (2)

where ω is the angular frequency, and i is the unit imaginary number.

In the same way, the dynamic equilibrium equations of the defect and of the

joints are given by:

Ddqd = Fd , Djqj = Fj, (3)

where Dd and Dd refer to the DSMs of the defect and of the joints, respectively,

which are expressed by:

Dd = −ω2Md + iωCd + Kd , Dj = −ω2Mj + iωCj + Kj, (4)

where Md, Cd and Kd (resp. Mj, Cj and Kj) are the mass, damping and stiffness

matrices of the defect (resp. the joints). Denote by Dd∗ and Dj∗ the condensed

DSMs of the defect and of the joints (respectively), i.e., the DSMs once condensed

on the interface degrees of freedom (DOFs), i.e., those on the coupling interfaces

with the waveguides. The condensed DSMs Dd∗ and Dj∗ are given by:

Dd∗ = Dd
ΓΓ −Dd

ΓI(D
d
II)
−1Dd

IΓ , Dj∗ = Dj
ΓΓ −Dj

ΓI(D
j
II)
−1Dj

IΓ, (5)

where subscripts Γ and I denote the interface DOFs and internal DOFs (i.e., those

which do not belong to the coupling interfaces), respectively. Note that the com-

putation of the condensed DSMs is usually performed by means of the Craig-105

Bampton (CB) method [11]. In this framework, the displacement vectors for the
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internal DOFs are expanded in terms of static modes and a reduced set of fixed

interface modes. As a result, the computation of the DSMs can be strongly sped

up compared to the classic way when Eq. (5) is considered. Also, the DSM of the

substructure is to be condensed on the interface DOFs, which can also be done via110

the CB method [8].

As for the damping matrices of the substructures, of the defect and of the

joints, assumption is made that they are proportional to the mass and stiffness

matrices, i.e.:

C = αM + βK , Cd = αdMd + βdKd , Cj = αjMj + βjKj, (6)

where α, β, αd, βd, αj and βj are positive real numbers.

A whole wave-based matrix equation which models an assembly made up of

waveguides, one or several joints and one defect is proposed in the next sections.

The strategy involves considering the WFE method for expressing the wave modes115

which propagate in each waveguide.

3. WFE method

The WFE method aims at analyzing the propagation of waves along one-

dimensional periodic structures, i.e., structures whose FE mesh is periodic — i.e.,

built from identical substructures — along a straight direction as shown in Figure120

2.

The WFE method starts by considering the dynamic equilibrium equation of a

substructure, which is given by:

D∗qΓ = FΓ, (7)
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Figure 2: Schematic of a periodic structure.

where D∗ is the condensed DSM of the substructure with respect to the substruc-

ture interfaces Γ (see Sec. 2), which are usually referred to as the left (L) and right

(R) boundaries (see Figure 2). Note that, due to periodicity conditions, the left

and right boundaries of the substructure are meshed in the same way, i.e., with the

same number n of DOFs. As a result, Eq. (8) leads to:D∗LL D∗LR

D∗RL D∗RR

qL

qR

 =

FL

FR

 , (8)

where qL and qR (resp. FL and FR) are displacement (resp. force) vectors of size

n × 1. Also, D∗LL, D∗LR, D∗RL, D∗RR are square matrices of size n × n. It is worth

pointing out that the mass, damping and stiffness matrices of the substructure are

symmetric, which means that the condensed DSM is symmetric and, therefore,125

that D∗LR = (D∗RL)
T .

Let us denote by S the transfer matrix of the substructure, which relates the

displacement/force vectors on the right boundary to those on the left boundary as
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follows:qR

FR

 = S

 qL

−FL

 . (9)

The expression of the transfer matrix S follows from the dynamic equilibrium

equation (8), i.e. (see [9]):

S =

 −D∗−1
LR D∗LL −D∗−1

LR

D∗RL −D∗RRD
∗−1
LR D∗LL −D∗RRD

∗−1
LR

 . (10)

Consider now three consecutive substructures k − 1, k and k + 1 which are

separated by two interfaces (k) and (k+1) as shown in Figure 2. Let us denote by

(i) q
(k)
R and q

(k+1)
R the displacement vectors on the right boundaries of the first and

second substructures (respectively), (ii) q
(k)
L and q

(k+1)
L the displacement vectors

on the left boundaries of the second and third substructures (respectively), (iii)

F
(k)
R and F

(k+1)
R the force vectors on the right boundaries of the first and second

substructures (respectively), and (iv) F
(k)
L and F

(k+1)
L the force vectors on the left

boundaries of the second and third substructures (respectively). In this case, the

coupling conditions between the substructures are written as: (i) q
(k)
R = q

(k)
L , (ii)

q
(k+1)
R = q

(k+1)
L , (iii) F

(k)
R = −F

(k)
L , and (iv) F

(k+1)
R = −F

(k+1)
L . As a result, the

transfer matrix relation, Eq. (9), can be rewritten as follows:q
(k+1)
R

F
(k+1)
R

 = S

q
(k)
R

F
(k)
R

 or

 q
(k+1)
L

−F
(k+1)
L

 = S

 q
(k)
L

−F
(k)
L

 . (11)

Eq. (11) provides a relation to link the displacement and force vectors between

two consecutive substructures. It is of the form u(k+1) = Su(k) where the matrix

S is d−periodic (d being the substructure length). According to Bloch’s theorem,

the eigensolutions of S represent waves which propagate along the waveguide, i.e.,130
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the periodic structure resulting from a one-dimensional periodic array of identical

substructures, as previously explained. The eigenvalues and eigenvectors of the

transfer matrix S are referred to as the wave modes of the periodic structure. The

eigenvalues are denoted by µj and are referred to as the wave parameters, with

the property that µj = exp (−iβjd) where βj stands for the wave numbers. Also,135

the eigenvectors are denoted by φj and are referred to as the wave shapes, which

are usually partitioned into displacement and force components as follows: φj =

[φT
qj φ

T
Fj]

T .

Note that the transfer matrix S is symplectic [9], which means that the eigen-

values come in pairs, say, n eigenvalues µj defined so that |µj| < 1 and which140

denote right-going wave modes, and n eigenvalues µ?
j defined so that µ?

j = 1/µj

— i.e., |µ?
j | > 1 — and which denote left-going wave modes. The wave shapes

can be partitioned accordingly into n right-going wave modes φj and n left-going

wave modes φ?
j .

145

Remark 1. The WFE eigenproblem is expressed by Sφj = µjφj and is sub-

ject to numerical ill-conditioning. This is explained because the eigenvectors

are partitioned into displacement and force components whose values are usually

highly disparate, which means that the matrix of eigenvectors is ill-conditioned.

A strategy which circumvents this issue is to consider an alternative generalized150

eigenproblem based on the S + S−1 transformation technique [16]. One of the

key advantages of this generalized eigenproblem is that it is “symplectic struc-

ture preserving”, which particularly means that it preserves the analytical relation

µ?
j = 1/µj between the right-going and left-going wave modes. Hence, the nu-

merical error made for computing the right-going and left-going wave modes can155
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be highly reduced.

The set of wave shapes {φj}nj=1 ∪ {φ?
j}nj=1 constitutes a basis on which the

displacement and force vectors of the waveguide can be expanded. For a given

substructure boundary (k), this writes [8]:160

q
(k)
L = q

(k)
R = ΦqQ

(k) + Φ?
qQ

?(k), (12)

−F
(k)
L = F

(k)
R = ΦFQ

(k) + Φ?
FQ

?(k), (13)

where Φq, Φ?
q, ΦF and Φ?

F are square n×nmatrices defined by Φq = [φq1 · · ·φqn],

Φ?
q = [φ?

q1 · · ·φ?
qn], ΦF = [φF1 · · ·φFn] and Φ?

F = [φ?
F1 · · ·φ?

Fn], which are full

rank [17]; also, Q(k) and Q?(k) are n× 1 vectors of wave amplitudes.

Consider now a waveguide of finite length, i.e., which is composed of a finite

number N of substructures as shown in Figure 2, and denote as Q and Q? the165

vectors of wave amplitudes at the left and right ends of this waveguide for the

right-going and left-going wave modes, respectively. It can be shown that Q(k) =

µk−1Q and Q?(k) = µN+1−kQ? where µ = diag{µj}nj=1 is the n × n diagonal

matrix of the eigenvalues µj for the right-going wave modes [8]. As a result, Eqs.

(12) and (13) can be rewritten as follows:170

q
(k)
L = q

(k)
R = Φqµ

k−1Q + Φ?
qµ

N+1−kQ?, (14)

−F
(k)
L = F

(k)
R = ΦFµ

k−1Q + Φ?
Fµ

N+1−kQ?. (15)

4. Scattering matrices

By considering the wave expansions (14) and (15), the reflection and transmis-

sion coefficients of waves around the defect and around the joints can be assessed.

The strategy is explained hereafter.
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Figure 3: Schematics of one waveguide with a defect (a), and of one waveguide assembly with a

curved joint and a defect (b).

Consider first, for the sake of clarity, two waveguides 1 and 2 of similar cross-

sections and similar material properties (see Sec. 2), withN1 andN2 substructures

(respectively), which are connected to a defect — i.e., a waveguide part containing

a defect — as shown in Figure 3(a). Denote as Γ1 the coupling interface between

the defect and waveguide 1, and Γ2 the coupling interface between the defect

and waveguide 2. Let us write the dynamic equilibrium equation of the defect as

follows:

Dd∗

qd|Γ1

qd|Γ2

 =

Fd|Γ1

Fd|Γ2

 , (16)

where Dd∗ is the condensed DSM of the defect, and qd|Γ1 and qd|Γ2 (resp. Fd|Γ1

and Fd|Γ2) are the restrictions of the displacement (resp. force) vector of the defect

to Γ1 and Γ2, respectively. Notice that Γ1 matches the substructure boundary

(N1 + 1) (right side of the first waveguide), while Γ2 matches the substructure

boundary (1) (left side of the second waveguide) (see Sec. 3). As it turns out,

the coupling conditions between the defect and the waveguides are expressed as

follows:

qd|Γ1 = q
(N1+1)
R1 , qd|Γ2 = q

(1)
L2 , (17)
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and

Fd|Γ1 = −F
(N1+1)
R1 , Fd|Γ2 = −F

(1)
L2 , (18)

where subscripts 1 and 2 refer to the displacement and force vectors of waveguides

1 and 2, respectively; also, the minus sign ahead of F
(N1+1)
R1 and F

(1)
L2 results from

the action-reaction law. Hence, Eq. (16) yields:

Dd∗

q
(N1+1)
R1

q
(1)
L2

 = −

F
(N1+1)
R1

F
(1)
L2

 . (19)

By expanding q
(N1+1)
R1 , q

(1)
L2 , F

(N1+1)
R1 and F

(1)
L2 on the basis of wave modes (see175

Eqs. (14) and (15)), this yields:

q
(N1+1)
R1 = Φqµ

N1Q1 + Φ?
qQ

?
1, (20)

q
(1)
L2 = ΦqQ2 + Φ?

qµ
N2Q?

2, (21)

F
(N1+1)
R1 = ΦFµ

N1Q1 + Φ?
FQ

?
1, (22)

F
(1)
L2 = −

(
ΦFQ2 + Φ?

Fµ
N2Q?

2

)
, (23)

where Q1 and Q?
1 (resp. Q2 and Q?

2) are the vectors of wave amplitudes for

waveguide 1 (resp. waveguide 2), see Figure 3(a). Introducing Eqs. (20-23) into

Eq. (19) leads to:

Dd∗

Φq 0

0 Φ?
q

µN1Q1

µN2Q?
2

+ Dd∗

Φ?
q 0

0 Φq

Q?
1

Q2

 (24)

= −

ΦF 0

0 −Φ?
F

µN1Q1

µN2Q?
2

−
Φ?

F 0

0 −ΦF

Q?
1

Q2

 .

14



Eq. (24) gives:180 Dd∗

Φ?
q 0

0 Φq

+

Φ?
F 0

0 −ΦF

Q?
1

Q2

 (25)

= −

Dd∗

Φq 0

0 Φ?
q

+

ΦF 0

0 −Φ?
F

µN1Q1

µN2Q?
2

 ,
which can be rewritten as follows:Q?

1

Q2

 = Cd

µN1Q1

µN2Q?
2

 =

Cd
11 Cd

12

Cd
21 Cd

22

µN1Q1

µN2Q?
2

 , (26)

where

Cd = −

Dd∗

Φ?
q 0

0 Φq

+

Φ?
F 0

0 −ΦF

−1Dd∗

Φq 0

0 Φ?
q

+

ΦF 0

0 −Φ?
F

 .

(27)

Here, Cd is the so-called scattering matrix of the defect. It links the vector of

amplitudes [Q?T
1 QT

2 ]T for the outgoing waves, in waveguides 1 and 2, to the vec-

tor of amplitudes [(µN1Q1)T (µN2Q?
2)T ]T for the incoming/incident waves. The

matrix Cd can be split into block components Cd
11, Cd

12, Cd
21 and Cd

22 of size n×n,

where (i) Cd
11 is the matrix of reflection coefficients for the waves in waveguide 1,185

(ii) Cd
22 is the matrix of reflection coefficients for the waves in waveguide 2, (iii)

Cd
21 is the matrix of transmission coefficients for the waves in waveguide 1 (to

waveguide 2), and (iv) Cd
12 is the matrix of transmission coefficients for the waves

in waveguide 2 (to waveguide 1).

190

Remark 2. The components of the scattering matrix Cd highly depend on the

normalization of the wave shapes φj and φ?
j , and therefore, on the norms of the

15



matrices Φq, Φ?
q, ΦF and Φ?

F. Hence, it is not guaranteed that the values of the

reflection and transmission coefficients are less than one contrary to the academic

case when simple bars or beams are dealt with. The issue is mostly linked to the195

spatial behavior of the wave shapes over the cross-section, which is not uniform

and can be oscillating. As a rule of thumb, although not mandatory, it is proposed

to normalized the wave shapes w.r.t. their norms, i.e., φj → φj/‖φj‖ and φ?
j →

φ?
j/‖φ?

j‖.

4.1. Waveguide assembly with one joint200

Consider an assembly made up of three healthy waveguides 1, 2 and 3, a joint

and a defect as shown in Figure 3(b). The scattering matrix of the joint can be

derived in the same way as that of the defect. This yields:Q?
1

Q2

 = Cj

µN1Q1

µN2Q?
2

 =

Cj
11 Cj

12

Cj
21 Cj

22

µN1Q1

µN2Q?
2

 , (28)

where Cj is the scattering matrix of the joint. As for the defect, one has:Q?
2

Q3

 = Cd

µN2Q2

µN3Q?
3

 =

Cd
22 Cd

23

Cd
32 Cd

33

µN2Q2

µN3Q?
3

 , (29)

where Cd is the scattering matrix of the defect. The expressions of the scattering

matrices Cj and Cd follow from Eq. (27), i.e.:

Cj = −

Dj∗

L1Φ
?
q 0

0 L2Φq

+

L1Φ
?
F 0

0 −L2ΦF

−1

(30)

×

Dj∗

L1Φq 0

0 L2Φ
?
q

+

L1ΦF 0

0 −L2Φ
?
F

 ,

16



and

Cd = −

Dd∗

L2Φ
?
q 0

0 L3Φq

+

L2Φ
?
F 0

0 −L3ΦF

−1

(31)

×

Dd∗

L2Φq 0

0 L3Φ
?
q

+

L2ΦF 0

0 −L3Φ
?
F

 ,

where L1, L2 and L3 are direction cosine matrices which are introduced here as

a means to project the local coordinate systems of waveguides 1, 2 and 3 onto a

global reference one [11]. By considering Eqs. (28) and (29), a whole scattering

matrix of the system joint - waveguide 2 - defect can be proposed. Indeed, Eqs.

(28) and (29) lead to:Q?
1

Q3

 =

Cj
11 0

0 Cd
33

µN1Q1

µN3Q?
3

+

Cj
12µ

N2 0

0 Cd
32µ

N2

Q?
2

Q2

 , (32)

and Q?
2

Q2

 =

 0 Cd
23

Cj
21 0

µN1Q1

µN3Q?
3

+

 0 Cd
22µ

N2

Cj
22µ

N2 0

Q?
2

Q2

 . (33)

Eq. (33) yields:Q?
2

Q2

 =

 I −Cd
22µ

N2

−Cj
22µ

N2 I

−1  0 Cd
23

Cj
21 0

µN1Q1

µN3Q?
3

 . (34)

Therefore, by introducing Eq. (34) into Eq. (32), this gives:Q?
1

Q3

 = Cjd

µN1Q1

µN3Q?
3

 =

Cjd
11 Cjd

13

Cjd
31 Cjd

33

µN1Q1

µN3Q?
3

 , (35)
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where

Cjd =

Cjd
11 Cjd

13

Cjd
31 Cjd

33

 =

Cj
11 0

0 Cd
33

+

Cj
12µ

N2 0

0 Cd
32µ

N2

 (36)

×

 I −Cd
22µ

N2

−Cj
22µ

N2 I

−1  0 Cd
23

Cj
21 0

 .
The matrix Cjd is to be understood as the scattering matrix of the system joint -

waveguide 2 - defect. It links the vector of amplitudes [Q?T
1 QT

3 ]T for the outgoing

waves, in waveguides 1 and 3, to the vector of amplitudes [(µN1Q1)T (µN2Q?
3)T ]T

for the corresponding incoming/incident waves. More precisely, the block com-

ponent Cjd
11 contains the reflection coefficients for the waves in waveguide 1. It is

expressed by

Cjd
11 = Cj

11 + Cj
12µ

N2Cd
22µ

N2(I− Cj
22µ

N2Cd
22µ

N2)−1Cj
21. (37)

To derive Eq. (37), the analytical expression of the inverse of the 2× 2 block ma-

trix occurring in Eq. (36) has been invoked. The second matrix on the right hand

side of Eq. (37) contains the reflection coefficients of the defect which is seen

“through” the joint, i.e., by considering a measurement point located on waveg-

uide 1. Hence, an apparent matrix of reflection coefficients for the defect can be

defined as follows:

Cd
11 = Cj

12µ
N2Cd

22µ
N2(I− Cj

22µ
N2Cd

22µ
N2)−1Cj

21. (38)

The underlying issue hence consists in optimizing the joint properties so as to205

maximize the amplitudes of the waves which are reflected by the defect. In other

words, the question which is raised is as whether the joint properties can be tuned

in an appropriate way to maximize the components of the matrix Cd
11.
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4.2. Waveguide assembly with several joints

Let us consider the more general case when nj + 1 waveguides and nj con-

necting joints are placed between the measurement point and the defect as shown

in Figure 4. In this framework, a joint ji (i = 1, . . . , nj) connects two consecutive

waveguides i and i + 1. Denote by Ni and Ni+1 the numbers of substructures for

waveguides i and i + 1, respectively. Hence, the scattering matrix of the joint ji,

which links the vectors of wave amplitudes of the outgoing wave modes to those

of the incoming ones in waveguides i and i+ 1, is given by: Q?
i

Qi+1

 = Cji

 µNiQi

µNi+1Q?
i+1

 =

 Cji
i,i Cji

i,i+1

Cji
i+1,i Cji

i+1,i+1

 µNiQi

µNi+1Q?
i+1

 . (39)

where Cji is the scattering matrix of the joint ji, Q?
i and Qi+1 are the vectors of210

wave amplitudes for the outgoing wave modes, and µNiQi and µNi+1Q?
i+1 are the

vectors of wave amplitudes for the incoming wave modes.

wg1 j1
wg2

j2 wg3

wgnj
jnj

wgnj+1

wgnj+2

Figure 4: Waveguide assembly involving nj joints (in blue), nj + 2 waveguides (in gray) and a

defect (in green).

The scattering matrix of an assembly involving two joints ji and ji+1 con-

nected through a waveguide i + 1 can be expressed by considering the procedure
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described by Eqs. (32)-(36). This yields:215

Cji−ji+1 =

Cji
ii 0

0 Cji+1

i+2,i+2

+

Cji
i,i+1µ

Ni+1 0

0 Cji+1

i+2,i+1µ
Ni+1

 (40)

×

 I −Cji+1

i+1,i+1µ
Ni+1

−Cji
i+1,i+1µ

Ni+1 I

−1  0 Cji+1

i+1,i+2

Cji
i+1,i 0

 ,
where Cji−ji+1 is the scattering matrix of the system joint ji - waveguide i + 1 -

joint ji+1. Following the same procedure, the formulation of the scattering matrix

Cji−ji+1 can be extended so as to incorporate an additional waveguide i + 2 and

an additional joint i + 2. This yields a new scattering matrix Cji−ji+2 . Hence, an

iterative scheme can be proposed to build the global scattering matrix Cj1−jnj of

an assembly involving nj joints j1, j2, ..., jnj and nj − 1 connecting waveguides

2, 3, ..., nj. This yields: Q?
1

Qnj+1

 = Cj1−jnj

 µN1Q1

µNnj+1Q?
nj+1

 =

Cj1−jnj
1,1 Cj1−jnj

1,nj+1

Cj1−jnj
nj+1,1 Cj1−jnj

nj+1,nj+1

 µN1Q1

µNnj+1Q?
nj+1

 .
(41)

Assume that the defect is located after the last joint jnj , i.e., between waveguides

nj + 1 and nj + 2 as shown in Figure 4. By considering Eq. (38), the apparent

reflection matrix of the defect which is seen in waveguide 1 through the nj joints

turns out to be expressed in this way:

Cd
11 = Cj1−jnj

1,nj+1 µ
Nnj+1Cd

nj+1,nj+1µ
Nnj+1(I−Cj1−jnj

nj+1,nj+1µ
Nnj+1Cd

nj+1,nj+1µ
Nnj+1)−1Cj1−jnj

nj+1,1 .

(42)
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5. Optimization strategy

Let us denote by α a set of joint parameters such as the internal radius of

curvature, the curvature angle, the elastic modulus, and so on. Hence, introduce

the following cost function g(α):

g(α) = max
f∈[fmin;fmax]

‖Cd
11(α)‖max, (43)

where

‖Cd
11(α)‖max = max

ij
|(Cd

11)ij(α)|. (44)

Clearly speaking, g(α) represents the maximum value of the max-norm ‖Cd
11(α)‖max

of the apparent reflection matrix Cd
11(α) on a given frequency band [fmin; fmax].

In other words, g(α) is an upper bound of the absolute values of the components

of the matrix Cd
11(α) — i.e., |(Cd

11)ij(α)| — on [fmin; fmax]. The optimization

strategy therefore consists in finding the optimal set of parameters αopt which

maximizes this upper bound, i.e.,

αopt = argmax
α

g(α). (45)

From the practical point of view, the fmincon() or the particleswarm() func-

tions of the MATLAB R© optimization and global optimization toolboxes can be

used to solve the optimization problem (45).

It should be emphasized that the determination of the cost function g(α), for220

a given set of joint parameters α, involves computing the matrix Cd
11(α) over

a certain frequency band [fmin; fmax], i.e., at several discrete frequencies within

[fmin; fmax]. The computational burden, if any, is mostly linked to the number of

DOFs n which are used to discretize the substructure interfaces (in the waveg-

uides), and the number of internal DOFs which are used to model the joints and225
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the defect. Indeed, a large number of interface DOFs n means an eigenproblem of

large size to compute the wave modes, which has to be solved at several discrete

frequencies. In practice, computational issues arises as soon as n > 300 using

MATLAB R©. The second issue is about the number of internal DOFs of the joints

and of the defect which can penalize the computation of the condensed DSMs, see230

Eq. (5). This is mostly linked to the computation of the matrix inverses (Dj
II)
−1

and (Dd
II)
−1, and the computation of the matrix products in Eq. (5). As explained

in Sec. 2, this issue can be overcome by considering the CB method where a re-

duced set of fixed interface modes are used to describe the displacement vector for

the internal DOFs. These fixed interface modes can be computed using iterative235

eigensolvers like the Lanczos method [16]. In this way, the computation of the

condensed DSMs can be strongly sped up.

For the sake of clarity, the numerical tasks involved in the computation of the

matrix Cd
11(α), at each frequency considered within the frequency band [fmin; fmax],

are recalled hereafter:240

1. Computation of the condensed DSMs of the joints and of the defect, as well

as of the condensed DSM of a substructure (waveguides), Eq. (5).

2. Computation of the wave modes (µj,φj) and (µ?
j ,φ

?
j) of the waveguides,

see Sec. 3.

3. Computation of the apparent reflection matrix Cd
11, Eq. (38) or Eq. (42).245

6. Forced response

Recall that the key idea behind the optimization strategy proposed in Sec. 5

is to maximize the reflected signals issued from the defect at some measurement
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point located along the first waveguide, i.e., before the joints, when an input time

force is applied to the same waveguide (see Fig.5).250

F0

Q∗
0

∞
Q1 Q∗

1

×
M

Defect

Q2

Q∗
2
Q3

∞

Joint

Figure 5: Schematic of an assembly made up of three waveguides, a joint and a defect, which is

subject to an input force (first waveguide). The measurement point is designated by M.

Here, assumption is made that the time range analyzed is small enough so

that the multiple echos due to the reflections from the left end of the first waveg-

uide and from the right end of the last waveguide are not recorded, which means

that those waveguide ends can be considered as infinite boundaries. For the sake

of clarity, a schematic of an assembly involving a healthy waveguide subject to

one input force, a curved joint, a second healthy waveguide, a defect and a third

healthy waveguide, is shown in Fig. 5. Here, the first waveguide is to be split

into two waveguides — say, waveguide 0 and waveguide 1 — which are coupled

at the location of the input force. Waveguide 2 is located between the joint and

the defect, while waveguide 3 is located after the defect. Hence, infinite boundary

conditions are to be considered at the left end of waveguide 0, and at the right end

of waveguide 3. From the numerical point of view, this is equivalent to canceling

out the magnitudes of the outgoing waves, i.e., Q0 and Q?
3. As for the coupling

conditions between waveguides 0 and 1 at the location of the input force, they are

given by:

q
(N0+1)
R0 = q

(1)
L1 , F

(N0+1)
R0 + F

(1)
L1 = F, (46)
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where F is the input force vector. By considering the wave expansions (14) and

(15) and the fact that Q0 = 0, this yields:

L1Φ
?
qQ

?
0 = L1ΦqQ1 + L1Φ

?
qµ

N1Q?
1, (47)

L1Φ
?
FQ

?
0 − L1ΦFQ1 − L1Φ

?
Fµ

N1Q?
1 = L1F, (48)

where N1 is the number of substructures used to describe waveguide 1, and L1

is the direction cosine matrix for both waveguides 1 and 0 (see after Eq. (31)).

Notice that the matrix L1 is square and invertible, i.e., (L1)−1L1 = I. As a result,255

Eqs. (47) and (48) lead to:

Q?
0 − Cq

01Q1 − µN1Q?
1 = 0, (49)

Q1 − CF
10Q

?
0 − CF

11µ
N1Q?

1 = F, (50)

where Cq
01 = (Φ?

q)
−1Φq, CF

10 = (ΦF)
−1Φ?

F, CF
11 = −(ΦF)

−1Φ?
F and F = −(ΦF)

−1F.

By considering Eqs. (49) and (50) as well as Eqs. (28) and (29), a whole

matrix equation can be formulated whose resolution yields the vectors of wave

amplitudes for each waveguide (see [18] for further details):

I −CF
11µ

N1 0 0 0 −CF
10

−Cj
11µ

N1 I 0 −Cj
12µ

N2 0 0

−Cj
21µ

N1 0 I −Cj
22µ

N2 0 0

0 0 −Cd
22µ

N2 I 0 0

0 0 −Cd
32µ

N2 0 I 0

−Cq
01 −µN1 0 0 0 I





Q1

Q?
1

Q2

Q?
2

Q3

Q?
0


=



F0

0

0

0

0

0


.

(51)

Once the vectors of wave amplitudes Q1, Q?
1, Q2, Q?

2, Q3 and Q?
0 are computed,

the displacement and force vectors of the waveguides can be retrieved by consid-

ering the wave expansions (14) and (15), it being understood that Q0 = 0 and260

24



Q?
3 = 0 (infinite boundary conditions). The interesting feature of the wave-based

matrix equation (51) is that its resolution is not expensive from the computational

point of view, which is explained because the size of the matrix on the left hand

side (Eq. (51)) is small compared to the total number of DOFs that would be

used to discretize the whole waveguides. Hence, the displacement vectors can265

be quickly obtained compared to the conventional resolution techniques like the

FE method. In particular, the displacement at the measurement point — namely,

qmes —, where the reflected signals are recorded, can be retrieved. Indeed, if one

assumes that the measurement point is on waveguide 1, this yields:

qmes = Lmes
(
Φqµ

kmes−1Q1 + Φ?
qµ

N1+1−kmesQ?
)
, (52)

where (kmes) denotes the substructure boundary which contains the measurement270

point, andLmes is a localization matrix whose purpose is to select the measurement

DOF among all the DOFs of the substructure boundary (kmes).

The aforementioned measured displacement qmes is expressed in the frequency

domain. Its expression in the time domain follows from an inverse Fourier trans-

form, i.e.:

qmes(t) =
1

2π

∫ +∞

−∞
qmes(ω)eiωtdω. (53)

In practice, a discrete inverse Fourier transform is performed [19], which can be

done with the fft() MATLAB R© function.

7. Numerical results275

The proposed approach is applied to two waveguide assemblies with one and

two curved joints, respectively, and which contain a defect as shown in Figure
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6. Two kinds of defects are investigated, i.e., (i) a coupling element with a local

decrease of the Young’s modulus — i.e., Ed = E(1 − γ), which represents a

crack of dimensions xd × yd (see Figure 6(c)) — referred to as Defect A, and280

(ii) a coupling element with a triangular notch of width wd = 0.01 m and depth

td = 0.01 m (Figure 6(d)) referred to as Defect B. For each case and each kind

of defect, the apparent reflection coefficients of the defect which is seen through

the joint(s) at the measurement point (first waveguide) are assessed. Optimization

strategies are carried out by following the procedure proposed in Sec. 5. Also, the285

time response of the first assembly is assessed, and the effect of the variation of

the joint parameters on the detection of the defect is highlighted.

The waveguides, the curved joint(s) and the coupling element embedding the

defect represent thin elastic structures of height h and cross-section width b, which

share the same material properties (see Table 1). The total lengths of waveguides290

1, 2 and 3 (see Figure 6) are l1 = 2 m, l2 = 0.2 m and l3 = 0.15 m, respectively.

Recall that, within the framework of the WFE method, the waveguides are made

of identical substructures. Here, the same substructure, with a length of d =

2.5 × 10−3 m, is used for modeling all the waveguides. As it turns out, 800, 80

and 60 substructures are used to discretize waveguides 1, 2 and 3, respectively.295

The substructure, the joint(s) and the defect are meshed with four node plane

stress finite elements (with two DOFs per node), except Defect B which is meshed

with three nodes triangular elements.

The geometrical properties of the joint(s) and of the defect are listed in Table

2. Each curved joint is parametrized with an internal radius of curvature Rint ∈300

[0.01; 0.4] m and an angle θ ∈ [0; π] rad. It is surrounded by straight segments of
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d

Nt

(a)

Rint θ

lja

ljb

Ns

(b)

ld

xd

yd

Nd

(c)

ld

wd

td

(d)

l1

Rint, θ

l2

(e)

l1

Rint1, θ1

l2

Rint2, θ2

l3

(f)

Figure 6: Schematics of a substructure (a), a curved joint (b), a Defect A (local decrease of the

Young’s modulus) (c), a Defect B (triangular notch) (d), a waveguide assembly with one joint (e)

and a waveguide assembly with two joints (f). For the sake of readability, the FE meshes displayed

are coarser than those used in the numerical simulations.
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small lengths lja and ljb as shown in Figure 6(b). 1 Otherwise, when two joints are

involved, two radii of curvature Rint1 and Rint2 and two angles θ1 and θ2 are to be

considered which can be tuned in an independent way.

The substructure which is used to describe the waveguides is meshed with305

Nt = 40 elements along the vertical direction, and does not contain internal DOFs

(see Figure 6(a)). This yields n = 82 DOFs on the left/right boundaries. Also,

Ns = 160 elements are used to discretize the joint(s) along the circumferential

direction. As for Defect A, Nd = 20 elements are used to mesh the longitudinal

direction, which yields 800 elements for the whole defect. Also, Defect B is310

meshed with 3813 triangular elements.

As was pointed out in Sec. 2, the CB method can be used to compute the

condensed DSMs of the joint(s) and of the defect, leading to computational saving.

Here, a same number of 100 fixed interface modes are used for the joint(s) and the

defect, which is supposed to be large enough for obtaining an accurate estimation315

of the condensed DSMs Dd∗ and Dj∗ over the frequency band analyzed.

E (GPa) ρ (kg.m−3) ν α (s−1) β (s) h (m) b (m)

210 7800 0.3 10−3 10−8 0.1 0.05

Table 1: Material and geometrical properties of the waveguides, of the joint(s) and of the defect

(α and β are the damping proportionality coefficients, see Eq. (6)).

1It is worth pointing out that θ = 0 rad corresponds to the particular case when the curved joint

represents a straight waveguide of length lja + ljb.
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Rint (m) θ (rad) lja (m) ljb (m) ld (m) xd (m) yd (m)

[0.01; 0.4] [0; π] 0.1 0.1 0.05 0.01 0.02

Table 2: Geometrical properties of the joint(s) and of the defect.

7.1. Reflection coefficients due to the defect

The wave modes of the waveguides are obtained by considering the transfer

matrix of a substructure (see Sec. 3). The dispersion curves — i.e., the frequency

evolutions of the wave numbers βj — for five “low order” modes are shown in320

Figure 7(a) over a frequency range [0; 40] kHz. These modes refer to the flexural

wave (in red), the longitudinal wave (in yellow), the shearing wave (in bright

green), and two “complex” waves 1 and 2 (in blue and purple). Also, the wave

shapes for these modes, at 40 kHz, are displayed in Figure 7(b). It is seen that

the wave shapes are not uniform in space, even for the first three basic waves.325

More precisely, these are n = 82 right-going and left-going wave modes which

are computed by means of the WFE method, and which are characterized by wave

shapes which are not uniform in space and can be highly oscillating. As it turns

out, the problem which is tackled here appears to be much more complicated than

the simple one consisting in analyzing one-dimensional waveguides like beams,330

i.e., those for which the cross-section is modeled with one node only.

Let us first consider the case of two waveguides which are straightly con-

nected to a defect, i.e., without joint. The absolute values of the reflection coeffi-

cients (Cd
11)ij (for i, j = 1, 2, . . . , 5) induced by Defect A with a damage severity

γ = 0.9 are shown in Figure 8(a). It is shown that the variation of the reflec-335

tion coefficients is not monotonic. Instead, several peaks occur for several waves,

which means that these waves are locally sensitive — i.e., around 16 kHz and 26
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Figure 7: Real (continuous line) and imaginary (dashed line) parts of the wavenumbers βj for five

“low order” wave modes (a); wave mode shapes at 40 kHz (b).
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kHz in this case — to the defect. Also, the maximum value of the max-norm of

the matrix Cd
11 — i.e., ‖Cd

11‖max — is shown in Figure 8(b) for Defect A with

γ = 0.9 and γ = 0.5, and for Defect B (notch). It is seen that the magnitudes340

of the reflection coefficients for Defect A with a damage severity of γ = 0.5 are

lower compared to the case where γ = 0.9 (as expected). However, it remains

that the local sensitivities of the reflection coefficients are still well highlighted

around 16 kHz and 26 kHz. As for Defect B, waves are becoming sensitive at

higher frequencies, say around 26 kHz where the norm ‖Cd
11‖max reaches a local345

maximum.

7.2. Effects of a curved joint

The absolute values of the components (Cjd
11)ij (reflection coefficients) of the

scattering matrix Cjd
11 which models the system joint (radius of curvature Rint =

0.1) - waveguide - Defect A (severity γ = 0.9) are displayed in Figure 9(a), see350

Eq. (38). The frequency evolution of the reflection coefficients appears to be

complex compared to the case of a defect without joint, which might be explained

because of the energy conversion which occurs between the wave modes through

the joint. Also, the max-norms ‖Cjd
11‖max, ‖Cj

11‖max (effect of the joint only) and

‖Cd
11‖max (effect of the defect through the joint) are plotted in Figures 9(b), 9(c)355

and 9(d). As it can be seen in Figures 9(c) and 9(d), the energy reflected by

the joint is clearly superior to that induced by the defect. Notice however that

the defect remains well observable at some local frequencies as shown in Figure

9(d) where the apparent reflection coefficients (components of Cd
11) can exceed

0.5. The effect of the variation of the angle of the joint — i.e., for θ = π/4 rad,360

θ = π/2 rad and θ = 3π/4 rad — on the apparent reflection coefficients is also

highlighted. It is seen that the maximum value of ‖Cd
11‖max, e.g., for the peak at
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Figure 8: Reflection coefficients induced by a defect without joint: reflection coefficients (Cd
11)ij

(i, j = 1, . . . , 5) for Defect A with γ=0.9 (a); max-norm ‖Cd
11‖max for Defect A with γ=0.9 (full

black), for Defect A with γ=0.5 (dashed black) and for Defect B (dashed red) (b).

32



26 kHz, can largely vary, say with a ratio of 3 between the cases θ = π/4 rad and

θ = 3π/4 rad. It is therefore relevant to propose an adequate design of the joint to

magnify the magnitudes of the apparent reflection coefficients.365
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Figure 9: Apparent reflection coefficients (Defect A with γ = 0.9, and curved joint with Rint =

0.1 m): reflection coefficients (Cjd
11)ij for θ = 3π/4 rad (a); max-norm ‖Cjd

11‖max (b) ; max-norm

‖Cj
11‖max (effect of the joint) (c); max-norm ‖Cd

11‖max (effect of the defect through the joint) (d).

7.3. Optimization: one curved joint

It is seen in Figures 8(b) and 9(d) that there exist two frequency bands —

say, [15; 17] kHz and [25; 28] kHz — on which the apparent reflection coefficients
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induced by the defect are high. By considering for instance a Defect A with a

severity γ = 0.9, a 2D map of the cost function g(Rint, θ), Eq. (43), can be370

displayed — i.e., when g(Rint, θ) is plotted against Rint ∈ [0.01; 0.4] m and θ ∈
[0; π] rad — as shown in Figure 10. In particular, Figures 10(a) and 10(c) highlight

the value of g(Rint, θ) when [fmin; fmax] = [15; 17] kHz and when [fmin; fmax] =

[25; 28] kHz, respectively. 2

Also, the components (Cd
11)ij of the reflection matrix Cd

11 defined so that375

|(Cd
11)ij| = ‖Cd

11‖max, i.e., which mostly contribute to the reflected signal in-

duced by the defect for a given set of parameters (Rint, θ), can be identified, see

Figures 10(b) and 10(d). For instance, in Figure 10(b), the parameters which yield

the maximum value of g(Rint, θ) on [fmin; fmax] = [15; 17] kHz are Rint = 0.01

m and θ = 0.275 rad. For this set of parameters, the most contributing com-380

ponent of the reflection matrix is (Cd
11)32, i.e., the one issued from the coupling

between the incoming mode 2 and the reflected mode 3. Elsewhere on the do-

main [0.01; 0.4] m × [0; π] rad, the most contributing components may differ and

involve different couplings, e.g., between the incoming mode 3 and the reflected

mode 3 (component (Cd
11)33).385

Regarding for instance Figure 10(a) where the maximum of the max-norm

‖Cd
11‖max is sought for f ∈ [15; 17] kHz, it is seen that, for a given value of the

angle θ (which can be assigned for design purpose), the functionRint 7→ g(Rint, θ)

reaches its maximum for a certain value of the internal radius of curvature Rint

which does not necessarily matches the minimum and maximum values Rint =390

0.01 m and Rint = 0.4 m. Results are shown in Figures 11(a) and 11(b) for

2It is worth recalling that g(Rint, θ) represents the maximum value of the function f 7→
‖Cd

11(Rint, θ)‖max on [fmin; fmax].
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θ = π/4 and θ = π/2, and for two kinds of defects (Defect A with γ = 0.9, and

Defect B). For each case, it is seen that a “best candidate”Rint can be found which

does not correspond to the trivial choicesRint = 0.01 m andRint = 0.4 m. Figures

11(a) and 11(b) highlight results for two different frequency bands, i.e., [15; 17]395

kHz and [25; 28] kHz respectively. Especially the analysis of g[25;28]kHz enables

one to determine clear maxima for several optimized choices of the internal radius

Rint, whose determination does not appear to be so straightforward. This gives

credit to the proposed optimization approach.

7.4. Optimization : two curved joints400

Consider two curved joints whose angles is supposed to be tuned to θ1 = π/4

rad and θ2 = −π/4 rad, and whose radii of curvature Rint1 and Rint2 are supposed

to vary independently on [0.01 ; 0.4] m × [0.01 ; 0.4] m. Hence, the aim of the

optimization consists in finding the best choices for Rint1 and Rint2.

Figure 12 displays a 2D map of the cost function g(Rint1, Rint2) when [fmin; fmax] =405

[15 ; 17] kHz for a Defect A (severity γ = 0.9) located after the second joint. Here

again, it is seen that the variation of the cost function is not trivial. By consider-

ing the proposed optimization approach, a clear maximum of the cost function

can be determined for Rint1 = 0.152 m and Rint2 = 0.065 m (see blue dot in

Figure 12(a)). Also, the components (Cd
11)ij of the reflection matrix Cd

11 which410

mostly contribute to the reflected signal can be identified as shown in Figure 12(b).

In the present case, the most contributing component for Rint1 = 0.152 m and

Rint2 = 0.065 m is (Cd
11)22, i.e., the one induced by the coupling between the

incident mode 2 and the reflected mode 2.
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(a) (b)

(c) (d)

Figure 10: Cost function g(Rint, θ) for frequency range [15; 17] kHz (a) and corresponding most

contributing component (Cd
11)ij (b); cost function g(Rint, θ) for frequency range [25; 28] kHz (c)

and corresponding most contributing component (Cd
11)ij (d).
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Figure 11: Variations of the cost functions g[15;17]kHz (a) and g[25;28]kHz (b) against Rint: Defect

A (blue) for θ = π/4 rad (full line) and θ = π/2 rad (dashed line); Defect B (red) for θ = π/4

rad and θ = π/2 rad (round and square markers indicate maximum values).
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(a) (b)

Figure 12: Cost function g(Rint1, Rint2) for frequency range [15; 17] kHz and two joints (a)

and corresponding most contributing component (Cd
11)ij (b) (blue dot indicates maximal value:

Rint1 = 0.152 m and Rint2 = 0.065 m).

7.5. Time response415

To further highlight the results of the previous subsections, the time response

at a measurement point located before the joint(s) can be assessed. For the sake

of simplicity, a single test case involving one curved joint and a Defect A with a

severity γ = 0.9 is analyzed. Here, the angle of the joint is tuned to θ = π/2.

Also, three radii of curvature are considered, i.e., Rint = 0.1 m, Rint = 0.158 m420

— which corresponds to the optimized value, see Figure 11(b) — andRint = 0.25

m. The waveguide assembly is excited by a Gaussian pulse at 25.5 kHz along the

longitudinal direction, i.e., to excite the longitudinal mode 2 which is supposed

to give rise to the most contributing component (Cd
11)22 of the reflection matrix

Cd
11 (see Sec. 7.3). The measurement point is located 1 m away in front of the425

excitation point.

Figure 13 displays the incident signal (black curve) along with the reflected
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signals for the three test cases (Rint = 0.1 m, Rint = 0.158 m and Rint = 0.25

m). As it can be seen, the case Rint = 0.158 m clearly yields the highest reflected

signal, which completely agree with what is predicted by the proposed approach430

(see Sec. 7.3).
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Figure 13: Measured time response for a waveguide assembly involving one curved joint (θ = π/2

rad) : incident signal (black); reflected signals for Rint1 = 0.1 m (green), Rint1 = 0.158 m (red)

and Rint1 = 0.25 m (blue).

8. Concluding remarks

A wave-based optimization approach has been proposed for detecting defects

in waveguide assemblies with curved elastic joints. 2D and 3D FE/WFE models

can be used for modeling the waveguides, the joints and the defect parts, which435

appear to be suitable for predicting space-oscillating wave shapes and local reso-

nance phenomena (cross-section modes and component modes) occurring at high
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frequencies, and for describing defects with complex shapes. An original formu-

lation of the apparent reflection matrix of the defects, which takes into account

the influence of the joints on the reflected signals recorded at some measurement440

points at the beginning of a waveguide assembly, has been proposed. This appears

to be the relevant criterion for detecting defects. Also, an optimization procedure

has been proposed to magnify the reflected signals issued from the defects by tun-

ing the geometrical/material properties of the joints in an appropriate way. The

prediction provided by the proposed approach has been validated through time445

response analysis.
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