N
N

N

HAL

open science

Making sense of emergent narratives: An architecture

supporting player-triggered narrative processes

Simon Chauvin, Guillaume Levieux, Jean-Yves Donnart, Stéphane Natkin

» To cite this version:

Simon Chauvin, Guillaume Levieux, Jean-Yves Donnart, Stéphane Natkin. Making sense of emer-
gent narratives: An architecture supporting player-triggered narrative processes.
ence on Computational Intelligence and Games (CIG), Aug 2015, Tainan, France.

10.1109/CIG.2015.7317936 . hal-02442748

HAL Id: hal-02442748
https://hal.science/hal-02442748
Submitted on 16 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

IEEE Confer-
pp-91-98,

https://hal.science/hal-02442748
https://hal.archives-ouvertes.fr

Making Sense of Emergent Narratives: An
Architecture Supporting Player-Triggered Narrative
Processes

Guillaume Levieux
CN.AM/CEDRIC
Paris, France
guillaume.levieux @cnam.fr

Simon Chauvin
CN.AM/CEDRIC
Paris, France
simon.chauvin@cnam.fr

Abstract—Emergent games have the particularity to allow
more possible situations to emerge than progression games do.
Coupled with procedural content generation techniques they also
tend to increase the number of possible situations that players
can encounter.

However, in case the player is not creative or lucky enough
these many emergent situations can have a low narrative value.
This article addresses this problem through an architecture that
gives players more responsibilities towards the story by allowing
them to trigger Narrative Processes. A Narrative Process is a
script capable of making meaningful modifications to the story
in real time. Our proposed architecture relies on an Interpretation
Engine whose role is to make sense of the emergent world as it
is changing and inform the Narrative Processes with high level
story concepts such as actors and places.

We first cover the basics of emergent games and interactive
narratives and then present the architecture behind the Narrative
Processes as well as the Interpretation Engine. We conclude by
a discussion of the potential impact of our architecture on the
fundamental characteristics of emergent games.

Keywords—Interactive Storytelling, Emergent Narrative, Emer-
gent Game, Procedural Content Generation, Minecraft

I. INTRODUCTION

The number of emergent games based on procedural con-
tent generation techniques has been growing these past few
years. Many of them are among the most successful video
games released each year [1], [2], [3], [4]. While this might
be a temporary trend, the specific approach to game design
taken by emergent games has produced new play schemes and
new game narrative possibilities [5], [6]. It laid the ground for
a more thorough investigation of their narrative potential and
improvement.

In the following sections we introduce our approach to
emergent game narratives as well as our plan for improving
them through player-triggered Narrative Processes.

A. Emergent Games

Emergent games are created through an approach to game
design that emphasizes the creation of rule-based systems
rather than pre-scripted paths [7]. On the one hand, emergent
games provide consistent rules that can be combined in mul-
tiple ways to create many new situations that are unique and

Thales Training and Simulation

jean-yves.donnart@thalesgroup.com

Jean-Yves Donnart Stphane Natkin
CN.AM/CEDRIC
Paris, France

stephane.natkin @cnam.fr

Osny, France

that were not predefined. On the other hand, scripted games use
contextual rules that lead to accurately predefined situations.
As a result, authors of emergent games favor combination since
they have less control on the sequence of events. Authors of
scripted games instead favor control over combination.

Even though the author cannot precisely design the specific
story that players will experience within an emergent game,
many emergent games can still provide a strong narrative
experience [5]. Players take part in the game’s story creation
and express themselves through their choices so that each play
session becomes a player-driven narrative [8]. We consider that
this kind of narrative is a major aspect of emergent games and
has greatly contributed to their recent success. Moreover, the
more a game relies on procedural content techniques, the more
it tends to be systemic, allowing for more emergent gameplay
and more player-driven narratives.

To further our understanding of emergent games we first
defined their fundamental properties in a previous publica-
tion [9]:

e Coherence: the coherence of the game world enabled
by the use of consistent rules

e Agency: the ability offered to players to have an
impact in deeply interactive and immersive worlds

e Possibility Space: a large space of possibility that
allows for many possible situations to emerge

e Uncertainty: the ability of the game world to generate
many surprising situations

e Codirection: the critical role of players in experiencing
the narrative but also participating in its creation

A major part of the most recent and successful emergent
games make extensive use of procedural content generation. It
allows them to increase their space of possibility as well as
their potential for uncertainty. Procedural content generation
directly sustains the fundamental characteristics of emergent
games. For instance, always playing Minecraft in the same
world with the same characters would still be interesting but
it would set aside the great pleasure of exploration [1]. In the
case of Dwarf Fortress for instance it would undermine the
very premise of the game, which is to manage a colony of
dwarves that the players is not supposed to know at first [10].

The most common generated parts of emergent games
directly concern the structure of the world: how the differ-
ent parts come together to form a coherent and interesting
world [11]. This goes hand in hand with the generation of
the elements populating these worlds such as the characters,
wildlife and items. Procedural content generation allows the
designer to make sure that no players will be able to know
the world before hand. This ensure that the exploration is a
mandatory and central aspect of gameplay.

In spite of the very innovative narrative approach shown
by emergent games, they are still limited to situations that
could be considered too simple. For instance, among the very
successful emergent games cited in this article most of them
rely on combat and survival and lack more complex, and more
human, narratives [1], [2], [4], [10]. Relying too much on
players to build stories is a risky operation. Few players can
actually make use of the system to create rich and meaningful
stories. While codirection is an important property of emergent
games, it could still be possible to provide players with more
meaningful stories, partially authored, without taking off too
much of their ability to codirect the story.

The field of interactive narrative has worked at length
on ways to enrich games with meaningful interactive stories.
They have developed models to help build interactive stories
and made many theoretical advancements regarding interactive
storytelling [12], [8], [13].

B. Interactive Storytelling

Mixing narrative content and interactivity is a strong
dilemma [14]. To have the player experience specific feelings,
like for instance, the pain of losing a child, we need to virtually
put her in such a situation [15]. However, crafting this moment
is only possible by unfolding a specific course of events. The
player must play the role of a parent, while there must be a
child that she is attached to, and then this child may eventually
die. Of course, in an interactive setting, the player may strive
to save the children but to fulfill our narrative goals, she may
never be able to save him or her.

The most simple way to create such a narrative experience
is to use pre-scripted events, like most of the story based games
do. The player will play the role of a parent, but at a specific
moment, the children will die and the player will not be able
to do anything about it. But while the use of scripted events
will make sure that the narrative is unfolding, it also strongly
limits the interactive part of the experience. Did we really need
to take control of the simulation and force this event to happen
to create a strong narrative experience, or is it possible to
have a much more dynamic system that maintains the narrative
value of the experiment while giving much more freedom to
the player? The interactive storytelling research field looks for
answers to this question.

Since the creation of the pioneer interactive narrative game
Facade, drama managers have been one of the most promising
ways to add a dynamic narrative dimension to an interactive
experience [16], [17]. The concept of drama management
can be used to adapt a narrative to a player, making sure
that the story stays consistent and interesting [18], [19], [20],
[21], [22]. Indeed, in an interactive narrative, the player can
interact with the game world at anytime and the consequences

of her actions modify the current story. The drama manager
is responsible for taking these actions into account while
still reaching predefined narrative goals, e.g. making specific
narrative events happen or respect a certain aesthetic evaluation
of the current story [23], [24], [19], [25], [20], [26].

Research in interactive narratives offers two general ap-
proaches for introducing more narrative content while taking
into account the players’ actions, the top-down and the bottom-
up strategies [27]:

1) Bottom-Up Approach: The bottom-up approach implies
that the story is emergent and results from the different interac-
tions between the autonomous agents and the player [28], [29],
[30]. No external narrative logic comes between the player and
the story. In this approach the narrative is driven by players and
can generate a great number of possible stories while ensuring
that players have high agency regarding the sequence of events.
However, since the authors have limited control, the potential
for unsatisfying story is important. It is worth noting that one
of the experiments in the bottom-up approach, FearNot!, was
later improved with a double appraisal feature similar to a
decentralized drama manager [31].

2) Top-Down Approach: In the top-down approach to in-
teractive narratives, a drama manager is used to ensure that the
stories created respect certain authored conditions [23], [24],
[19], [25]. The drama manager is thus responsible for altering
the environment and the characters in real time. Decentralized
versions of the drama manager have also been developed
and allow each character to make decisions regarding the
unfolding of the story [25]. Therefore, these characters are
not only characters of the story but also directors. The top-
down approach tends to favor control from the authors over the
sequence of events. However, it limits the number of possible
stories and reduces player agency.

Both approaches have the potential to enrich the narra-
tive capabilities of emergent games if used accordingly. The
bottom-up approach, by providing more complex characters
would be beneficial for developing stronger narratives and
more believable game worlds. The top-down approach would
allow to pursue more specific narrative goals, but at the
expense of the player’s agency.

However, as we explain in the next section, emergent games
have properties that prevent us from directly using state of the
art interactive storytelling systems.

C. Interactive Storytelling and Emergent Games

In the specific case of emergent games, and especially
with procedurally generated content and user generated content
like Minecraft or Dwarf Fortress, bottom-up or top-down
approaches may not be directly usable, and this for two main
reasons [1], [4], [10].

1) Abstract Game Worlds: First, using a drama manager
requires an heavily formalized game world. To write a story,
and moreover a story that can be processed and manipulated
by some kind of planning engine, we need to define the
world’s objects, characters, places and all the actions that
the planner may or may not do on this world. For instance,
Cavazza et al’s HTN based system has been demonstrated
with characters from the Friends series or from the Madame

Bovary’s novel [28], [32]. Facade system tells the story of Trip
and Grace relationship’s issues, in a flat where every object
has a specific meaning and can change the story if the player
chooses to interact with it [12]. Mimesis is demonstrated with
a Bank Robbery story in a world with Fred, that can take a gun
from an armory, to maybe kill Barney and rob the bank [33].

However, when dealing with emergent games based on
procedurally generated content or user generated content, the
endless amount of possibilities comes at the expense of the
accuracy of the world’s description. For instance, in Minecraft,
almost everything that we know is that the player must eat,
can craft objects, gather resources, and move blocks. The only
available NPCs have no complex goals: some of them may kill
the player, some others may be killed to provide resources and
that is it.

Of course, worlds such as Minecraft’s are not that empty
or players would have stopped playing it a long time ago.
The game’s narrative content is just not predefined. First and
foremost, Minecraft is a game where players create or adopt
places and give them the meaning they decide. The first thing
that the player is pushed to do by the system is to find a way
to survive, as dying means starting all over again. To do so, the
easiest way is to create a home, that is, a place where the player
may store food and hide behind walls. As soon as her home is
totally lit with crafted torches, no dangerous NPC may spawn
inside and she may steer clear of dying every night. Thus, in
many Minecraft games, the player has some kind of home, and
a drama manager may use this information to craft a story: send
a new NPC to create a neighbor? Place a dangerous NPC just
behind the walls to increase the dramatic tension? Anyway, the
drama manager must know that the player is in a safe place
where she spends a lot of time, and use this information to
define new interesting narrative events. However, just allowing
the drama manager to read the game’s state will not provide
it with enough information: just the position and type of a
collection of cubes and mindless NPCs.

Emergent games featuring procedural content generation
and user generated content represent extreme cases of worlds
that lack predefined content. But this lack of information can
be found in more regular games. For instance, in a game such
as Skyrim, the player might use certain places as a home even
though it was never intended for[34].

The interpretation engine that we present in the remaining
of this article represents the layer of interpretation between the
raw information provided by Minecraft and the drama manager
that will transform the world and the story in real time.
This layer takes for input the numerous data retrieved from
Minecraft and outputs structured and interpreted information
for our drama manager to use directly. It serves both as an
analyzer and filter, making the world of Minecraft more than
a matrix of cubes: a world with places and characters.

2) Emergent Games’ Aesthetics: Using drama management
techniques always comes at the expense of the player’s free-
dom and agency. As soon as we shape a part of the game’s
content to pursue an aesthetic goal, we make a choice that the
player will not be able to change anymore. If we decide to
kill a NPC, then the player will not be able to interact with it
anymore.

As we detail in a previous work, emergent games have

specific fundamental properties, most of them centered around
the player’s freedom and agency. Using a drama manager
implies a trade-off between the amount of narrative content
and these fundamental properties. We will discuss this trade-
off at the end of the paper, and propose a way to alleviate this
problem, especially in the kind of games that we are interested
in.

In emergent games featuring procedurally generated con-
tent, the player does not only suspend her disbelief, but creates
a big part of the story by herself. We named this property of
emergent games codirection. We think that as the player is
already assuming both the role of player and a part of the role
of narrator, she may directly interact with the drama manager
to customize the game’s narrative.

Indeed, a drama manager can also be considered as a means
for players to change the story and the world at run time. The
various modifications would still be described by the inner
mechanisms of the drama manager but it would not act in a
totally autonomous fashion anymore.

We believe that a deconstructed form of the drama manager
could be used by players to alter the story in a structured
way in real time. Indeed, it appears to us that players are
fully capable of assuming bigger responsibilities regarding the
game and the story being created in real time, if given the
right tools. A perfect example would be the various narratives
that children develop while playing [35]. By using existing
materials to create worlds and characters, children improvise
narratives as they play.

Enriching emergent games with more complex narrative
content can thus take advantage of players’ ability to create
the story as they play. This led us to take the core concepts of
drama management while giving more control to the player.
We thus developed a system of Narrative Processes that can be
used by players, in real time, to modify the story in meaningful
ways.

In the remainder of this article, we present the architecture
we developed to enrich emergent games based on procedurally
generated worlds with interactive storytelling techniques. Then
we discuss the advantages and drawbacks of our system in
regards to the fundamental properties of emergent games.

II. EXPANDING EMERGENT STORIES THROUGH
NARRATIVE PROCESSES

In this section we describe the architecture that aims to
enrich the narrative possibilities of emergent games. It was
built using a popular emergent game based on procedural
content generation: Minecraft. While the architecture was built
and thought to be usable with any emergent games, Minecraft
was an ideal choice for its popularity and modding capabilities.

A. Processes

As we explained in the previous section, any kind of
automated system that modifies the game world in real time
will have a negative impact on codirection. Since we consider
that codirection is a fundamental aspect of emergent games,
we need to limit the use of automation. Thus, we designed
our system so that it gives players more responsibilities toward

the story. To this end we developed the concept of narrative
processes, that we define as follows:

Narrative Process: a narrative process is a set of
instructions that modifies the game world, and thus
the story, in real time. When a process is activated,
the engine will execute its instructions according to
an event based system. A process must be triggered
by the player in order to be considered by the engine,
and will keep running until the player decides it
should stop.

By providing players with many different narrative pro-
cesses we allow them to modify the story in many different
ways. Moreover, triggering a narrative process becomes a
conscious act that players make to modify the current story.
This choice is a very high level choice and may lead to some
unpredictable results. However, we postulate that making this
choice will give the player a sufficient amount of control to
maintain the codirection aspect of emergent games while still
providing her with more narrative possibilities.

A narrative process is a script written in Lua that runs in
the background as soon as the player selects it. Anyone can
write new processes and each script has access to our engine’s
API, allowing it to 1) register new functions for specific events
2) modify the current state of the world 3) query the world’s
story, that is, both the world’s current state and the story log.

Actors

Call

API Places

Events

Register / Modify /
Query

Fig. 1. Narrative Process

1) Registering custom events: Processes can register cus-
tom functions to be called when certain events happen. Since
the API records many events that happen in the game world,
functions can be associated with them. For instance, it is
possible to register a function that will be called automatically
when the player enters a new place. The default and most basic
events redefined by processes are the Init function, called when
the process is launched, and the Update function, called at each
main loop of the game engine.

2) Modification of the current state of the world: We
consider that the act of modifying the story should only be
undertook by one or more characters in order to strengthen
the believability of the world. As a result, processes can only
modify the game world using characters’ actions. Hypothet-
ically, it would be absolutely justified to allow modification
of the story through a character that has no presence in the
world, such as a god but it would still be a character in the
story anyway.

a) Character selection: The characters responsible for
carrying the modifications can be chosen among the ones that
already exist in the story or be created from scratch. Selecting
an existing character can be a good way to keep the game
world and the story as coherent as possible. Indeed, rather than
creating new characters the system can find the best fitted one.
The selection is based on a list of requirements defined by the
creator of the process. A requirement is a condition that the
character to be found has to comply with.

A valid condition for selecting a character is one, or
a combination, of the elements of the list of information
regarding characters that are tracked and recorded by the
engine:

e A character already went to a certain place

e A character already used a certain item

e A character already met another character

For instance, a requirement could be that the character to be
chosen cannot have met the player already or that she should
possess a certain item. In the case no character that fits the
requirements of the selected process can be found, a character
can be created entirely instead. The more the story advances
the more it will contain characters. New characters created by
processes will become unusual.

b) Modifications: In order to bring more complex nar-
rative situations, processes can use the various characters they
created or selected to alter the environment and to reconfigure
the potential interactions between characters. Similar to the
character-based interactive storytelling experiments of Cavazza
et al, the simple displacement of objects and characters alone
can generate typical narrative situations [28]. By creating new
characters with specific goals, processes can prevent other
characters, or even the player, from achieving their own goals.
They can also modify the environment in concrete ways by
ordering characters to build, dig or destroy anything. Similarly,
characters can be commended to interact with items and other
characters.

The following list shows to what extent a character can
interact with its environment. A character can:

e Add a block in the world, which removes this partic-
ular block from her inventory

e Remove a block from the world, which adds this
particular block to her inventory

e Pick up items and blocks laying around the ground,
which adds them to her inventory

e Put an item down, which removes this particular item
from her inventory

e Put an item in a chest or in another character, which
removes this particular item from her inventory

e Attack another character with or without an item

e Push and move another character

3) Story queries: In order to create meaningful narratives,
processes can take advantage of the information about the story
provided by the APIL. Indeed, a process needs to have access to
the current state of the game world but also to what happened
in the past, that is, the game world’s story. Processes can thus
have access to a log of the meaningful events that happened
in the game world.

The story log is organized as follows: it is a chronological
list of events, each event defining a relationship between actors,
game objects and places. Using this set of events, a process
can adapt to the current context of the story by acting not
only according to the current state of the world but also to
what happened in the past.

At first glance, it seems obvious that writing interesting
narrative processes using the raw log of events might be
complicated, this log being a very low level description of
what happened in the game world. In the next section, we
introduce the Interpretation Engine, that allows a higher level
of interaction between processes and the story log.

III. INTERPRETATION ENGINE

Processes aim to enrich the narratives of emergent games
with new content and various modifications of the story. En-
riching the current story implies that the process needs to know
what happened in the story before it was triggered. Indeed, if
the process was written to help or bother the player then it
needs to be able to guess what the player likes or dislikes,
where she spends most of her time and so on. Being able to
know the current story also allows to act more coherently with
the current context of the game world. A process that knows
the various characters the player has met and interacted with
might use them to act so as to reinforce the impression of a
living and coherent world.

As we discussed in a previous section, emergent games and
generated content make for unpredictable worlds that cannot
be directly translated into a meaningful story: the events are
often low level and very generic. For instance, Minecraft only
provides us with information about collisions and other kinds
of basic interactions between game objects. Therefore, we need
to interpret the raw data coming from the game so that it can
be used by processes to modify the story.

Our system records a series of basic events happening in
the game. We call this raw log of events the Objective Story.
Then, we call our interpretation of this event log the Subjective
Story: a possible version of the story that bears more insights.

The overall architecture revolves around this interpretation
engine whose role is to retrieve low level information from the
game and transform it into a form that bears more meaning.
The processes can then have access to this high level informa-
tion and use it to plan their next action.

A. Objective Story

The objective story basically represents the state of the
Minecraft world at different point in time. A collection of
low level information about collisions, positions and actions
undertaken by the various characters of the world. Nothing is
interpreted, hidden or manipulated. This data is directly used

| Objective World |

Collisions

Positions | Interactions

Actors

Call

API Places

Events

Register / Modify /
Query

Init L= |

Update Process

Interpretation

Engine

Event

Places

| Subjective World I

The Interpretation Engine

| Actors Events |

Fig. 2.

by the interpretation engine to try and get a bigger picture of
the story.

The first step towards a more formalized world is to
structure this information for allowing interpretation. This can
provide a common language for describing events of the story
and to search for new events, aggregate these events and draw
statistics from them. It can help us, for instance, to retrieve the
time and position at which a character used a specific object.

Therefore, each recorded event is made of one or two
characters doing an action at a specific time and position that
possibly involves an item.

Event structure:
character] - [character2] - action - [item] - position - time stamp

This simple formalism allows the representation of every
event of the story in a chronological order. The time stamp
ensures that the time of the events is recorded along and that
events are situated in time. Each event is recorded in a database
so that it is possible to keep track of everything that happens
in the game world.

The events recorded by the objective story are not those
of the whole world but only of the world discovered by the
player. When a player meets a new character or picks up a new
item this will be recorded and the new character and item will
also be tracked from this point forward. Through the actions of
the player the story world gets bigger and contains more and
more game objects. Every time a tracked object is modified,
the modification is then recorded.

The objective story takes the form of a table in a database
whose records represent a chronological list of alterations of
the game world:

e A character picks up an item

e A character puts an item down

e A character sees another character

e A character pushes another character

e A character trades with another character

e The player position (every two seconds)

B. Subjective Story

The subjective story represents the world as it was inter-
preted by the engine. It is one version of many possible others
that depends on the criteria used for interpretation. This is
the material with which processes will create new events and
modify the current story.

Unlike the objective story, the subjective story is made
of high level information regarding the world such as the
characters and their relations, the places in which events take
place and so on. On the one hand, the objective story records
events as fact. But on the other hand, the subjective story
uses these recordings to label the events and to aggregate
them together to provide a better understanding of the story.
For instance, if a character attacks another the system should
interpret this data as a bad relationship between the characters.
Meaningful information like this allows processes to build
upon the current story. They can be written to make decisions
depending on the information coming from the interpretation
engine, such as the presence of a character in a certain place
for instance.

C. Interpretation

While recording the changes as they happen is pretty
straightforward, the retrieval of a story from often unrelated
events requires a deep understanding of the data. A few
minutes of play can generate hundreds of new recordings,
especially if the story has already started for some time and
has multiple characters, places and objects involved. This is
where interpretation steps in to translate the objective story
into a possible subjective story.

Interpretation can happen inside the engine as a built-
in way of labeling events but also through processes since
they can make their own interpretation. When a process
uses statistics or low level information about a character for
instance, it actually makes hypothesis that might sometimes
turn out to be true or false.

The main goal of the Interpretation Engine is to provide
as much built-in interpretation as possible while also allowing
parameterization of the interpretation. For instance, a process
creator can use the interpretation engine to know what hap-
pened to the player two to three hours ago rather than from
the beginning of the story. It could also ask for the monitoring
of only a subset of the characters of the story.

Different processes require different levels of details about
the story. Some processes might require very precise infor-
mation such as the time, place and characters involved in a
specific event or even the state of the relationship between
two characters. Though, most story processes will only need
partial information about the story regarding, for instance, the
number of characters that went in a particular place.

For sense to emerge from context-poor recordings of in-
game events, we need to introduce various data mining meth-
ods to create a meaningful abstraction of this data. These can
help form the shape of the story made of the places in which
it takes place as well as the emerging character relationships.

In the next section we describe a first step towards this
goal: a method that allows us to retrieve the possible places
of the story through the analysis of the player behavior.

The Places of the Story: The various places involved in the
story are not predefined since the world is entirely generated
and the players are free to do what they desire. As such, the
places emerge from the behavior of players during play and
continuously change over long periods of play. This concerns
not just Minecraft but any emergent games that use procedural
content generation or user generated content.

As players build their house, work on other buildings,
go hunting or fetching resources they demarcate new places.
Players quickly rationalize the space into different places with
different purposes. Some are for storing resources, sleeping or
crafting and others are for leisure or hunting.

Enriching an ongoing story without being able to identify
the places in which it happens would be nearly impossible.
This is why we decided to feed a clustering algorithm with
all the positions of the player taken at regular intervals. By
grouping the closest positions together, the algorithm tends
toward an optimum size and number of clusters for the entire
area represented by all the positions of the player.

By using clustering it becomes possible to identify the
main places of the story and help the processes act in more
meaningful ways. Indeed, knowing the layout of the world is
important but even more so for allowing variations. Giving an
area rather than a position for moving characters for instance
is more coherent with our emergent approach.

As shown in Fig 3 the set of positions recorded over a
period of time can be grouped together in an optimal fashion
through the use of the expectation maximization clustering
algorithm provided by the Java Machine Learning library [36].
On Fig 3, we in fact see the specific areas in which the player
spent an important amount of time. For instance, the green
area is the home of the player and the purple one is an area
for fetching stones.

"oy

Fig. 3. Top view of the clusters of the recorded positions of the player. EM
algorithm from Java Machine Learning library (min o: 10, 100 iterations)

IV. IMPACT OF THE ENGINE IN REGARDS TO THE
EMERGENT GAMES’ AESTHETICS

We consider that using processes to modify the story in
real time can enrich the narratives of emergent games with
more authored content and increase the possibilities offered
to players for modifying the story. However, our system may

also have negative side effects on the fundamental properties
of emergent game narratives.

In the following section we consider the changes that our
system bears on the fundamental characteristics of emergent
games.

A. Coherence

Emergent games are simulations of alternate realities. They
allow many situations to emerge without imposing a specific
story. Each entity in the world behaves according to consistent
rules which tend to allow emergent game worlds to stay
coherent and to appear more believable.

The subjective story that processes will use to plan their
next actions is the result of an interpretation process. This
process is not perfect and relies on a certain number of
assumptions, and thus may not correspond to what the player is
really doing. For instance, we consider that players will spend
time into specific places. But what if the player always goes
straight toward the rising sun, as the experiment of Kurt J. Mac
shows [6]? In this case, any process relying on places may not
act in a fashion that is coherent to the player’s behavior. The
characters’ behaviors may seem foolish and not related to the
current story.

Our approach does not cover every possible player behavior
and this is mainly due to our extensive use of the concept
of place. This is especially true in the case of nomadic
players since the places in which the story happens are always
changing. Thus, we can see that our architecture aims to enrich
the possible narratives of players that have a tendency to settle.

B. Agency

Agency represents the experience of a player having an
impact in a dynamic, responsive world [37]. Emergent games
often allow players to have a great amount of impact on the
world and the sequence of events. Indeed, strongly coherent
worlds allow players to fully understand the inner mechanisms
of the virtual worlds. The more they play the easier it becomes
for the players to anticipate and plan their actions.

Our system aims to provide players with more ways to
affect the sequence of events through the use of narrative
processes. But rather than directly increasing agency it instead
provides more content that enriches the possible stories. Thus
increasing the size of the possibility space as well as the
number of potential situations of player agency.

C. Possibility Space

A large space of possibilities implies that the game can be
replayed many times while still providing new worthwhile sit-
vations and choices, therefore preventing players from finding
themselves in frustrating positions. They can always explore
the game for more and more distinct experiences. Emergent
games and more specifically user generated content based
games actually provide a great number of play states that can
be attained through play. This is made possible by the various
interrelated subsystems that simulate complex and persistent
worlds in which many situations can emerge but also by the
new content that players are capable of bringing to the game.

The processes provided by our system have the potential to
create many new ramifications from the main possibility space.
By adding new content processes generate new possibility
spaces around the main one and increase the pleasure of
discovery and surprise that emergent games can offer.

Another important aspect of a large possibility space is
that it also allows for dramatic actions that greatly impact
the course of the game [9]. The ability of processes to create
new situations that can deeply modify the story also allows
for dramatic events to happen. For instance, a process could
damage the house of the player but another could also allow
the player to rebuild her house quickly. This could lead the
player towards more risky situations that might turn out to be
great stories.

D. Uncertainty

Situations and events emerge from the complexity of the
various systems present in emergent games. They are often
hard to predict since these situations were never predefined.
As a result a critical element of surprise can be created and
can increase the experience and enjoyment of emergent games.

Narrative Processes are systems that adds to the complexity
of emergent games. From a high level point of view they
guide the overall story and reduces uncertainty. But, each
process reacts differently to the context of the story, they adapt,
leading players back into uncertainty. Thus, narrative processes
tend to reduce uncertainty regarding the main story arc while
increasing uncertainty regarding the details of the story.

For instance, a process responsible of an opponent to the
player might act differently whether the player has many
friendly characters around her home or not. It could turn one
of them against the player without her being wary of anything.
The abilities of processes to act differently depending on the
context of the story and the behavior of the player ensures that
uncertainty is respected.

Since multiple processes can run in parallel, unpredictable
situations can also emerge from the interactions between them.
A process responsible for opposing the player running at the
same time of another helping the player could actually cancel
each other out or creates a tension that would be more difficult
to obtain through the use of only one process.

E. Codirection

Emergent games allow players to be more responsible for
the story and for the direction it takes. Rather than imposing
mandatory events, authors build constrained spaces in which
player can create new situations and events that were not
predefined. Both authors and players are responsible for the
final experience, they create a unique story in an asynchronous
way.

By providing players with various narrative processes,
authors give players more responsibilities toward the story
since they can act on it in an out of character fashion. Each
process represents a new way for players to intervene on the
story through the tools written by the authors. Where a drama
manager would take full responsibility of the story and use
the player’s behavior to make decisions, our system instead
assumes that players can directly use the capabilities of a

deconstructed drama manager to take themselves the decision
to lead the story in certain directions.

V. CONCLUSION AND FUTURE WORKS

In this article we presented our approach that aims to
improve the narratives of emergent games through the use of
interactive storytelling techniques. To do so, we propose an
architecture that relies on Narrative Processes and an Interpre-
tation Engine. The Narrative Processes empower players with
the ability to modify the story in real time. Our goal is that
these processes extend the narrative possibilities of emergent
games without breaking the core fundamental properties that
define them. As we detail in the previous section the processes
require a thorough understanding of the story being played to
act in meaningful ways. This is where the Interpretation Engine
intervene to make sense of an emergent story.

In order to assess the true possibilities uncovered by our
architecture we need to evaluate each property through a panel
of players. This will allow us to get measurable effect of the
processes on the enjoyment of emergent games.

Before setting up the experiment we believe that the
Interpretation Engine can be improved through the use of
a clustering algorithm for other dimensions than only the
positions of the player. We could, indeed, use it to gain insights
on other areas than the places of the story. Using clustering
on player-character interactions for instance we could discover
more about the player and her interactions with the other
characters.

REFERENCES

[1] Mojang, “Minecraft,” 2009.

[2] Re-Logic, “Terraria,” 2011.

[3] Maxis, “Spore,” 2008.

[4] K. Entertainment, “Don’t starve,” 2013.

[5] B. Keogh, “When game over means game over: using permanent death
to craft living stories in minecraft,” in 9th Australasian Conference on
Interactive Entertainment: Matters of Life and Death. —Melbourne,
Australia: ACM, 2013, pp. 20:1—-20:6.

[6] S. Parkin, “A journey to the end of the world (of minecraft),” 2014.

[7]1 P. Sweetser and J. Wiles, “Scripting versus emergence: Issues for game
developers and players in game environment design,” International

Journal of Intelligent Games and Simulation, vol. 4, no. 1, pp. 1—-
9, 2005.

[8] S. Louchart and R. Aylett, “The emergent narrative theoretical investi-
gation,” in Narrative and Interactive Learning Environments, 2004.

[9] S. Chauvin, G. Levieux, J.-Y. Donnart, and S. Natkin, “An out-of-
character approach to emergent game narratives,” in Foundations of
Digital Games 2014, 2014, p. 4.

[10] T. Adams, “Dwarf fortress,” 2006.

[11] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural
content generation for games: A survey,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 9, no. February, pp. 1:1—-1:22, 2013.

[12] M. Mateas, “A neo-aristotelian theory of interactive drama,” Working
notes of the Al and Interactive Entertainment, 2000.

[13] E. Aarseth, “A narrative theory of games,” in Proceedings of the
International Conference on the Foundations of Digital Games, no. c.
New York, New York, USA: ACM, 2012, pp. 129-133. [Online].
Available: http://doi.acm.org/10.1145/2282338.2282365

[14] G. Frasca, “Ludology meets narratology: Similitude and differences
between (video) games and narrative,” Parnasso, pp. 365-71, 1999.

[15] Q. Dream, “Heavy rain,” 2010.

[16]

[17]

(18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[31]

[34]
[35]

[36]

[37]

M. Arinbjarnar and H. Barber, “A critical review of interactive drama
systems,” AIS’B09 Symposium: Al & Games, 2009.

M. Mateas and A. Stern, “Build it to understand it: Ludology meets
narratology in game design space,” in DiGRA Conference, Vancouver,
BC, vol. 2, 2005.

M. T. Kelso, P. Weyhrauch, and J. Bates, “Dramatic presence,” 1993.

N. Szilas, J. Barles, and M. Kavakli, “An implementation of real-time
3d interactive drama,” Computers in Entertainment, vol. 5, no. 1, pp.
1-18, 2007.

M. Mateas and A. Stern, “Integrating plot , character and natural lan-
guage processing in the interactive drama facade,” in In Proceeding of
the Technologies for Interactive Digital Storytelling and Entertainment,
vol. 2, 2003.

R. M. Young, “An overview of the mimesis architecture: Integrating
intelligent narrative control into an existing gaming environment,”
in The Working Notes of the AAAI Spring Symposium on Artificial
Intelligence and Interactive Entertainment, 2001, pp. 78-81.

G. Delmas, R. Champagnat, and M. Augeraud, “From tabletop rpg to
interactive storytelling: definition of a story manager for videogames,”
in Proceedings of the 2nd Joint International Conference on Interactive
Digital Storytelling: Interactive Storytelling. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 121-126.

B. Magerko and L. John, “Building an interactive drama architecture,”
in International Conference on Technologies for Interactive Digital
Storytelling and Entertainment, Darmstadt, Germany, 2003.

M. Mateas and A. Stern, “Structuring content in the facade interactive
drama architecture,” in American Association for Artificial Intelligence,
vol. 3, 2005.

R. Paul, D. Charles, and M. McNeill, “Mist: an interactive storytelling
system with variable character behavior,” ICIDS, pp. 4-15, 2010.

B. Mallon, “Towards a taxonomy of perceived agency in narrative game-
play,” Computers in Entertainment, vol. 5, no. 4, p. 1, Mar. 2008.

S. Louchart, R. Aylett, M. Kriegel, J. Dias, and R. Figueiredo, “Author-
ing emergent narrative-based games,” Journal of Game Development,
vol. 3, no. 1, 2007.

M. Cavazza, F. Charles, and S. J. Mead, “Emergent situations in
interactive storytelling,” in ACM symposium on Applied computing.
ACM, 2002, pp. 1080-1085.

R. Aylett, S. Louchart, J. Dias, A. Paiva, and M. Vala, “Fearnot -
an experiment in emergent narrative,” in Intelligent Virtual Agents.
Springer, 2005, pp. 305-316.

J. McCoy, M. Treanor, B. Samuel, B. Tearse, M. Mateas, and
N. Wardrip-Fruin, “Authoring game-based interactive narrative using
social games and comme il faut,” 4th International Conference &
Festival of the Electronic Literature Organization: Archive & Innovate,
2010.

R. Aylett, S. Louchart, A. Tychsen, M. Hitchens, R. Figueiredo, and
C. D. Mata, “Managing emergent character-based narrative,” in 2nd
international conference on INtelligent TEchnologies for interactive
enterTAINment, 2008.

M. Cavazza, J.-L. Lugrin, D. Pizzi, and F. Charles, in Proceedings of
the 15th International Conference on Multimedia. ~ACM, 2007, pp.
651—-660.

M. Riedl, C. J. Saretto, and R. M. Young, “Managing interaction
between users and agents in a multi-agent storytelling environment,”
in Proceedings of the Second International Joint Conference on Au-
tonomous Agents and Multiagent Systems. New York, New York,
USA: ACM, 2003, pp. 741-748.

B. G. Studios, “Skyrim,” 2011.

R. K. Sawyer, “Improvisation and narrative,” Narrative Inquiry, vol. 12,
no. 2, pp. 319-349, 2002.

T. Abeel, Y. V. D. Peer, and Y. Saeys, “Java-ml : A machine learning
library,” Journal of Machine Learning Research, vol. 10, pp. 931-934,
2009.

J. H. Murray, Hamlet on the Holodeck: The Future of Narrative in
Cyberspace. New York, NY, USA: The Free Press, 1997.

