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The degree of nonorthogonality of eigenstates of non-Hermitian systems governs nuclear scattering, electronic
conductance, and wave propagation in disordered media. Here, we determine the impact of non-Hermiticity
upon eigenstates inside an open random cavity from measurements of the modal overlap matrix of transmitted
microwave radiation. Increasing eigenfunction correlation with spectral modal overlap brought about by the
openness of the system leads to modal transmission greatly exceeding unity accompanied by strong modal
anticorrelation guaranteeing that transmission does not exceed unity.
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I. INTRODUCTION

Excitation of and transport through a complex medium
reflect the character of the eigenstates of the wave equation. In
quantum systems, these are referred to as energy levels, while
for classical waves, these are called quasinormal modes, or
simply modes. The real and imaginary parts of the eigenvalues
of the wave equation are the central frequencies and decay
rates of the modes and the eigenstates give the corresponding
spatial structure over the volume. Though it is generally not
possible to solve for the eigenvalues of the Hamiltonian in
large complex systems, the resonances correspond to the poles
of the scattering matrix and can be extracted from measure-
ment of the spectrum of its elements [1–7].

A single mode may be excited when the sample is illumi-
nated on resonance with a spectrally isolated mode. However,
as the coupling of the sample to the exterior and internal
dissipation increase, modes broaden and overlap spectrally. In
such non-Hermitian systems, the eigenfunctions are no longer
orthogonal [1,5,8–12]. The non-Hermiticity of open systems
is observed in the overlapping nuclear resonance in neutron
scattering and used to interpret the statistics of width and
spacing of nuclear levels [13–17]. The degree of modal over-
lap also determines the statistics of electronic conductance
[18,19] as well as classical wave transmission and level statis-
tics in random media and chaotic cavities [20–22], but these
statistics alone do not directly determine scattering spectra.
This would require knowledge of the statistics of correlation
and the degree of excitation of the eigenfunctions. However,
directly probing the generic statistics of the eigenvectors of
non-Hermitian systems has remained a challenge.

The nonorthogonality of eigenfunctions is crucial for the
viability in quantum computing [23]. In photonic systems,
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it leads to the existence of exceptional points in systems
that incorporate both gain and loss but in which parity-time
symmetry is preserved [24,25] and to the enhancement of
the linewidth and spontaneous emission rates in laser res-
onators [26–28]. Its impact has also been explored in localized
plasmonic surfaces [29], dielectric microcavities [30,31] and
chaotic systems with small perturbations [32,33]. Thus the
impact of non-Hermiticity on wave functions is critical to the
deposition and evolution of energy in open linear and nonlin-
ear systems, communications, imaging, spectral analysis, and
resource exploration.

In this paper, we explore the consequences of non-
Hermiticity and consequent modal overlap in an open ran-
dom microwave cavity. We demonstrate the correlation of
modal components of the transmission matrix (TM) in non-
Hermitian systems and their relation to the correlation of
eigenfunctions over the entire volume of the sample. Using
a modal analysis of the TM in ensembles of disordered
systems, we show that off-diagonal elements of the trans-
mission overlap matrix are negative and exhibit universal
scaling in agreement with predictions of random matrix theory
[10,12,34]. This is associated with enhanced modal excitation,
with an average value in random media that approaches the
dimensionless conductance, and can greatly exceed unity.
The linkage of enhanced modal transmission and destructive
interference among correlated speckle patterns of spectrally
overlapping resonances ensures that net transmission does not
exceed unity.

II. NONORTHOGONALITY OF EIGENFUNCTIONS

The quasinormal modes of a system are the eigenfunc-
tions φn(r) of the wave equation �φn(r) = −ε(r)ω̃2

n/c2
0φn(r)

that satisfy outgoing boundary conditions [1,5,35]. c0 is the
speed of light and the disorder relies on the spatial dis-
tribution of the permittivity ε(r). The resonances are the
complex eigenvalues ω̃n = ωn − i�n/2, where ωn is the cen-
tral frequency and �n is the linewidth. The eigenfunctions
are normalized to form a complete biorthogonal set so that
φT

n φm = δnm.
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The overlap matrix Omn ≡ (φ†
mφn)2 = [∫ drφ∗

m(r)φn(r)]2

characterizes the correlation between eigenvectors of the wave
equation over the volume [10,12,34]. The diagonal elements
of Omn are equal to the Petermann factor, Kn ≡ Onn, which is
a measure of the degree of complexness of the eigenfunctions
[36–40]. The Petermann factor characterizes the excess spon-
taneous emission for laser cavities and governs the linewidth
of lasing modes [26–28,41]. For small modal overlap, the
eigenfunctions nearly coincide with the real eigenfunctions of
the closed system so that Kn ∼ 1. However, Kn increases as
the coupling of the sample to its surroundings increases [37]
and can have values exceeding 1000 [27]. The off-diagonal
elements of O give the degree of correlation between eigen-
functions. Since the eigenfunctions are complete, �mOnm = 1
[10], the enhancement of Kn with increasing modal over-
lap implies nonvanishing and negative-on-average correla-
tion On �=m < 0 for overlapping eigenfunctions, in contrast to
On �=m = 0 in Hermitian systems.

Measuring the overlap matrix would require a noninvasive
scan of the spatial profile of the eigenfunctions inside the
sample, which is not possible in most cases. We show, how-
ever, that the measurement of the spectrum of the TM makes
it possible to compute a transmission overlap matrix whose
statistics reflects those of the overlap matrix. The expansion
of the scattering matrix in terms of quasinormal modes is
S = I − iW T[ω − 	̃]−1W [5,9]. The matrix W of vectors Wn

is the projection of eigenfunctions φn onto the channels of the
sample and 	̃ is the diagonal matrix of eigenvalues ω̃n. The
TM can then be expressed as a superposition of modal TMs
(MTMs) [42]:

t (ω) = −i�n
WRnW T

Ln

ω − ω̃n
. (1)

WLn and WRn are the components of the Wn vector associ-
ated with the left and right sides of the sample, respectively.

The statistics of the modes in chaotic cavities and ran-
dom systems are accurately modeled within the effective
Hamiltonian formalism. The eigenfunctions correspond to the
eigenvectors of the effective Hamiltonian Heff = H0 − i

2VV T ,
where H0 is the real Hermitian Hamiltonian of the closed
system and the real matrix V describes the coupling of the
system through channels. We demonstrate in the Supplemen-
tal Material (SM) [43] that the correlation of eigenfunctions is
related to the correlation of their projections onto the coupling
channels as [5,16,43]

Omn = − (W †
mWn)2

(ω̃m − ω̃∗
n )2 . (2)

For m = n, Eq. (2) gives the relation between the mode
linewidths and the coupling vectors, Kn = ‖Wn‖4/�2

n [16]. Be-
cause we measure the TM rather than the scattering matrix, the
relative phase and magnitudes of the vectors WLn and WRn are
unknown; only the MTMs tn = −iWRnW T

Ln can be extracted.
We therefore define the “transmission overlap matrix”:

Õmn = −4(W †
RmWRn)(W †

LmWLn)

(ω̃m − ω̃∗
n )2 = − 4Tr(t†

mtn)

(ω̃m − ω̃∗
n )2 . (3)

The diagonal elements gives the modal strengths in trans-
mission Õnn = Tn = ‖WRn‖2‖WLn‖2/(�n/2)2. Õ(ω̃m, ω̃n) and

FIG. 1. (a) Experimental setup. (b) Transmission through the an-
tennas as a function of frequency. The arrows indicate the frequency
ranges corresponding to weak and strong coupling of the antennas.

O(ω̃m, ω̃n) are equal for extended states in the limit N � 1 for
which ‖WRn‖ ∼ ‖WLn‖ [43].

We measure the TM of a multichannel random system
[see Fig. 1(a)]. The disordered aluminum cavity of height
H = 8 mm, width W = 250 mm, and length L = 500 mm
supports a single transverse mode in the vertical direction
so the system is essentially two dimensional. The randomly
positioned scattering elements are 6-mm-diameter aluminum
cylinders. The TM which is the part of the scattering matrix
associated with the transmission coefficients between the left
and right sides of the sample, respectively, is measured in the
microwave range between two linear arrays of N = 8 antennas
that are coaxial to waveguide adapters [42]. Spectra of each
transmission coefficients of the TM are obtained sequentially
using two electromechanical switches and the two ports of a
vector network analyzer. The openings of the system are fully
controlled by the antennas [44] but the interface may still
be strongly reflective due to the metallic region surrounding
each coupler. Figure 1(b) shows the spectrum of the emission
from the antennas determined from Tc(ω) = 1 − |〈Scc(ω)〉|2,
where 〈Scc(ω)〉 is the mean reflection parameter at each
antenna.

The degree of modal overlap in random media depends
upon the degree of disorder and the openness of the sample
boundaries. The average modal overlap may be characterized
by the Thouless number δ, which is the ratio of the average
linewidth to the average level spacing δ = 〈�n〉/�ω. δ re-
flects the degree of spatial localization since tightly localized
modes couple weakly to the surroundings through the sample
boundaries and so have narrow linewidths [21,45]. We carry
out measurements in three ensembles with moderate modal
overlap in frequency ranges in which (1) the antennas are
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FIG. 2. (a)–(c) Measured transmittance T (ω) = �a,b|tba(ω)|2 and the underlying modal structure for (a) weak coupling to a sample with
30 cylinders and (b) for strong coupling to a sample with 250 cylinders and (c) 200 cylinders. (d)–(f) Real part of the overlap matrix for 17
modes of the ensembles corresponding to spectra shown in (a)–(c). The modal strength and negative correlation between neighboring modes
are seen in the increase of the diagonal and off-diagonal terms, respectively, with increasing modal overlap from (d) to (f).

weakly coupled to a sample ( f between 9.3 and 9.5 GHz and
Tc ∼ 0.09) with 30 cylinders contained within a cavity, for
which δ ∼ 0.5; and (2,3) the antennas are strongly coupled
to a sample ( f between 10.8 and 11.5 GHz and Tc ∼ 0.98)
and the disorder is strong. For the samples with 280 and 200
scatterers, δ ∼ 1.2 and δ ∼ 2.01, respectively.

Spectra of the transmittance T (ω) = �ab|tba(ω)|2, which
is the sum over flux transmission coefficients between all
incoming and outgoing channels, and the modal strengths in
transmission Tn(ω) = ‖WRn‖2‖WLn‖2/|ω − ω̃n|2, are shown
in Figs. 2(a)–2(c). For classical waves, the average trans-
mittance corresponds to the dimensionless conductance, g =
〈T (ω)〉 [18–21,45,46]. We observe in Fig. 2(a) that the con-
ductance g ∼ 0.06 is small when the antennas are weakly cou-
pled to the system as a result of the small modal overlap and
absorption over the sample, but g increases with increasing
coupling of the antennas to the sample. The resonances ω̃n and
the vectors WLn and WRn are extracted from spectra of trans-
mission coefficients using the harmonic inversion technique
[2,42]. In the vicinity of the central frequency of an isolated
mode, peaks in transmission spectra correspond to resonances

with individual modes, T (ω) ∼ Tn(ω). But as modal overlap
increases, the strength of modes on resonance Tn = Tn(ωn) is
enhanced and may exceed unity.

We compensate for the impact for absorption in order
to compute the transmission overlap matrix Õ. Since the
linewidths �n are broadened by absorption, we replace in
the denominator of Eq. (3) ω̃n − ω̃∗

m by ω̃n − ω̃∗
m + i�a, where

�a is the homogeneous absorption rate. To estimate the
linewidth �a associated with homogeneous absorption and
losses through the antennas �̃n, related by �n = �̃n + �a,
we observe that the average 〈�̃n〉 scales linearly with the
number of coupled antennas, 〈�̃n〉 = 2N〈�̃0

n〉, where 〈�̃0
n〉 is

the average linewidth associated to a single antenna coupled to
the sample. By disconnecting the antennas from the switches,
it is possible to decrease the number of coupled channels
and thereby obtain an estimate for �a. In the weak coupling
regime, we find 〈�̃0

n〉 ∼ 0.15 MHz and �a ∼ 3.6 MHz, so that
the broadening of the resonances in the weak coupling regime
is therefore mainly due to homogeneous absorption within the
sample. In the strong coupling regime associated to a higher
frequency range, 〈�̃0

n〉 ∼ 1 MHz and �a ∼ 4 MHz show that
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FIG. 3. Measured correlator 〈Õ(ω̃1, ω̃2)〉 plotted as a function of
|δω̃| = |ω̃1 − ω̃2|/�ω, with weakly (red circles) and strongly (blue
crosses) coupled antennas. The lines are fits to theoretical predictions
given in Eq. (4). The results are normalized so that 〈Õ(ω̃1, ω̃2)〉 →
−1 as |δω̃| → 0. Inset: |〈Õ(ω̃1, ω̃2)〉| in logarithmic scale is seen to
scale as |δω̃|−4 (dashed lines) for |δω̃| > �ω.

losses are dominated by the coupling through the antennas for
N = 8.

The real parts of Õ(ω̃1, ω̃2) are shown in Figs. 2(d)–2(f)
for the three samples studied. When the antennas are weakly
coupled, the overlap matrix Õ is seen to be close to diagonal as
it would be for a closed system. Uniform losses that broaden
the linewidths do not alter the orthogonality of eigenfunctions.
For the case of strong coupling and δ ∼ 1.2, the transmis-
sion overlap matrix is also mostly diagonal. However, when
two resonances overlap, enhanced diagonal and negative off-
diagonal elements are observed, as seen, for instance, for the
two resonances with central frequencies around 11.03 GHz.
For the sample with the smaller number of scatterers and
hence shorter mode lifetime and larger mode linewidth, δ ∼
2.01, the diagonal part for most modes increases while the
off-diagonal terms become more negative.

To carry out measurements on a random ensemble, an
ensemble of independent realizations of the cavity is obtained
by moving a 10-mm-diameter magnet along a line within the
medium in steps of λ/2 = 12.5 mm, where λ is the wave-
length at 12 GHz. The magnet within the sample is moved by
the force of a second magnet above the top plate of the cavity.
We find resonances and associated modal coefficients for
more than 1000 modes in 40 realizations of two ensembles:
(1) weakly coupled antennas with 30 scatterers giving δ =
0.5, and (2) strongly coupled antennas with 280 scatterers.
Since no scatterers are positioned along the line of motion of
the magnet, δ for this ensemble is increased to δ = 1.52 from
δ = 1.2, for the sample where there is no excluded volume for
scatterers.

We next explore the off-diagonal elements of 〈Õ(ω̃1, ω̃2)〉.
The average 〈Õ(ω̃1, ω̃2)〉 is shown in Fig. 3 as a function of the
complex shift between two resonances |ω̃1 − ω̃2| normalized
by �ω. The experimental data are also normalized by factors
equal to 0.06 and 1.55 for the two ensembles, respectively.
〈Õ(ω̃1, ω̃2)〉 is seen to be negative with a magnitude which de-
creases with |ω̃1 − ω̃2| and to collapse to a single curve for the
two ensembles. The magnitude of normalization factors show
that the elements are stronger for strongly coupled antennas
as a consequence of greater nonorthogonality. We note that it

is possible in principle to have two modes which are close in
central frequency, but which have very different linewidths.
This would then imply that their resonance poles are distant
in the complex plane and so the effects of nonorthogonality
would be weak.

Chalker and Mehlig calculated the eigenvector correlator
of M × M non-Hermitian random matrices of the Ginibre
complex Gaussian ensemble [10,12,34],

〈O(ω̃1, ω̃2)〉 ∼ − 1

|δω̃|4 [1 − (1 + |δω̃|2) exp(−|δω̃|2)], (4)

where δω̃ = √
M(ω̃1 − ω̃2) is essentially the complex spacing

between resonances. This result was confirmed in calculations
for non-Hermitian random matrices describing the statistical
properties of resonances in open chaotic cavities [11]. To
compare theoretical and experimental results, the complex
spacing in Eq. (4) is normalized by the average level spacing
and we fit the experimental results for 〈Õ(ω̃1, ω̃2)〉 with a scale
factor a for the complex frequency difference of the order of
unity, |δω̃| = |ω̃1 − ω̃2|/(a�ω), with a = 5.6. The magnitude
of 〈Õ(ω̃1, ω̃2)〉 is also normalized so that 〈Õ(ω̃1, ω̃2)〉 → −1
as |δω̃| → 0. Good agreement is obtained between theory and
experimental data with a power-law tail of 〈Õ(ω̃1, ω̃2)〉 as
|ω̃1 − ω̃2|−4 for |ω̃1 − ω̃2| > �ω is confirmed in the inset.
This result suggests universal average modal correlations in
agreement with random matrix theory predictions for the
eigenvector correlations after suitable rescaling [11].

III. DISTRIBUTION AND SCALING OF MODAL
STRENGTHS IN TRANSMISSION

We now investigate the impact of the correlation of eigen-
functions on transport through random media. Microwave
measurements in the region of moderate modal overlap have
shown that modal strength in transmission may be enhanced
in isolated cases and interference between modal speckle
patterns tends to suppress transmission below the incoherent
sum of modal contributions [3,42,47].

We first analyze the variation of modal strengths in trans-
mission, which are the diagonal elements Tn = Õnn, with the
Thouless number δ. The Thouless number is equal to the
average of the dimensionless conductance δ = g, which also
falls when modes are more strongly localized and transport
is suppressed [21,45]. Since

√
Kn�n = ‖Wn‖2, Tn can be ex-

pressed as the product of two terms of different origins:

Tn = 4‖WRn‖2‖WLn‖2

(‖WRn‖2 + ‖WLn‖2)
2 Kn ≡ CnKn. (5)

Here, Cn = 4‖WRn‖2‖WLn‖2

(‖WRn‖2+‖WLn‖2 )
2 , with Cn � 1, is the coupling

asymmetry for the nth eigenfunctions between the left and
right boundaries, which reflects the spatial pattern of the
eigenfunctions within the sample, and Kn is the Petermann
factor.

We investigate the statistics of Tn in random media in
the crossover from diffusion to localization using the tight-
binding Hamiltonian (TBH) model [48,49]. For strongly lo-
calized waves, the modal overlap and the conductance are
small, g  1. We find that the bulk of the distribution P(Tn)
shown in Fig. 4(a) is bimodal with peaks at Tn = 0 and
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FIG. 4. (a) Simulations of P(Tn) for samples with g = 0.02 (blue
line), g = 1.37 (black line), and g = 5.57 (red line). The correspond-
ing distributions of P(Cn) are shown in the inset. (b) Variation of
〈Kn〉, 〈Tn〉, and 〈Cn〉 with the conductance g.

Tn = 1. This is a consequence of the bimodal distribution
of the asymmetry factors Cn of spatially localized modes.
The bulk of the distribution can be explained by considering
the coupling to a localized eigenstate exponentially peaked
at x0 in the sample with localization length ξ . The strength
of the eigenfunctions at the left and right interfaces is given
by ‖WLn‖2 ∼ e−x0/ξ and ‖WRn‖2 ∼ e−(L−x0 )/ξ . Hence, Eq. (5)
gives Cn ∼ cosh−2( L−2xO

2ξ
). Assuming a uniform distribution

of x0 between 0 and L leads to a bimodal distribution of
Cn [50]. The bimodal distribution of Cn and hence Tn is in
agreement with the formula proposed for isolated peaks in
the transmission spectrum of one-dimensional (1D) samples
using a resonator model associated with effective cavities of
length ξ [50,51]. When transmission is dominated by a single
mode, Kn ∼ 1 and Tn ∼ Cn, but modes known as necklace
states may occasionally overlap spectrally and spatially even
in an ensemble in which g < 1 [52–54]. Kn may then be large
and Tn can significantly exceed unity to produce a tail in P(Tn).

For diffusive waves, g > 1, the coupling to the surround-
ings increases and modes overlap spectrally. The eigenstates
are extended throughout the sample and the coupling to the
modes from the left and the right sides are typically similar
so that ‖WLn‖2 ∼ ‖WRn‖2. Hence, Cn ∼ 1 and the lower peak
in P(Cn) and P(Tn) disappears. The probability distributions
of Kn and Tn ∼ Kn are then broad with peaks shifting towards
values much greater than unity. We find values of Tn as large
as 150.

The variation of 〈Cn〉, 〈Kn〉, and 〈Tn〉 with g are shown in
Fig. 4(b). 〈Kn〉 and 〈Tn〉 first increase with g as the correlation
between eigenfunctions increases, but then decrease once

FIG. 5. Random matrix theory simulations of the scaling of the
transmittance (blue circles), and the sum of the diagonal (black
triangles) and off-diagonal (red crosses) modal contributions as a
function of δ. The dashed lines are the fits using analytical expression
given in the Supplemental Material [43].

the sample is translucent, g � N/2. The eigenfunctions in
this regime are only slightly perturbed from the orthonormal
eigenfunctions of the empty waveguide so the degree of
nonorthogonality is small.

IV. SCALING OF DIAGONAL AND OFF-DIAGONAL
MODAL CONTRIBUTIONS TO THE TRANSMITTANCE

It is interesting to consider separately the contributions to
the transmittance of the on- and off-diagonal terms. Using
Eq. (2), the transmittance T (ω) can be expressed in terms
of modal components as

T (ω) = �nTn(ω) + �n �=m
[W †

RmWRn][W †
LmWLn]

(ω − ω̃n)(ω − ω̃∗
m)

. (6)

The impact of destructive interference of modes in trans-
mission through diffusive media is seen in the strong suppres-
sion of transmission from the incoherent sum of transmission
of δ ∼ g nearly resonant modes. A perturbative approach in
the limit of small modal overlap [36] shows that 〈Kn〉 ≡ 〈Onn〉
increases as ∼1 + δ2 (see Supplemental Material [43]). δ

modes contribute to transmission so that the incoherent sum of
modal strengths 〈Tinc(ω)〉 = 〈�nTn(ω)〉 is increased relative to
g = 〈T (ω)〉 by a term scaling as δ3 ∼ g3. Transmission is then
reduced by destructive interference between correlated modal
components with n �= m in Eq. (6) ensuring that transmission
is bounded by unity. The contribution of off-diagonal terms to
the average transmittance scales as −δ3, as expected to satisfy
g ∼ δ [43].

Statistics of modes in chaotic cavities are well described
by random matrix theory (RMT). The M × M internal Hamil-
tonian H0 of the effective Hamiltonian Heff = H0 − i

2γVV T

is modeled by a real symmetric matrix drawn from the Gaus-
sian orthogonal ensemble with 〈(H0)2

i j〉 = 1/M. The coupling
matrix V is a real random matrix with Gaussian distribution
and 〈Vi jVkl〉 = δi jδkl/M. The modal overlap increases with
increasing coupling strength of the channels to the system,
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κ = γ /2. The coupling strength to the continuum is κc =
πγ /(2MD), where D = π/M is the mean level spacing at
the center of the band, E = 0. The coupling strength is
related to the transmission coefficient through the channels,
Tc, with Tc = 4κ/(1 + κ )2. The scattering matrix S = 1 −
iV T [ω − Heff ]−1V gives reflection and transmission coeffi-
cients through the medium. Numerical results of the conduc-
tance found from these RMT simulations shown in Fig. 5
are in excellent agreement with the perturbative approach for
δ < 1.4.

V. CONCLUSION

Modal correlation provides a fresh vantage point from
which to understand scattering from, transmission through,
or energy disposition within nuclei, large molecules, disor-
dered photonic and plasmonic systems, chaotic cavities, and
multimode fibers [4,6,55–58]. Surprisingly, we find that the
strength of correlation of eigenfunctions increases with the
number of resonant modes participating in transmission, g,
while the degree of spatial and spectral intensity, which is
approximately 1/g in diffusive media, falls with the number
of modes in resonance. This is a result of the balance between

positive and negative correlation found in the diagonal and
off-diagonal elements of the transmission overlap matrix.
Since the TM can be expressed in terms of MTMs, the ability
to approach perfect transmission in diffusive systems and
the maximal contrast in focusing through random systems
[56,58] have their origin in the correlation exhibited in the
transmission overlap matrix and increases with the number of
resonant modes participating in transmission. The modal basis
of the TM is also important in the control of transmission and
delay times of broadband pulses [47,59,60] since, in contrast
to the MTMs, the TM is defined at a single frequency.
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