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Abstract. The verification of infinite-state systems is a challenging task.
A prominent instance is reachability analysis of Petri nets, for which no
efficient algorithm is known. The minimal coverability set of a Petri net
can be understood as an approximation of its reachability set described
by means of ω-markings (i.e. markings in which some entries may be set
to infinity). It allows to solve numerous decision problems on Petri nets,
such as any coverability problem. In this paper, we study the computa-
tion of the minimal coverability set.
This set can be computed using the Karp and Miller trees, which per-
form accelerations of cycles along branches [10]. The resulting algorithm
may however perform redundant computations. In a previous work [17],
we proposed an improved algorithm allowing pruning between branches
of the Karp and Miller tree, and proved its correctness. The proof of
its correctness was complicated, as the introduction of pruning between
branches may yield to incompleteness issues [5, 9].
In this paper, we propose a new proof of the correctness of our algorithm.
This new proof relies on an original invariant of the algorithm, leading
to the following assets:
1. it is considerably shorter and simpler,
2. it allows to prove the correctness of a more generic algorithm, as

the acceleration used is let as a parameter. Indeed, we identify the
property that the acceleration should satisfy to ensure completeness.

3. it opens the way to a generalization of our algorithm to extensions
of Petri nets.

1 Introduction

Verification of infinite-state systems Petri nets [14] constitute one of the most
popular formalism for the description and analysis of concurrent systems. While
their state space may be infinite, many verification problems are decidable. Deal-
ing with infinite-state systems is useful in numerous situations, such as consid-
ering an unbounded number of agents or modelling ressources.

When considering the verification of safety properties for Petri nets, an im-
portant problem is the coverability problem, which can be understood as a weak-
ening of the reachability problem. It asks whether it is possible to reach a marking
larger than or equal to a given target marking, and thus exactly corresponds to
fireability of a transition. This problem is ExpSpace-complete [10, 3, 16] and has
attracted a lot of interest (see for instance [8, 11, 2]).



The minimal coverability set In this work, we are interested in a related problem,
which consists in computing the so-called minimal coverability set of a Petri net
(MCS for short) [5]. This set can be understood as an approximation of its
reachability set described by means of ω-markings (i.e. markings in which some
entries may be set to infinity). Once it is computed, this set allows to solve any
coverability problem, and several other problems such as the (place) boundedness
and regularity problems (see [18]).

The MCS can be derived from the classical Karp and Miller algorithm [10].
This algorithm builds a finite tree representation of the (potentially infinite)
unfolding of the reachability graph of the given Petri net. It uses acceleration
techniques to collapse branches of the tree and ensure termination. By taking
advantage of the fact that Petri nets are strictly monotonic transition systems,
the acceleration essentially computes the limit of repeatedly firing a sequence
of transitions. However, this algorithm is not efficient as several branches may
perform similar computations. This observation led to the Minimal Coverability
Tree (MCT) algorithm [5], which introduces comparisons (and pruning) between
branches of the tree. However, it was shown that the MCT algorithm is incom-
plete [13, 9]. The flaw is intricate and, according to [9], difficult to patch, with
wrong previous attempts [13].

The Monotone-Pruning algorithm As a solution to this problem, we introduced
in [17] the Monotone-Pruning algorithm (MP), an improved Karp and Miller
algorithm with pruning. This algorithm can be viewed as the MCT Algorithm
with a slightly more aggressive pruning strategy which ensures completeness. The
MP algorithm constitutes a simple modification of the Karp and Miller algorithm
and thus enjoys the following assets: it is easily amenable to implementation,
any strategy of exploration of the Petri net is correct: depth first, breadth first,
random . . . , and experimental results based on a prototype implementation in
Python show promising results [17]. Recently, the MP algorithm has been used
successfully in the context of the verification of data-driven workflows [12].

While MP algorithm is simple and includes the elegant ideas of the original
MCT Algorithm, the proof of its correctness presented in [17] is long and techni-
cal. The main difficulty is to prove the completeness of the algorithm, i.e. to show
that the set returned by the algorithm covers every reachable marking (recall
that the flaw of MCT algorithm identified in [9] is precisely its incompleteness).
In [17], to overcome this difficulty, we reduce the problem to the completeness
of the algorithm for a particular class of finite state systems, which we call
widened Petri nets (WPN). Yet, the proof of the completeness of MP algorithm
for WPN provided in [17] is approximately ten pages long, and goes through
several technical lemmas, making it hard to understand and to generalise.

Contributions of the paper In this paper, we present a new proof of the com-
pleteness of MP Algorithm for WPN. More precisely, we consider a more general
version of MP Algorithm, in which the acceleration used is considered as a pa-
rameter. In the context of WPN, a concretisation function can be associated
with an acceleration: it gives a concrete sequence of transitions allowing to reach
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the ω-marking resulting from the acceleration. We identify a property of the ac-
celeration by means of its concretisation function, which we call coherence and
prove the completeness of MP Algorithm for WPN provided the acceleration
used is coherent. This new proof relies on a simple invariant of the property,
whose proof is less than two pages long.

We argue that this new proof has the following assets:

1. it is much more readable, increasing its confidence,
2. it is more general, as the acceleration is now a parameter of the algorithm,
3. it opens the way to a generalisation of MP algorithm to other classes of

well-structured transition systems [4, 6, 7, 1].

Related work Other algorithms have been proposed to compute the MCS. First,
the CoverProc algorithm has been introduced in [9]. This algorithm follows a
different approach and is not based on the Karp and Miller Algorithm. Instead,
it relies on pairs of markings, yielding an important overhead in terms of com-
plexity. Another algorithm has been proposed in [15]. This algorithm is however
very tailored to Petri nets and relies on ad-hoc tricks to improve its efficiency.
In addition, it does not offer the possibility to modify the exploration strategy:
it should be depth-first search.

Organisation of the paper Definitions of Petri nets are given in Section 2, together
with the notion of minimal coverability set. The Monotone-Pruning algorithm
is presented in Section 3, and the overall proof structure of its correctness is
given in Section 4. In Section 5, we present our new arguments to prove its
completeness. In Section 6, we show that a simple acceleration function satisfies
the expected property to ensure completeness of MP Algorithm.

2 Preliminaries

N denotes the set of natural numbers. A quasi order ≤ on a set S is a reflexive
and transitive relation on S. Given a quasi order ≤ on S, a state s ∈ S and a
subset X of S, we write s ≤ X iff there exists an element s′ ∈ X s.t. s ≤ s′.

Given a finite alphabet Σ, we denote by Σ∗ the set of words on Σ, and
by ε the empty word. We denote by ≺ the (strict) prefix relation on Σ∗: given
u, v ∈ Σ∗ we have u ≺ v iff there exists w ∈ Σ∗ such that uw = v and w 6= ε.
We denote by � the relation obtained as ≺ ∪ =.

2.1 Markings, ω-markings and labelled trees

Given a finite set P , a marking on P is an element of the set Mark(P ) = NP .
The set Mark(P ) is naturally equipped with a partial order denoted ≤.

Given a marking m ∈ Mark(P ), we represent it by giving only the positive
components. For instance, (1, 0, 0, 2) on P = (p1, p2, p3, p4) is represented by the
multiset {p1, 2p4}. An ω-marking on P is an element of the set Markω(P ) =
(N∪{ω})P . The order ≤ on Mark(P ) is naturally extended to this set by letting
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n < ω for any n ∈ N, and ω ≤ ω. Addition and subtraction on Markω(P ) are
obtained using the rules ω + n = ω − n = ω for any n ∈ N. The ω-marking
(ω, 0, 0, 2) on P = (p1, p2, p3, p4) is represented by the multiset {ωp1, 2p4}.

Given two sets Σ1 and Σ2, a labelled tree is a tuple T = (N,n0, E, Λ) where
N is the set of nodes, n0 ∈ N is the root, E ⊆ N × Σ2 ×N is the set of edges
labelled with elements of Σ2, and Λ : N → Σ1 labels nodes with elements of Σ1.
We extend the mapping Λ to sets of nodes: for S ⊆ N , Λ(S) = {Λ(n) | n ∈ S}.
Given a node n ∈ N , we denote by AncestorT (n) the set of ancestors of n in T
(n included). If n is not the root of T , we denote by parentT (n) its first ancestor
in T . Finally, given two nodes x and y such that x ∈ AncestorT (y), we denote
by pathT (x, y) ∈ E∗ the sequence of edges leading from x to y in T . We also
denote by pathlabelT (x, y) ∈ Σ∗2 the label of this path.

2.2 Petri nets

Definition 1 (Petri net (PN)). A Petri net N is a tuple (P, T, I,O,m0)
where P is a finite set of places, T is a finite set of transitions with P ∩T = ∅,
I : T → Mark(P ) is the backward incidence mapping, representing the input
tokens, O : T → Mark(P ) is the forward incidence mapping, representing output
tokens, and m0 ∈ Mark(P ) is the initial marking.

The semantics of a PN is usually defined on markings, but can easily be
extended to ω-markings. We define the semantics of N = (P, T, I, O,m0) by its
associated labelled transition system (Markω(P ),m0,⇒) where⇒⊆ Markω(P )×
Markω(P ) is the transition relation defined by m ⇒ m′ iff ∃t ∈ T s.t. m ≥
I(t)∧m′ = m− I(t) +O(t). For convenience we will write, for t ∈ T , m

t⇒ m′ if
m ≥ I(t) and m′ = m− I(t) +O(t). In addition, we also write m′ = Post(m, t),
this defines the operator Post which computes the successor of an ω-marking by
a transition. We naturally extend this operator to sequences of transitions. Given

an ω-markingm and a transition t, we writem
t⇒ · iff there existsm′ ∈ Markω(P )

such thatm
t⇒ m′. The relation⇒∗ represents the reflexive and transitive closure

of ⇒. We say that a marking m is reachable in N iff m0 ⇒∗ m. We say that a
Petri net is bounded if the set of reachable markings is finite.

•p1

p3

p6

p4

p5t1

t5

t3

t6

t4

2

Fig. 1. A Petri net N .
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Example 1. We consider the Petri net N depicted on Figure 1, which is the
example used in [17]. The initial marking is {p1}, depicted by the token in
the place p1. For any integer n, we have Post({p1}, t1(t3t4)n) = {p3, np5}. In
particular, this net is not bounded as place p5 is not. y

2.3 Minimal Coverability Set of Petri Nets

We recall the definition of minimal coverability set introduced in [5].

Definition 2. A coverability set of a Petri net N = (P, T, I,O,m0) is a finite
subset C of Markω(P ) such that the two following conditions hold:

1) for every reachable marking m of N , there exists m′ ∈ C such that m ≤ m′,
2) for every m′ ∈ C, either m′ is reachable in N or there exists an infinite

strictly increasing sequence of reachable markings (mn)n∈N converging to m′.

A coverability set is minimal iff no proper subset is a coverability set.

One can prove (see [5]) that a PN N admits a unique minimal coverability
set, which we denote by MCS(N ).

Note that every two elements of a minimal coverability set are incomparable.
Computing the minimal coverability set from a coverability set is easy. Note also
that if the PN is bounded, then the set of reachable markings is finite, and thus
the notion of reachable maximal marking is well-defined. In this case, a set of
markings is a coverability set iff it contains all maximal reachable markings.

Example 2 (Example 1 continued). The MCS of the Petri net N is composed of
the following ω-markings: {p1}, {p6}, {p3, ωp5}, and {p4, ωp5}.

3 Presentation of the Monotone-Pruning Algorithm

3.1 Acceleration(s)

Following previous works, as Karp and Miller algorithm, MP algorithm involves
an acceleration function. Such a function takes as input a set of ω-markings M
and an ω-marking m, and returns an ω-marking m′, which can be used to replace
m. Several such functions have been considered in the literature. A classical one
is the mapping Accall : 2Markω(P ) × Markω(P ) → Markω(P ) which is defined as
follows:

∀p ∈ P,Accall(M,m)(p) =

{
ω if ∃m′ ∈M | m′ < m ∧m′(p) < m(p) < ω
m(p) otherwise.

A weaker acceleration computes the acceleration w.r.t. a single ω-marking
chosen in the set M . The mapping Accone : 2Markω(P ) ×Markω(P ) → Markω(P )
is defined as follows:
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– if there exists m′ ∈ M such that m′ < m, then we fix one such ω-marking
m′, and define Accone(M,m) as follows:

∀p ∈ P,Accone(M,m)(p) =

{
ω if m′(p) < m(p) < ω
m(p) otherwise.

– otherwise, we define Accone(M,m) = m.

In both functions, the acceleration uses one (or several) of the ω-markings
in M to build the new ω-marking. Note that these accelerations will always be
used along a branch of the tree constructed by the algorithm.

3.2 Definition of the algorithm

The K&M Algorithm uses comparisons along the same branch to compute the
acceleration and stop the exploration. We present in this section the Monotone-
Pruning Algorithm which includes a comparison (and a pruning) between branches.
We denote this algorithm by MP. It has as parameter an acceleration function
Acc as defined in the previous section.

Algorithm 1 Monotone Pruning Algorithm for Petri Nets.

Require: A Petri net N = (P, T, I, O,m0) and an acceleration function Acc.
Ensure: A labelled tree C = (X,x0, B, Λ) and a set Act ⊆ X such that Λ(Act) =

MCS(N ).
1: Let x0 be a new node such that Λ(x0) = m0;

2: X := {x0}; Act := X; Wait := {(x0, t) | Λ(x0)
t⇒ ·}; B := ∅;

3: while Wait 6= ∅ do
4: Pop (n, t) from Wait. m := Post(Λ(n), t);
5: if n ∈ Act and m 6≤ Λ(Act) then
6: Let n′ be a new node such that Λ(n′) = Acc(Λ(AncestorC(n) ∩ Act),m);
7: X := X ∪ {n′}; B := B ∪ {(n, t, n′)};
8: Act := Act \ {x | ∃y ∈ AncestorC(x) s.t. Λ(y) ≤ Λ(n′) ∧ (y ∈ Act ∨ y /∈

AncestorC(n′))};
9: Act := Act ∪ {n′}; Wait := Wait ∪ {(n′, t′) | Λ(n′)

t′⇒ ·};
10: end if
11: end while
12: Return C = (X,x0, B, Λ) and Act.

As Karp and Miller Algorithm, the MP Algorithm builds a tree C in which
nodes are labelled by ω-markings and edges by transitions of the Petri net.
Therefore it proceeds in an exploration of the reachability tree of the Petri net,
and uses acceleration along branches to reach the “limit” markings. In addition,
it can prune branches that are covered by nodes on other branches. This ad-
ditional pruning is the source of efficiency, as it avoids to perform redundant
computations. It is also the source of difficulty, as a previous attempt of intro-
duction of such pruning led to an incomplete algorithm (MCT Algorithm [5]). In
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order to obtain a complete algorithm, nodes of the tree are partitioned into two
subsets: active nodes, and inactive ones. Intuitively, active nodes will form the
minimal coverability set of the Petri net, while inactive ones are kept to ensure
completeness of the algorithm.

Given a pair (n, t) popped from Wait, the introduction in C of the new node
obtained from (n, t) proceeds in the following steps:

1. the “regular” successor marking is computed: m = Post(Λ(n), t) (Line 4) ;
2. node n should be active and marking m should not be covered by some active

node (test of Line 5) ;
3. the marking resulting from the acceleration of m w.r.t. the active ances-

tors of node n is computed and associated with a new node n′: Λ(n′) =
Acc(Λ(AncestorC(n) ∩ Act),m) (Line 6) ;

4. update of Act: some nodes are “deactivated”, i.e. removed from Act (Line
8).

5. the new node n′ is declared as active and Wait is updated (Line 9) ;

We detail the update of the set Act. Intuitively, one wants to deactivate nodes
(and their descendants) that are covered by the new node n′. In MP Algorithm
(see Line 8), node x is deactivated iff its ancestor y is either active (y ∈ Act), or
is not itself an ancestor of n′ (y 6∈ AncestorC(n

′)). In this case, we say that x is
deactivated by n′. This subtle condition constitutes the main difference between
MP and MCT Algorithms.

To illustrate the behaviour of MP Algorithm, consider the introduction of a
new node n′ obtained from (n, t) ∈ Wait, and a node y such that Λ(y) ≤ Λ(n′),
y can be used to deactivate nodes in two ways:

– if y 6∈ AncestorC(n
′), then no matter whether y is active or not, all its de-

scendants are deactivated (represented in gray on Figure 2(a)),
– if y ∈ AncestorC(n

′), then y must be active (y ∈ Act), and in that case all
its descendants are deactivated, except node n′ itself as it is added to Act at
Line 9 (see Figure 2(b)).

root

y n

n′

x

(a) y 6∈ AncestorC(n′)

root

y ∈ Act

n

n′x

(b) y ∈ AncestorC(n′) ∩ Act

Fig. 2. Deactivations of MP Algorithm.
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4 Structure of the proof of correction of MP Algorithm

In this section, we describe the overall structure of the proof of [17]. Given an
input Petri net N , MP Algorithm returns a set Act of ω-markings. We say that
MP Algorithm is:

– sound if for every m ∈ Act, there exists n ∈MCS(N ) such that m ≤ n,
– complete if for every n ∈MCS(N ), there exists m ∈ Act such that n ≤ m.

It is easy to show that Act is composed of pairwise incomparable ω-markings.
Hence, if MP Algorithm is both sound and complete, then it returns exactly the
set MCS(N ).

4.1 Widened Petri nets

Our proof involves a widening operation which turns a Petri net into a finite
state system. Let P be a finite set, and ϕ ∈ Mark(P ) be a marking. We consider
the finite set of ω-markings whose finite components (i.e. values different from
ω) are less or equal than ϕ. Formally, we define:

Markωϕ(P ) = {m ∈ Markω(P ) | ∀p ∈ P,m(p) ≤ ϕ(p) ∨m(p) = ω}.

The widening operator Widenϕ maps an ω-marking to an element of Markωϕ(P ):

∀m ∈ Markω(P ),∀p ∈ P,Widenϕ(m)(p) =

{
m(p) if m(p) ≤ ϕ(p)
ω otherwise.

Note that this operator trivially satisfies m ≤Widenϕ(m).

Definition 3 (Widened Petri net). A widened Petri net (WPN for short)
is a pair (N , ϕ) composed of a PN N = (P, T, I,O,m0) and of a marking
ϕ ∈ Mark(P ) such that m0 ≤ ϕ.

The semantics of (N , ϕ) is given by its associated labelled transition sys-
tem (Markωϕ(P ),m0,⇒ϕ) where for m,m′ ∈ Markωϕ(P ), and t ∈ T , we have

m
t⇒ϕ m′ iff m′ = Widenϕ(Post(m, t)). We carry over from PN to WPN the

relevant notions, such as reachable marking. We define the operator Postϕ by
Postϕ(m, t) = Widenϕ(Post(m, t)). Subscript ϕ may be omitted when it is clear
from the context. Finally, the minimal coverability set of a widened Petri net
(N , ϕ) is simply the set of its maximal reachable states as its reachability set is
finite. It is denoted MCS(N , ϕ).

Example 3 (Example 1 continued). Consider the mapping ϕ associating 1 to
places p1, p3, p4 and p6, and 3 to place p5, and the widened Petri net (N , ϕ).
Then from marking {p4, 3p5}, the firing of t4 results in the marking {p3, ωp5},
instead of the marking {p3, 4p5} in the standard semantics. One can compute
the MCS of this WPN. Due to the choice of ϕ, it coincides with MCS(N ). y

In the sequel, we will consider the execution of MP Algorithm on widened
Petri nets, which we will denote by MPWPN. Let (N , ϕ) be a WPN. The only
difference is that the operator Post (resp. ⇒) must be replaced by the operator
Postϕ (resp. ⇒ϕ). Thus, all the ω-markings computed by the algorithm belong
to Markωϕ(P ).
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4.2 Structure of the proof of correction presented in [17]

The structure of the proof of correction presented in [17] is depicted in Figure 3.
In this proof, all results have rather simple proofs, except the completeness of
MPWPN. The proof of this property presented in [17] is approximately ten pages
long. The main contribution of this paper is a very short proof of this property.
It is presented in the next section, and stated as Theorem 1.

MP terminates 
(Theorem 3.3 [13])

MPWPN is complete 
(Theorem 3.4 [13]) MP(    ) = MPWPN(        ) 

∀", ∃φ ∣
" ", φ

MP is complete MP is sound 
(easy)

MP is correct

Fig. 3. Structure of the proof of [17]. The main difficulty lies in the completeness of
MPWPN, depicted in red.

5 Completeness of MP Algorithm for WPN

In this section, we present the main contribution of this article, which is a new
and simple proof of the completeness of MP Algorithm for WPN.

5.1 Coherence of an acceleration

MP Algorithm builds a labelled tree C. In this context, the acceleration is applied
along a branch β starting from the root, and leading to a node n whose marking
ism. More precisely, there exists a setN of nodes on β, which are active ancestors
of node n, and such that M is the set of markings of N . We recall the notion
of concretization that ”explains” how the accelerated marking is computed, by
giving an explicit sequence of transitions leading to the accelerated marking.

Definition 4. We consider an acceleration Acc and a labelled tree C = (X,x0, B, Λ)
obtained from a WPN (N , ϕ) using Acc. A concretization function is a map-
ping γ : B∗ → T ∗ associating to every path in C a sequence of transitions of
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N . In addition, given x, y ∈ X such that y ∈ AncestorC(x), we have Λ(x) =
Postϕ(Λ(y), γ(pathC(y, x))).

In order to have a generic proof, independent of the acceleration considered,
we identify a property of the acceleration together with its concretization func-
tion which ensures that the algorithm is correct.

Definition 5. We consider an acceleration function Acc. We say that Acc is
coherent if it admits a concretization function γ such that the following property
holds: (†) Let x, y in C and w = pathC(y, x) ∈ B∗. Then for every ρp � γ(w),
there exist two nodes x′ and y′ such that:

– Post(Λ(y), ρp) ≥ Λ(y′),

– x′ is an ancestor of x, used by some acceleration for node y1 on the path
from y to x,

– y′ lies between x′ and y1.

We prove now that when an acceleration Acc is coherent, then MP Algorithm
satisfies a property that we call the coherence of this algorithm.

Lemma 1 (MP Algorithm is coherent). We consider MP Algorithm with
a coherent acceleration Acc, with concretization γ. Then the following property
holds: consider three nodes x, y, z such that x, z ∈ Act and y ∈ AncestorC(x),
and define ρ = γ(pathC(y, x)). If Λ(z) ≥ Post(Λ(y), ρp) for some ρp � ρ, then
y ∈ AncestorC(z).

Proof. As the acceleration is coherent, we fix an adequate concretization function
γ. We consider nodes x, y, z and some ρp � ρ = γ(pathC(y, x)) as in the premises
of the statement. Thanks to property (†), there exist two nodes x′, y′ such that:

– Post(Λ(y), ρp) ≥ Λ(y′),

– x′ is an ancestor of x, used by some acceleration for node y1 on the path
from y to x,

– y′ lies between x′ and y1.

By contradiction, assume that y′ 6∈ AncestorC(z). We have Λ(z) ≥ Post(Λ(y), ρp)
and Post(Λ(y), ρp) ≥ Λ(y′), hence Λ(z) ≥ Λ(y′). Then, by definition of MP Al-
gorithm, x is deactivated by z. This is in contradiction with our assumption that
x and z are active. Thus, we have y′ ∈ AncestorC(z).

Assume now that y1 6∈ AncestorC(z). Recall that y1 used the node x′ when
the acceleration has been applied. By definition of MP Algorithm, it deactivated
everything below x′, except itself. As we have that y′ is between x′ and y1, y′ is
an ancestor of z, and y1 is not an ancestor of z, this entails that y1 deactivated
z, which is a contradiction. Thus, we have y1 ∈ AncestorC(z).

In particular, this implies y ∈ AncestorC(z), as expected. ut
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5.2 New proof

Our new proof relies on a simple invariant of the algorithm, from which com-
pleteness easily follows. This invariant is defined as the following property (P):

∀m ∈ Reach(N ),∃(x, ρ) ∈ Act× T ∗ such that: (1) Post(Λ(x), ρ) ≥ m
(2) ρ 6= ε⇒ (x, first(ρ)) ∈Wait
(3) ∀ε 6= ρp � ρ,¬∃z ∈ Act.Λ(z) ≥ Post(Λ(x), ρp)

Intuitively, the invariant states that for every reachable marking m, there
exists a pair (x, ρ) which allows to cover m (property (1)), whose exploration is
still in the waiting list (property (2)), and whose exploration will not be stopped
by another active node (property (3)).

We now prove that the MP Algorithm satisfies the invariant (P):

Lemma 2. When used with a coherent acceleration, the MP Algorithm satisfies
the property (P) at every step of its execution.

Proof. We proceed by induction on the number of steps of the algorithm.

Base case. Initially, the invariant is trivially satisfied as there is a single active
node corresponding to the initial marking.

Induction. P(k)⇒ P(k + 1)
Let m ∈ Reach(N ). By P(k), there exists (x, ρ) as given by P.
We consider different cases depending on what happens in the While loop of

the algorithm. At Line 4, a pair (n, t) is popped from the waiting list. If this pair
does not pass the test of Line 5, then nothing changes and the pair (x, ρ) still
satisfies the properties. The interesting case is when this pair passes the test of
Line 5. We distinguish three cases:

1. if x is not deactivated and no successor of x by prefixes of ρ is covered by
n′, then we can simply choose the pair (x, ρ).

2. otherwise, assume that some successor of x by a (possibly empty) prefix
of ρ is covered by n′. Then, let ρ1 be the longest prefix of ρ such that
Λ(n′) ≥ Post(Λ(x), ρ1). We claim that we can choose the pair (n′, ρ′) where
ρ′ = ρ−11 .ρ. Indeed:
– n′ ∈ Act (Line 9),
– Property (1) follows from monotonicity of Petri nets and from Λ(n′) ≥

Post(Λ(x), ρ1),
– Property (2) follows from Line 9,
– In order to show that Property (3) holds, we proceed by contradiction.

Assume that there exists ρ′p a non-empty prefix of ρ′ and an active node
z such that Λ(z) ≥ Post(Λ(n′), ρ′p). Then we have:

Post(Λ(x), ρ1ρ
′
p) ≤ Post(Λ(n′), ρ′p) ≤ Λ(z)

As ρ1ρ
′
p 6= ε and ρ1ρ

′
p � ρ, Property (3) of our invariant for (x, ρ) implies

that z is a new active node, i.e. z = n′. This is a contradiction with our
choice of ρ1 of maximal length.

11



3. otherwise, x is deactivated by n′: n′ dominates a strict ancestor y of x such
that y ∈ Act or y 6∈ AncestorC(n

′) (see Line 8 of the algorithm). We fix such
a node y and let w = pathC(y, x). We define ρ0 = γ(w) and ρ1 as the longest
prefix of ρ0 such that Λ(n′) ≥ Post(Λ(n′), ρ1). We write ρ0 = ρ1ρ2 and claim
that the pair (n′, ρ2ρ) satisfies the properties of the invariant. Property (1)
follows directly from monotonicity of Petri nets. Property (2) follows from
the fact that n′ has just been added to C.
We prove now Property (3). By contradiction, assume that there exists ρp a
non-empty prefix of ρ2ρ and an active node z such that Λ(z) ≥ Post(Λ(n′), ρp).
Then we also have, by monotonicity, Λ(z) ≥ Post(Λ(y), ρp).
First case: z = n′. As we are not in Case 2, ρp should be a prefix of ρ2. But
this in contradiction with the definition of ρ2.
Second case: z 6= n′. In particular, z is already active at the previous iteration
of the algorithm. By Property (3) of the invariant for (x, ρ), ρp is a prefix of
ρ2.
We consider the prefix ρ1ρp of ρ0 = γ(w). We can apply Lemma 1 and
deduce that y ∈ AncestorC(z). Thus z is deactivated by the construction of
n′ (see Line 8 of the algorithm), yielding the contradiction as we supposed
z is active.

ut

Theorem 1. If Acc is coherent, then MP Algorithm for WPN is complete.

Proof. The result directly follows from Lemma 2 and from the termination of
the algorithm. Consider some reachable marking m and the set Act returned by
MP Algorithm after its termination. Thanks to Lemma 2, there exists some pair
(x, ρ) as given by property (P). As the waiting list is empty, we have ρ = ε,
hence property (1) directly gives the completeness of Act. ut

6 Coherence of the acceleration Accone

Definition 6 (Concretization function). The concretization function is a
morphism γone from B∗ to T ∗. We let M = max{ϕ(p) | p ∈ P}+ 1.

Let b = (n, t, n′) ∈ B. We assume γone is defined on all edges (x, u, y) ∈ B
such that y ∈ AncestorC(n).

Let m = Postϕ(Λ(n), t), then there are two cases, either :

1. Λ(n′) = m (t is not accelerated), then we define γ(b) = t, or
2. Λ(n′) > m. Let x be the ancestor of n used for this acceleration, and w =

pathC(x, n) ∈ B∗. Then we define:
γone(b) = t.(γone(w).t)M

The following property can easily be proved by induction:

Lemma 3. The mapping γone is a concretization of the acceleration Accone.

By reasoning on γone and using again an induction, we can show the existence
of adequate ancestors, to prove the following property:

Lemma 4. The acceleration Accone is coherent.
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