Pierre-Alain Reynier

Frédéric Servais

On the computation of the minimal coverability set of Petri nets

. In this paper, we propose a new proof of the correctness of our algorithm. This new proof relies on an original invariant of the algorithm, leading to the following assets:

1. it is considerably shorter and simpler, 2. it allows to prove the correctness of a more generic algorithm, as the acceleration used is let as a parameter. Indeed, we identify the property that the acceleration should satisfy to ensure completeness. 3. it opens the way to a generalization of our algorithm to extensions of Petri nets.

Introduction

Verification of infinite-state systems Petri nets [START_REF] Petri | Kommunikation mit Automaten[END_REF] constitute one of the most popular formalism for the description and analysis of concurrent systems. While their state space may be infinite, many verification problems are decidable. Dealing with infinite-state systems is useful in numerous situations, such as considering an unbounded number of agents or modelling ressources.

When considering the verification of safety properties for Petri nets, an important problem is the coverability problem, which can be understood as a weakening of the reachability problem. It asks whether it is possible to reach a marking larger than or equal to a given target marking, and thus exactly corresponds to fireability of a transition. This problem is ExpSpace-complete [START_REF] Karp | Parallel program schemata[END_REF][START_REF] Cardoza | Exponential space complete problems for petri nets and commutative semigroups: Preliminary report[END_REF][START_REF] Rackoff | The covering and boundedness problems for vector addition systems[END_REF] and has attracted a lot of interest (see for instance [START_REF] Geeraerts | Expand, enlarge and check: New algorithms for the coverability problem of WSTS[END_REF][START_REF] Kloos | Incremental, inductive coverability[END_REF][START_REF] Blondin | Approaching the coverability problem continuously[END_REF]).

The minimal coverability set In this work, we are interested in a related problem, which consists in computing the so-called minimal coverability set of a Petri net (MCS for short) [START_REF] Finkel | The minimal coverability graph for Petri nets[END_REF]. This set can be understood as an approximation of its reachability set described by means of ω-markings (i.e. markings in which some entries may be set to infinity). Once it is computed, this set allows to solve any coverability problem, and several other problems such as the (place) boundedness and regularity problems (see [START_REF] Schmidt | Model-checking with coverability graphs[END_REF]).

The MCS can be derived from the classical Karp and Miller algorithm [START_REF] Karp | Parallel program schemata[END_REF]. This algorithm builds a finite tree representation of the (potentially infinite) unfolding of the reachability graph of the given Petri net. It uses acceleration techniques to collapse branches of the tree and ensure termination. By taking advantage of the fact that Petri nets are strictly monotonic transition systems, the acceleration essentially computes the limit of repeatedly firing a sequence of transitions. However, this algorithm is not efficient as several branches may perform similar computations. This observation led to the Minimal Coverability Tree (MCT) algorithm [START_REF] Finkel | The minimal coverability graph for Petri nets[END_REF], which introduces comparisons (and pruning) between branches of the tree. However, it was shown that the MCT algorithm is incomplete [START_REF] Lüttge | Zustandsgraphen von Petri-Netzen[END_REF][START_REF] Geeraerts | On the efficient computation of the coverability set for petri nets[END_REF]. The flaw is intricate and, according to [START_REF] Geeraerts | On the efficient computation of the coverability set for petri nets[END_REF], difficult to patch, with wrong previous attempts [START_REF] Lüttge | Zustandsgraphen von Petri-Netzen[END_REF].

The Monotone-Pruning algorithm As a solution to this problem, we introduced in [START_REF] Reynier | Minimal coverability set for Petri nets: Karp and Miller algorithm with pruning[END_REF] the Monotone-Pruning algorithm (MP), an improved Karp and Miller algorithm with pruning. This algorithm can be viewed as the MCT Algorithm with a slightly more aggressive pruning strategy which ensures completeness. The MP algorithm constitutes a simple modification of the Karp and Miller algorithm and thus enjoys the following assets: it is easily amenable to implementation, any strategy of exploration of the Petri net is correct: depth first, breadth first, random . . . , and experimental results based on a prototype implementation in Python show promising results [START_REF] Reynier | Minimal coverability set for Petri nets: Karp and Miller algorithm with pruning[END_REF]. Recently, the MP algorithm has been used successfully in the context of the verification of data-driven workflows [START_REF] Li | Verifas: A practical verifier for artifact systems[END_REF].

While MP algorithm is simple and includes the elegant ideas of the original MCT Algorithm, the proof of its correctness presented in [START_REF] Reynier | Minimal coverability set for Petri nets: Karp and Miller algorithm with pruning[END_REF] is long and technical. The main difficulty is to prove the completeness of the algorithm, i.e. to show that the set returned by the algorithm covers every reachable marking (recall that the flaw of MCT algorithm identified in [START_REF] Geeraerts | On the efficient computation of the coverability set for petri nets[END_REF] is precisely its incompleteness). In [START_REF] Reynier | Minimal coverability set for Petri nets: Karp and Miller algorithm with pruning[END_REF], to overcome this difficulty, we reduce the problem to the completeness of the algorithm for a particular class of finite state systems, which we call widened Petri nets (WPN). Yet, the proof of the completeness of MP algorithm for WPN provided in [START_REF] Reynier | Minimal coverability set for Petri nets: Karp and Miller algorithm with pruning[END_REF] is approximately ten pages long, and goes through several technical lemmas, making it hard to understand and to generalise.

Contributions of the paper

In this paper, we present a new proof of the completeness of MP Algorithm for WPN. More precisely, we consider a more general version of MP Algorithm, in which the acceleration used is considered as a parameter. In the context of WPN, a concretisation function can be associated with an acceleration: it gives a concrete sequence of transitions allowing to reach the ω-marking resulting from the acceleration. We identify a property of the acceleration by means of its concretisation function, which we call coherence and prove the completeness of MP Algorithm for WPN provided the acceleration used is coherent. This new proof relies on a simple invariant of the property, whose proof is less than two pages long.

We argue that this new proof has the following assets:

1. it is much more readable, increasing its confidence, 2. it is more general, as the acceleration is now a parameter of the algorithm, 3. it opens the way to a generalisation of MP algorithm to other classes of well-structured transition systems [START_REF] Finkel | A generalization of the procedure of Karp and Miller to well structured transition system[END_REF][START_REF] Finkel | Forward analysis for WSTS, part I: Completions[END_REF][START_REF] Finkel | Forward analysis for WSTS, part II: Complete WSTS[END_REF][START_REF] Blondin | Forward analysis for wsts, part III: karp-miller trees[END_REF].

Related work

Other algorithms have been proposed to compute the MCS. First, the CoverProc algorithm has been introduced in [START_REF] Geeraerts | On the efficient computation of the coverability set for petri nets[END_REF]. This algorithm follows a different approach and is not based on the Karp and Miller Algorithm. Instead, it relies on pairs of markings, yielding an important overhead in terms of complexity. Another algorithm has been proposed in [START_REF] Piipponen | Constructing minimal coverability sets[END_REF]. This algorithm is however very tailored to Petri nets and relies on ad-hoc tricks to improve its efficiency.

In addition, it does not offer the possibility to modify the exploration strategy: it should be depth-first search.

Organisation of the paper Definitions of Petri nets are given in Section 2, together with the notion of minimal coverability set. The Monotone-Pruning algorithm is presented in Section 3, and the overall proof structure of its correctness is given in Section 4. In Section 5, we present our new arguments to prove its completeness. In Section 6, we show that a simple acceleration function satisfies the expected property to ensure completeness of MP Algorithm.

Preliminaries

N denotes the set of natural numbers. A quasi order ≤ on a set S is a reflexive and transitive relation on S. Given a quasi order ≤ on S, a state s ∈ S and a subset X of S, we write s ≤ X iff there exists an element s ∈ X s.t. s ≤ s . Given a finite alphabet Σ, we denote by Σ * the set of words on Σ, and by ε the empty word. We denote by ≺ the (strict) prefix relation on Σ * : given u, v ∈ Σ * we have u ≺ v iff there exists w ∈ Σ * such that uw = v and w = ε. We denote by the relation obtained as ≺ ∪ =.

Markings, ω-markings and labelled trees

Given a finite set P , a marking on P is an element of the set Mark(P) = N P . The set Mark(P) is naturally equipped with a partial order denoted ≤.

Given a marking m ∈ Mark(P), we represent it by giving only the positive components. For instance, (1, 0, 0, 2) on P = (p 1 , p 2 , p 3 , p 4) is represented by the multiset {p 1 , 2p 4 }. An ω-marking on P is an element of the set Mark ω (P) = (N ∪ {ω}) P . The order ≤ on Mark(P) is naturally extended to this set by letting n < ω for any n ∈ N, and ω ≤ ω. Addition and subtraction on Mark ω (P) are obtained using the rules ω + n = ω -n = ω for any n ∈ N. The ω-marking (ω, 0, 0, 2) on P = (p 1 , p 2 , p 3 , p 4) is represented by the multiset {ωp 1 , 2p 4 }.

Given two sets Σ 1 and Σ 2 , a labelled tree is a tuple T = (N, n 0 , E, Λ) where N is the set of nodes, n 0 ∈ N is the root, E ⊆ N × Σ 2 × N is the set of edges labelled with elements of Σ 2 , and Λ : N → Σ 1 labels nodes with elements of Σ 1 . We extend the mapping Λ to sets of nodes: for S ⊆ N , Λ(S) = {Λ(n) | n ∈ S}. Given a node n ∈ N , we denote by Ancestor T (n) the set of ancestors of n in T (n included). If n is not the root of T , we denote by parent T (n) its first ancestor in T . Finally, given two nodes x and y such that x ∈ Ancestor T (y), we denote by path T (x, y) ∈ E * the sequence of edges leading from x to y in T . We also denote by pathlabel T (x, y) ∈ Σ * 2 the label of this path.

Petri nets

Definition 1 (Petri net (PN)). A Petri net N is a tuple (P, T, I, O, m 0) where P is a finite set of places, T is a finite set of transitions with P ∩ T = ∅, I : T → Mark(P) is the backward incidence mapping, representing the input tokens, O : T → Mark(P) is the forward incidence mapping, representing output tokens, and m 0 ∈ Mark(P) is the initial marking.

The semantics of a PN is usually defined on markings, but can easily be extended to ω-markings. We define the semantics of N = (P, T, I, O, m 0) by its associated labelled transition system (Mark ω (P), m 0 , ⇒) where ⇒⊆ Mark ω (P)× Mark ω (P) is the transition relation defined by m ⇒ m iff ∃t ∈ T s.t. m ≥ I(t) ∧ m = m -I(t) + O(t). For convenience we will write, for t ∈ T , m t ⇒ m if m ≥ I(t) and m = m -I(t) + O(t). In addition, we also write m = Post(m, t), this defines the operator Post which computes the successor of an ω-marking by a transition. We naturally extend this operator to sequences of transitions. Given an ω-marking m and a transition t, we write m t ⇒ • iff there exists m ∈ Mark ω (P) such that m t ⇒ m . The relation ⇒ * represents the reflexive and transitive closure of ⇒. We say that a marking m is reachable in N iff m 0 ⇒ * m. We say that a Petri net is bounded if the set of reachable markings is finite. Example 1. We consider the Petri net N depicted on Figure 1, which is the example used in [START_REF] Reynier | Minimal coverability set for Petri nets: Karp and Miller algorithm with pruning[END_REF]. The initial marking is {p 1 }, depicted by the token in the place p 1 . For any integer n, we have Post({p 1 }, t 1 (t 3 t 4) n) = {p 3 , np 5 }. In particular, this net is not bounded as place p 5 is not.

Minimal Coverability Set of Petri Nets

We recall the definition of minimal coverability set introduced in [START_REF] Finkel | The minimal coverability graph for Petri nets[END_REF]. Definition 2. A coverability set of a Petri net N = (P, T, I, O, m 0) is a finite subset C of Mark ω (P) such that the two following conditions hold:

1) for every reachable marking m of N , there exists m ∈ C such that m ≤ m , 2) for every m ∈ C, either m is reachable in N or there exists an infinite strictly increasing sequence of reachable markings (m n) n∈N converging to m .

A coverability set is minimal iff no proper subset is a coverability set.

One can prove (see [START_REF] Finkel | The minimal coverability graph for Petri nets[END_REF]) that a PN N admits a unique minimal coverability set, which we denote by MCS(N).

Note that every two elements of a minimal coverability set are incomparable. Computing the minimal coverability set from a coverability set is easy. Note also that if the PN is bounded, then the set of reachable markings is finite, and thus the notion of reachable maximal marking is well-defined. In this case, a set of markings is a coverability set iff it contains all maximal reachable markings.

Example 2 (Example 1 continued). The MCS of the Petri net N is composed of the following ω-markings: {p 1 }, {p 6 }, {p 3 , ωp 5 }, and {p 4 , ωp 5 }.

3 Presentation of the Monotone-Pruning Algorithm

Acceleration(s)

Following previous works, as Karp and Miller algorithm, MP algorithm involves an acceleration function. Such a function takes as input a set of ω-markings M and an ω-marking m, and returns an ω-marking m , which can be used to replace m. Several such functions have been considered in the literature. A classical one is the mapping Acc all : 2 Mark ω (P) × Mark ω (P) → Mark ω (P) which is defined as follows:

∀p ∈ P, Acc all (M, m)(p) = ω if ∃m ∈ M | m < m ∧ m (p) < m(p) < ω m(p) otherwise.
A weaker acceleration computes the acceleration w.r.t. a single ω-marking chosen in the set M . The mapping Acc one : 2 Mark ω (P) × Mark ω (P) → Mark ω (P) is defined as follows:

if there exists m ∈ M such that m < m, then we fix one such ω-marking m , and define Acc one (M, m) as follows:

∀p ∈ P, Acc one (M, m)(p) = ω if m (p) < m(p) < ω m(p) otherwise.
otherwise, we define Acc one (M, m) = m.

In both functions, the acceleration uses one (or several) of the ω-markings in M to build the new ω-marking. Note that these accelerations will always be used along a branch of the tree constructed by the algorithm.

Definition of the algorithm

The K&M Algorithm uses comparisons along the same branch to compute the acceleration and stop the exploration. We present in this section the Monotone-Pruning Algorithm which includes a comparison (and a pruning) between branches. We denote this algorithm by MP. It has as parameter an acceleration function Acc as defined in the previous section. if n ∈ Act and m ≤ Λ(Act) then 6:

Algorithm 1 Monotone Pruning Algorithm for Petri Nets.

Let n be a new node such that Λ(n) = Acc(Λ(AncestorC(n) ∩ Act), m); 7:

X := X ∪ {n }; B := B ∪ {(n, t, n)}; 8:

Act := Act \ {x | ∃y ∈ AncestorC(x) s.t. Λ(y) ≤ Λ(n) ∧ (y ∈ Act ∨ y / ∈ AncestorC(n))}; 9: Act := Act ∪ {n }; Wait := Wait ∪ {(n , t) | Λ(n) t ⇒ •}; 10:
end if 11: end while 12: Return C = (X, x0, B, Λ) and Act.

As Karp and Miller Algorithm, the MP Algorithm builds a tree C in which nodes are labelled by ω-markings and edges by transitions of the Petri net. Therefore it proceeds in an exploration of the reachability tree of the Petri net, and uses acceleration along branches to reach the "limit" markings. In addition, it can prune branches that are covered by nodes on other branches. This additional pruning is the source of efficiency, as it avoids to perform redundant computations. It is also the source of difficulty, as a previous attempt of introduction of such pruning led to an incomplete algorithm (MCT Algorithm [START_REF] Finkel | The minimal coverability graph for Petri nets[END_REF]). In order to obtain a complete algorithm, nodes of the tree are partitioned into two subsets: active nodes, and inactive ones. Intuitively, active nodes will form the minimal coverability set of the Petri net, while inactive ones are kept to ensure completeness of the algorithm.

Given a pair (n, t) popped from Wait, the introduction in C of the new node obtained from (n, t) proceeds in the following steps:

1. the "regular" successor marking is computed: m = Post(Λ(n), t) (Line 4) ; 2. node n should be active and marking m should not be covered by some active node (test of Line 5) ; 3. the marking resulting from the acceleration of m w.r.t. the active ancestors of node n is computed and associated with a new node n : Λ(n) = Acc(Λ(Ancestor C (n) ∩ Act), m) (Line 6) ; 4. update of Act: some nodes are "deactivated", i.e. removed from Act (Line 8). 5. the new node n is declared as active and Wait is updated (Line 9) ;

We detail the update of the set Act. Intuitively, one wants to deactivate nodes (and their descendants) that are covered by the new node n . In MP Algorithm (see Line 8), node x is deactivated iff its ancestor y is either active (y ∈ Act), or is not itself an ancestor of n (y ∈ Ancestor C (n)). In this case, we say that x is deactivated by n . This subtle condition constitutes the main difference between MP and MCT Algorithms.

To illustrate the behaviour of MP Algorithm, consider the introduction of a new node n obtained from (n, t) ∈ Wait, and a node y such that Λ(y) ≤ Λ(n), y can be used to deactivate nodes in two ways:

if y ∈ Ancestor C (n), then no matter whether y is active or not, all its descendants are deactivated (represented in gray on Figure 2(a)), if y ∈ Ancestor C (n), then y must be active (y ∈ Act), and in that case all its descendants are deactivated, except node n itself as it is added to Act at Line 9 (see Figure 2 [START_REF] Reynier | Minimal coverability set for Petri nets: Karp and Miller algorithm with pruning[END_REF] The structure of the proof of correction presented in [START_REF] Reynier | Minimal coverability set for Petri nets: Karp and Miller algorithm with pruning[END_REF] is depicted in Figure 3. In this proof, all results have rather simple proofs, except the completeness of MP WPN . The proof of this property presented in [START_REF] Reynier | Minimal coverability set for Petri nets: Karp and Miller algorithm with pruning[END_REF] is approximately ten pages long. The main contribution of this paper is a very short proof of this property. It is presented in the next section, and stated as Theorem 1.

(b)). root y n n x (a) y ∈ AncestorC(n) root y ∈ Act n n x (b) y ∈ AncestorC(n) ∩ Act

Structure of the proof of correction presented in

MP terminates (Theorem 3.3 [START_REF] Lüttge | Zustandsgraphen von Petri-Netzen[END_REF]) MPWPN is complete (Theorem 3.4 [START_REF] Lüttge | Zustandsgraphen von Petri-Netzen[END_REF])

MP() = MPWPN()

∀ , ∃φ | , φ MP complete MP is
MP is correct Fig. 3. Structure of the proof of [START_REF] Reynier | Minimal coverability set for Petri nets: Karp and Miller algorithm with pruning[END_REF]. The main difficulty lies in the completeness of MPWPN, depicted in red.

Completeness of MP Algorithm for WPN

In this section, we present the main contribution of this article, which is a new and simple proof of the completeness of MP Algorithm for WPN.

Coherence of an acceleration

MP Algorithm builds a labelled tree C. In this context, the acceleration is applied along a branch β starting from the root, and leading to a node n whose marking is m. More precisely, there exists a set N of nodes on β, which are active ancestors of node n, and such that M is the set of markings of N . We recall the notion of concretization that "explains" how the accelerated marking is computed, by giving an explicit sequence of transitions leading to the accelerated marking.

Definition 4. We consider an acceleration Acc and a labelled tree C = (X, x 0 , B, Λ) obtained from a WPN (N , ϕ) using Acc. A concretization function is a mapping γ : B * → T * associating to every path in C a sequence of transitions of N . In addition, given x, y ∈ X such that y ∈ Ancestor C (x), we have Λ(x) = Post ϕ (Λ(y), γ(path C (y, x))).

In order to have a generic proof, independent of the acceleration considered, we identify a property of the acceleration together with its concretization function which ensures that the algorithm is correct. Definition 5. We consider an acceleration function Acc. We say that Acc is coherent if it admits a concretization function γ such that the following property holds: (†) Let x, y in C and w = path C (y, x) ∈ B * . Then for every ρ p γ(w), there exist two nodes x and y such that:

-Post(Λ(y), ρ p) ≥ Λ(y), x is an ancestor of x, used by some acceleration for node y 1 on the path from y to x, y lies between x and y 1 .

We prove now that when an acceleration Acc is coherent, then MP Algorithm satisfies a property that we call the coherence of this algorithm.

Lemma 1 (MP Algorithm is coherent). We consider MP Algorithm with a coherent acceleration Acc, with concretization γ. Then the following property holds: consider three nodes x, y, z such that x, z ∈ Act and y ∈ Ancestor C (x), and define ρ = γ(path C (y, x)). If Λ(z) ≥ Post(Λ(y), ρ p) for some ρ p ρ, then y ∈ Ancestor C (z).

Proof. As the acceleration is coherent, we fix an adequate concretization function γ. We consider nodes x, y, z and some ρ p ρ = γ(path C (y, x)) as in the premises of the statement. Thanks to property (†), there exist two nodes x , y such that:

-Post(Λ(y), ρ p) ≥ Λ(y), x is an ancestor of x, used by some acceleration for node y 1 on the path from y to x, y lies between x and y 1 .

By contradiction, assume that y ∈ Ancestor C (z). We have Λ(z) ≥ Post(Λ(y), ρ p) and Post(Λ(y), ρ p) ≥ Λ(y), hence Λ(z) ≥ Λ(y). Then, by definition of MP Algorithm, x is deactivated by z. This is in contradiction with our assumption that x and z are active. Thus, we have y ∈ Ancestor C (z).

Assume now that y 1 ∈ Ancestor C (z). Recall that y 1 used the node x when the acceleration has been applied. By definition of MP Algorithm, it deactivated everything below x , except itself. As we have that y is between x and y 1 , y is an ancestor of z, and y 1 is not an ancestor of z, this entails that y 1 deactivated z, which is a contradiction. Thus, we have y 1 ∈ Ancestor C (z).

In particular, this implies y ∈ Ancestor C (z), as expected.

3. otherwise, x is deactivated by n : n dominates a strict ancestor y of x such that y ∈ Act or y ∈ Ancestor C (n) (see Line 8 of the algorithm). We fix such a node y and let w = path C (y, x). We define ρ 0 = γ(w) and ρ 1 as the longest prefix of ρ 0 such that Λ(n) ≥ Post(Λ(n), ρ 1). We write ρ 0 = ρ 1 ρ 2 and claim that the pair (n , ρ 2 ρ) satisfies the properties of the invariant. Property (1) follows directly from monotonicity of Petri nets. Property (2) follows from the fact that n has just been added to C.

We prove now Property [START_REF] Cardoza | Exponential space complete problems for petri nets and commutative semigroups: Preliminary report[END_REF]. By contradiction, assume that there exists ρ p a non-empty prefix of ρ 2 ρ and an active node z such that Λ(z) ≥ Post(Λ(n), ρ p).

Then we also have, by monotonicity, Λ(z) ≥ Post(Λ(y), ρ p). First case: z = n . As we are not in Case 2, ρ p should be a prefix of ρ 2 . But this in contradiction with the definition of ρ 2 .

Second case: z = n . In particular, z is already active at the previous iteration of the algorithm. By Property (3) of the invariant for (x, ρ), ρ p is a prefix of ρ 2 . We consider the prefix ρ 1 ρ p of ρ 0 = γ(w). We can apply Lemma 1 and deduce that y ∈ Ancestor C (z). Thus z is deactivated by the construction of n (see Line 8 of the algorithm), yielding the contradiction as we supposed z is active.

Theorem 1. If Acc is coherent, then MP Algorithm for WPN is complete.

Proof. The result directly follows from Lemma 2 and from the termination of the algorithm. Consider some reachable marking m and the set Act returned by MP Algorithm after its termination. Thanks to Lemma 2, there exists some pair (x, ρ) as given by property (P). As the waiting list is empty, we have ρ = , hence property (1) directly gives the completeness of Act. The following property can easily be proved by induction:

Lemma 3. The mapping γ one is a concretization of the acceleration Acc one .

By reasoning on γ one and using again an induction, we can show the existence of adequate ancestors, to prove the following property: Lemma 4. The acceleration Acc one is coherent.

2 Fig. 1 .

 21 Fig. 1. A Petri net N .

 Require: A Petri net N = (P, T, I, O, m0) and an acceleration function Acc. Ensure: A labelled tree C = (X, x0, B, Λ) and a set Act ⊆ X such that Λ(Act) = MCS(N). 1: Let x0 be a new node such that Λ(x0) = m0; 2: X := {x0}; Act := X; Wait := {(x0, t) | Λ(x0) t ⇒ •}; B := ∅; 3: while Wait = ∅ do 4: Pop (n, t) from Wait. m := Post(Λ(n), t); 5:

Fig. 2 .

 2 Fig. 2. Deactivations of MP Algorithm.

6

 Coherence of the acceleration Acc one Definition 6 (Concretization function). The concretization function is a morphism γ one from B * to T * . We let M = max{ϕ(p) | p ∈ P } + 1.Let b = (n, t, n) ∈ B. We assume γ one is defined on all edges (x, u, y) ∈ B such that y ∈ Ancestor C (n).Let m = Post ϕ (Λ(n), t), then there are two cases, either :1. Λ(n) = m (t is not accelerated), then we define γ(b) = t, or 2. Λ(n) > m. Let xbe the ancestor of n used for this acceleration, and w = path C (x, n) ∈ B * . Then we define: γ one (b) = t.(γ one (w).t) M

Structure of the proof of correction of MP Algorithm

In this section, we describe the overall structure of the proof of [START_REF] Reynier | Minimal coverability set for Petri nets: Karp and Miller algorithm with pruning[END_REF]. Given an input Petri net N , MP Algorithm returns a set Act of ω-markings. We say that MP Algorithm is:

sound if for every m ∈ Act, there exists n ∈ MCS(N) such that m ≤ n, complete if for every n ∈ MCS(N), there exists m ∈ Act such that n ≤ m.

It is easy to show that Act is composed of pairwise incomparable ω-markings.

Hence, if MP Algorithm is both sound and complete, then it returns exactly the set MCS(N).

Widened Petri nets

Our proof involves a widening operation which turns a Petri net into a finite state system. Let P be a finite set, and ϕ ∈ Mark(P) be a marking. We consider the finite set of ω-markings whose finite components (i.e. values different from ω) are less or equal than ϕ. Formally, we define:

The widening operator Widen ϕ maps an ω-marking to an element of Mark ω ϕ (P):

Note that this operator trivially satisfies m ≤ Widen ϕ (m).

Definition 3 (Widened Petri net). A widened Petri net (WPN for short) is a pair (N , ϕ) composed of a PN N = (P, T, I, O, m 0) and of a marking ϕ ∈ Mark(P) such that m 0 ≤ ϕ.

The semantics of (N , ϕ) is given by its associated labelled transition system (Mark ω ϕ (P), m 0 , ⇒ ϕ) where for m, m ∈ Mark ω ϕ (P), and t ∈ T , we have m t ⇒ ϕ m iff m = Widen ϕ (Post(m, t)). We carry over from PN to WPN the relevant notions, such as reachable marking. We define the operator Post ϕ by Post ϕ (m, t) = Widen ϕ (Post(m, t)). Subscript ϕ may be omitted when it is clear from the context. Finally, the minimal coverability set of a widened Petri net (N , ϕ) is simply the set of its maximal reachable states as its reachability set is finite. It is denoted MCS(N , ϕ).

Example 3 (Example 1 continued).

Consider the mapping ϕ associating 1 to places p 1 , p 3 , p 4 and p 6 , and 3 to place p 5 , and the widened Petri net (N , ϕ). Then from marking {p 4 , 3p 5 }, the firing of t 4 results in the marking {p 3 , ωp 5 }, instead of the marking {p 3 , 4p 5 } in the standard semantics. One can compute the MCS of this WPN. Due to the choice of ϕ, it coincides with MCS(N).

In the sequel, we will consider the execution of MP Algorithm on widened Petri nets, which we will denote by MP WPN . Let (N , ϕ) be a WPN. The only difference is that the operator Post (resp. ⇒) must be replaced by the operator Post ϕ (resp. ⇒ ϕ). Thus, all the ω-markings computed by the algorithm belong to Mark ω ϕ (P).

New proof

Our new proof relies on a simple invariant of the algorithm, from which completeness easily follows. This invariant is defined as the following property (P):

Intuitively, the invariant states that for every reachable marking m, there exists a pair (x, ρ) which allows to cover m (property (1)), whose exploration is still in the waiting list (property (2)), and whose exploration will not be stopped by another active node (property (3)).

We now prove that the MP Algorithm satisfies the invariant (P):

Lemma 2. When used with a coherent acceleration, the MP Algorithm satisfies the property (P) at every step of its execution.

Proof. We proceed by induction on the number of steps of the algorithm.

Base case. Initially, the invariant is trivially satisfied as there is a single active node corresponding to the initial marking.

Induction. P(k) ⇒ P(k + 1) Let m ∈ Reach(N). By P(k), there exists (x, ρ) as given by P.

We consider different cases depending on what happens in the While loop of the algorithm. At Line 4, a pair (n, t) is popped from the waiting list. If this pair does not pass the test of Line 5, then nothing changes and the pair (x, ρ) still satisfies the properties. The interesting case is when this pair passes the test of Line 5. We distinguish three cases:

1. if x is not deactivated and no successor of x by prefixes of ρ is covered by n , then we can simply choose the pair (x, ρ). 2. otherwise, assume that some successor of x by a (possibly empty) prefix of ρ is covered by n . Then, let ρ 1 be the longest prefix of ρ such that Λ(n) ≥ Post(Λ(x), ρ 1). We claim that we can choose the pair (n , ρ) where ρ = ρ -1 1 .ρ. Indeed: n ∈ Act (Line 9), -Property (1) follows from monotonicity of Petri nets and from Λ(n) ≥ Post(Λ(x), ρ 1), -Property (2) follows from Line 9, -In order to show that Property (3) holds, we proceed by contradiction.

Assume that there exists ρ p a non-empty prefix of ρ and an active node z such that Λ(z) ≥ Post(Λ(n), ρ p). Then we have:

As ρ 1 ρ p = and ρ 1 ρ p ρ, Property (3) of our invariant for (x, ρ) implies that z is a new active node, i.e. z = n . This is a contradiction with our choice of ρ 1 of maximal length.