open science

Speckle observations of double and multiple stars at Pic du Midi Observatory: measurements during 1995 and 1997

Eric Aristidi, Jean-Louis Prieur, Marco Scardia, Laurent Koechlin, R Avila, Bruno Lopez, Y. Rabbia, Marcel Carbillet, P Nisenson, D Gezari

To cite this version:

Eric Aristidi, Jean-Louis Prieur, Marco Scardia, Laurent Koechlin, R Avila, et al.. Speckle observations of double and multiple stars at Pic du Midi Observatory: measurements during 1995 and 1997. Astronomy and Astrophysics Supplement Series, 1999, 134, pp.545-552. hal-02442570

HAL Id: hal-02442570
https://hal.science/hal-02442570
Submitted on 16 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Your thesaurus codes are:
03.13.12, 03.20.1, 03.20.2, 08.02.1

Speckle observations of double and multiple stars at Pic du Midi: measurements during 1995 and 1997*

É. Aristidi ${ }^{1}$, J.-L. Prieur ${ }^{2}$, M. Scardia ${ }^{3}$, L. Koechlin ${ }^{2}$, R. Avila ${ }^{1}$, B. Lopez ${ }^{4}$, Y. Rabbia ${ }^{4}$, M. Carbillet ${ }^{5}$, P. Nisenson ${ }^{6}$, and D. Gezari ${ }^{6}$
${ }^{1}$ UMR 6525 Astrophysique, Université de Nice Sophia - Antipolis - Centre National de la Recherche Scientifique, Parc Valrose, 06108 Nice Cedex 2, France
${ }^{2}$ Observatoire Midi Pyrénées, 14 Av. Edouard Belin, F-31400 Toulouse
${ }^{3}$ Osservatorio astronomico di Brera, Via Bianchi 46, I-22055 Merate.
${ }^{4}$ UMR 6528, Département Fresnel de l'Observatoire de la Côte d'Azur, B.P. 4229, F-06304 Nice Cedex 4
${ }^{5}$ Osservatorio astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze.
${ }^{6}$ Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

Received; accepted

Abstract

We present speckle observations of 48 double and multiple stars observed at the 2-meter "Télescope Bernard Lyot" (TBL) in December 1995, January 1997 and June 1997. Angular separations, absolute position angles and relative photometry result from these observations.

Key words: Methods: data analysis - Techniques: image processing - Techniques: interferometric - binaries: close

1. Introduction

This paper presents the results of double and multiple star speckle observations performed at the 2 m Télescope Bernard Lyot of Pic du Midi observatory (France). Instrumentation and data analysis techniques were partly described in a previous paper (Aristidi et al., 1997b). For the run of June 1997, we tested a real time system described in section 2. Because of bad weather, only five stars could also be observed using the PAPA photon-counting detector (Papaliolios et al., 1982, 1985). It should be emphasized that we accumulated bad luck and got particularily bad weather conditions during all this runs with very short coherence times of a few milliseconds only and a FWHM seeing often larger than 2 arcsec. The output should be appreciated accordingly.

[^0]Double stars measured here are either long-period binaries for which the last observation is old, or stars observed by us previously and found far from the expected position (Aristidi et al., 1997b). Some stars were also selected because the orbits are very uncertain. Two of these stars were recently discovered as double: Moai 1 (SAO 12917) observed in December 1995 (Carbillet et al, 1996, 1998b), and ν Cyg discovered as double by Hipparcos (The Hipparcos Catalogue, 1997).

Multiple stars were selected from the Multiple Star Catalogue (Tokovinin, 1997). All of them present a lack of measurement: unknown orbits, unknown spectral classes of the components, evidence for a companion detected by spectroscopy, and should be resolved in speckle with a 2 m telescope. These stars were selected together with A.A. Tokovinin.

2. Observations

Data were recorded during three observing runs in December 1995, January 1997 and June 1997 at the TBL. A total of 33 double stars and 15 multiple stars were observed; details are given in Table 1.

The instrumentation is the speckle camera of the Aperture Synthesis group of Observatoire Midi-Pyrénées (OMP) and an ICCD detector. It is described in Aristidi et al. (1997b) and Prieur et al. (1998). During the runs in January 1995 and January 1997, images were only recorded on video tape for further processing. In June they were also sent to a PC hosting a Matrox Genesis digitizer board equipped with a digital signal processor (C80) which enables near real-time processing. As an example the power spectrum for a 128×128 image size is
computed at a rate of about 20 frames per second. The use of a reference star was sometimes avoided by computing the cross correlation between time-separated images and subtracting it to the autocorrelation (Worden et al., 1977). Though at a lower speed (9 frames $/ \mathrm{sec}$) the system is also programmed to compute the cross correlation between the images and their square in order to find the absolute position angles of binaries (Aristidi et al., 1997a). This system does not include yet the classification of images according to the seeing that is used in the data processing as described in (Aristidi et al., 1997b). Real time relative photometry is also not implemented yet. Bright stars $\left(m_{V} \lesssim 6\right)$ were re-processed from the video tape for magnitude difference determination by probability imaging (Carbillet et al., 1998a). This provides also the absolute position angle (PA) and has been useful to check the PA computed by the cross-correlation technique (Aristidi et al., 1997a).

The PAPA camera was used during part of these observations but because of technical testing and bad weather conditions it could only lead to measurements on the night of $23 / 06 / 97$. It is actually a new version of the original camera described in (Papaliolios et al., 1982, 1985). Modifications have been jointly implemented by P. Nisenson, D. Ghezari (Harvard Smithonian Center for Astrophysics) and L. Koechlin (OMP) in the last five years. The current version has a new binary mask setup and a refurbished image intensifier. A problem (later identified as coming from the power supply of the amplification tube) caused a strong geometric distorsion and a variation of the overall scale which imposed quasi permanent scale calibrations during the night. A small "hole" at the center of the autocorrelation function was also noticed, due to a lack of detectivity of the electronics after each photo-event detection. A whole reduction procedure had to be set up in order to correct for these defects:

- Each star image was corrected with the distortion and scaling coefficients interpolated from the two images of the calibrating grid which were taken immediately before and after the star observation.
- To remove the hole at the center of the autocorrelation, each photo-event was correlated with the photo-events of a "gliding" time window located at about 1 msec from the arrival time of the photo-event. The very poor atmospheric conditions did not allow us to use a time window larger than 2 msec (as the typical coherence time was less than 3 msec !).

3. Results and discussion

Measurements are presented in Table 1. For multiple stars, the name of each measured couple is given. Ephemeris are computed for double and/or multiple stars with known orbits. Fig. 1 displays the residuals in ρ and θ as a cloud of points with error bars in the $(\Delta \rho / \rho, \Delta \theta)$ plane. This
cloud of points is centered on $(0,0)$; this validates data reduction and calibration procedure.

The following comments can be made for some individual stars.

- Moai 1 was discovered as double in December 1995 (Carbillet et al., 1996). An error occurred in that paper with the values of the position angle, actual values being : date $=1995.947, \rho=0^{\prime \prime} 110 \pm 0^{\prime \prime} 003, \theta=167 \pm 1^{\circ}$ (Carbillet et al., 1998b).
- ADS 2200: Observed near periastron, close to the limiting resolution of the telescope ($0^{\prime \prime} 081$ mas at $\lambda=$ 644 nm).
- ADS 8347: Quintuple star. AB, AC and AD are expected to be resolved by a 2 m telescope. The couple AC did not fit in our field of view (separation of AC $\simeq 60!$), and we did not measure it. We searched for companions around star D but nothing was detected (separation $\leq 0 . \prime 05$ or magnitude difference >5).
- ADS 8094: Double star with very uncertain orbit (Hopmann, 1970) period $P=4050 \mathrm{yr}$, rejected from the WDS orbit database (Worley \& Douglass, 1996).
- ADS 8035: We observed previously this star in 1995.951 (Aristidi et al., 1997b) and found, as for the present paper, large residuals with the Heintz orbit of 1956. Clearly a new orbit should be calculated.
$-\nu$ Cyg was initially observed as a reference star and seen double. The first observation (1997.648) being very poor, it has been reobserved in 1997.471 for confirmation and in 1997.561 for three color relative photometry. Its duplicity was discovered by Hipparcos (The Hipparcos Catalogue, 1997).
- ADS 5925AB: very uncertain orbit. Possible confusion between stars A and B (small magnitude difference) causing an uncertainty of 180°.
- WDS09562+1754 (XY Leo): Quadruple star. AB is a W-UMa contact binary. The expected separation deduced from spectrophotometric measurements is \simeq $0!15$ (Barden, 1987). To our knowledge, it has never been resolved by visible speckle interferometry. We also did not detect this companion.
We also notice a few cases of abnormally large differences between our measurements and the expected values from the previously determined orbits. This is the case of ADS 9392, Cou 1145, ADS 11998, Cou 321 ADS 8347 AB, ADS 2200. When comparing with published observations, we see that for xxxx , xxxx (Eric peux-tu voir cela sur le web?). There is clearly a problem and they should be re-observed for confirmation, or the orbits are not correct and should be re-calculated

4. Conclusion

Because of the quasi-permanent bad weather conditions that we have experimented at Pic du Midi during all the observing runs from the first light of the speckle camera

Fig. 1. Two dimensionnal plot of the residuals in position angle $(\Delta \theta)$ and relative residuals in separation $(\Delta \rho / \rho)$. For couples with known orbit, each measurement corresponds to a point in the graph. Error bars in ρ and θ have been drawn to scale.
in 1993, we revised our primary goal of imaging complex objects at high resolution to binary observations.

These observations have shown that the association of the speckle camera of Observatoire Midi-Pyrénées, the ICCD detector of Université de Nice, and the reduction procedure we have been developping in the last few years is well adapted to this subject. Despite of poor atmospheric conditions, we have obtained a rather long list of measurements and started to reach a productive stage in the field of binary stars.

Acknowledgements. The authors whish to thank the technical staff of the TBL for assistance during the observations; Michel Aurière (Observatoire Midi-Pyrénées) for help in the preparation of the missions and the Institut National des Sciences de l'Univers for financial support. Thanks are also due to A.A. Tokovinin for help in selecting multiple stars. This work made use of the SIMBAD astronomical database operated at CDS, Strasbourg, France, and of the CHARA 3rd catalogue of interferometric measurements of binary stars.

References

Aristidi E., Carbillet M., Lyon J.-F., Aime C., 1997a, A\&AS, 125, 139
Aristidi E., Carbillet M., Prieur J.-L., Lopez B., Bresson Y., Koechlin L., 1997b, A\&AS, 126, 555
Baize P., 1981, A\&AS 44, 199
Baize P., 1983, A\&AS 51, 479
Baize P., 1987, A\&AS 71, 177
Baize P., 1988, A\&AS 74, 507
Baize P., 1990, IAU Circ. Inf. 112
Baize P., 1991, A\&AS 87, 49

Baize P., 1991b, IAU Circ. Inf. 115
Baize P., 1991c, IAU Circ. Inf. 114
Baize P., 1992, A\&AS 92, 31
Baize P., 1993, IAU Circ. Inf. 116
Balega I.I., Balega Y.Y., 1988, Sov. Astron. Lett. 14,393
Barden S.C., 1987, ApJ 317, 333
Carbillet M., Lopez B., Aristidi E., Bresson Y., Aime C., Ricort G., Prieur J.L., Koechlin L., Helmer J., Cruzalèbes P., 1996, A\&A 314, 112
Carbillet M., Aime C., Aristidi E., Ricort G., 1998a, A\&AS, 127, 1
Carbillet M., Lopez B., Aristidi E., Bresson Y., Aime C., Ricort G., Prieur J.L., Koechlin L., Helmer J., Cruzalèbes P., 1998b, A\&A 329, 1172
Couteau P., 1990, IAU Circ. Inf. 111
Docobo J.A., Costa J.M., 1985, IAU Circ. Inf. 96
Docobo J.A., Costa J.M., 1988, IAU Circ. Inf. 106
Hartkopf W.I., Franz O.G., McAllister H.A., 1989, AJ 98, 1014
The Hipparcos Catalogue, ESA SP-1200, 1997
Heintz W.D., 1984, A\&AS 56, 5
Heintz W.D., 1988, PASP 100, 834
Heintz W.D., 1996, AJ 111, 408
Sky Catalogue 2000.0 volume 2, 1985, A. Hirshfeld and R.W. Sinnot Eds
Papaliolios C., Mertz L., 1982, Proc. SPIE, 331, 360
Papaliolios C., Nisenson P., Ebstein S., 1985, Appl. Optics, 24, 287
Popovic G.M., Pavlovic R., 1995a, IAU Circ. Inf. 125
Popovic G.M., Pavlovic R., 1995b, IAU Circ. Inf. 126
Prieur J.-L., Koechlin, L., André, C., Gallou, G., Lucuix, C., 1998, A\&AS submitted.
Scardia M., 1984, A\&AS 57, 257
Starikova G.A., 1982, Sov. Astron. Lett. 8, 166
Tokovinin A.A., 1996, private communication
Tokovinin A.A., 1997, A\&AS 124, 75
Worden S.P., Murray K.S., Schmidt G.D., Angel J.R.P., 1977, Icarus 32, 450
Worley C.E., Heintz W.D., 1983, Pub. U.S. Naval Obs. (2) 24, part VII (available at SIMBAD: http://simbad.u-strasbg.fr/cgi-bin/cdsbib/)
Worley
C.E., Douglass G.G., 1996, The Washington Visual Double Star Catalogue, http://aries.usno.navy.mil/ad/wds Zulevic D.J., 1990, IAU Circ. Inf. 112

$\begin{gathered} \hline \text { Star } \\ \text { ID } \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \text { Star } \\ \text { name } \end{gathered}$	Mult.	$\begin{gathered} \text { Reference } \\ \text { star } \\ \hline \hline \end{gathered}$	Epoch	$\begin{gathered} \lambda / \Delta \lambda \\ (\mathrm{nm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Expos. } \\ (\mathrm{ms}) \\ \hline \end{gathered}$	Obj.	Latest orbit	$\begin{gathered} \rho \\ \left({ }^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \rho_{\text {cal }} \\ & (1) \\ & \hline \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \Delta \rho \\ \left({ }^{\prime \prime}\right) \\ \hline \hline \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \theta \\ \left({ }^{\circ}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline \theta_{\text {cal }} \\ \left({ }^{\circ}{ }^{\circ}\right) \\ \hline \hline \end{gathered}$	$\begin{aligned} & \hline \Delta \theta \\ & \left({ }^{\circ}\right) \\ & \hline \hline \end{aligned}$	Δm
SAO 12917	Moai 1	2	SAO 12929	1997.071	530/57	8		-	0.08 ± 0.01	-	-	209 ± 1	-	-	
ADS 2200	20 Per	3	none	1995.931	644/70	16	AB	Heintz, 1980	0.08 ± 0.01	0.04	0.04	194 ± 1	185	9	
ADS 2959		2	HD 25022	1997.070	530/57	10		Couteau, 1990	1.20 ± 0.01	1.112	0.09	64.6 ± 0.2	62.7	1.9	
ADS 4950	4 Lyn	3	SAO 25731	1997.074	530/57	10	AB	-	0.750 ± 0.008	-	-	139.5 ± 0.2	-	-	1.4 ± 0.1
ADS 5400	12 Lyn	3	SAO 13973	1995.930	644/70	16	AB	Popovic, 1995b	1.79 ± 0.02	1.69	0.1	75.3 ± 0.2	72.2	3.1	
ADS 5447		2	SAO 95996	$\begin{aligned} & 1997.071 \\ & 1997.071 \\ & 1997.071 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 447 / 47 \\ & 530 / 57 \\ & 644 / 70 \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$		Baize, 1992	0.318 ± 0.003	0.383	-0.065	217.6 ± 0.2	219.4	-1.8	$\begin{aligned} & 1.09 \pm 0.15 \\ & 0.9 \pm 0.2 \\ & 0.8 \pm 0.3 \\ & \hline \end{aligned}$
ADS 5625		2	SAO 114523	1997.074	530/57	8		Heintz, 1974*	0.363 ± 0.004	0.247	0.116	139.4 ± 0.2	115.3	19.6	
ADS 5925		3	SAO 152663	1997.071	530/57	8	AB	Mourao, 1962*	0.551 ± 0.005	0.727	-0.176	102.3 ± 0.2	283.3	-181	
ADS 6089	63 Gem	4	64 Gem	1997.074	530/57	8		-	0.078 ± 0.002	-	-	361 ± 1	-	-	1.0 ± 0.2
ADS 6175	α Gem	6	β Gem	1997.074	530/57	1	$\begin{aligned} & \hline \mathrm{AB} \\ & \mathrm{AB} \end{aligned}$	$\begin{gathered} \hline \text { Docobo, } 1985 \\ \text { Heintz, } 1988 \\ \hline \end{gathered}$	3.58 ± 0.04		$\begin{aligned} & -0.03 \\ & -0.04 \end{aligned}$	69.3 ± 0.2		$\begin{gathered} \hline 1.6 \\ 1 \end{gathered}$	1.3 ± 0.1
ADS 6993	ϵ Hya	5	HR 3418	$\begin{aligned} & 1997.071 \\ & 1997.071 \end{aligned}$	$\begin{aligned} & \hline 530 / 57 \\ & 530 / 57 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \end{aligned}$	$\begin{gathered} \hline \mathrm{AB} \\ \mathrm{AC} \\ \mathrm{AB} \times \mathrm{C} \end{gathered}$	Hartkopf 1989 Heintz, 1996	$\begin{gathered} 0.264 \pm 0.003 \\ 2.79 \pm 0.03 \\ 2.84 \pm 0.03 \end{gathered}$	0.273 2.87	-0.009 -0.03	$\begin{gathered} 173.9 \pm 0.2 \\ 294.0 \pm 0.2 \\ 295.3 \pm 0.2 \end{gathered}$	174.5 295.7	-0.6 -0.4	$\begin{aligned} & \hline 0.9 \pm 0.2 \\ & 1.9 \pm 0.2 \end{aligned}$
HD 76943	10 Uma	2	none	1995.930	644/70	16		Hartkopf, 1989	0.373 ± 0.003	0.377	0.004	129 ± 1	131.0	2	
ADS 7341		2	SAO 98554	1997.074	530/57	7		Zulevic, 1967*	0.407 ± 0.004	0.350	0.057	348.1 ± 0.2	356.9	-8.8	
ADS 7480	o Leo	3	SAO 98955	1997.071	530/57	5	Ac	-	0.59 ± 0.01	-	-	267.9 ± 0.2	-	-	1.6 ± 0.2
WDS 09562+1754	XY Leo	4	SAO 98976	1997.074	530/57	16		-	-not detected-	-	-		-	-	
ADS 7685		2	SAO 81273	1997.074	530/57	16		Heintz, 1962*	1.03 ± 0.01	0.971	0.059	125.9 ± 0.2	121.5	4.4	
ADS 7871		2	SAO 118431	1997.071	530/57	16		Heintz, 1984	0.530 ± 0.005	0.581	-0.051	158.3 ± 0.2		-2.2	
ADS 8035	α UMa	4	β UMa	1997.074	530/57	1	AB	Heintz, 1956*	0.470 ± 0.005		0.066	226.2 ± 0.2		15.5	1.5 ± 0.2
ADS 8094		2	SAO 81770	1997.074	530/57	5		-	0.533 ± 0.005	-	-	321.4 ± 0.2	-	-	
ADS 8311		2	SAO 99973	1997.074	530/57	15		Heintz, 1963*	1.01 ± 0.01	1.129	-0.128	343.1 ± 0.2	337.3	5.8	1.8 ± 0.1
ADS 8347	65 Uma	5	SAO 43839	$\begin{aligned} & 1997.074 \\ & 1997.074 \\ & 1997.074 \end{aligned}$	$\begin{aligned} & 530 / 57 \\ & 530 / 57 \\ & 530 / 57 \end{aligned}$	$\begin{gathered} 7 \\ 16 \\ 7 \end{gathered}$	$\begin{gathered} \mathrm{AB} \\ \mathrm{C} \\ \mathrm{D} \end{gathered}$	$\begin{gathered} \text { Baize, } 1991 \\ \text { _- } \end{gathered}$	$\begin{gathered} \hline 0.14 \pm 0.002 \\ 3.79 \pm 0.03 \\ \text {-not detected- } \end{gathered}$	0.109 -	-0.03	$\begin{aligned} 276 & \pm 1 \\ 222.3 & \pm 0.2 \end{aligned}$	$\stackrel{308}{-}$	$\stackrel{-32}{-}$	
ADS 8539		2	SAO 82456	1997.074	530/57	8		Aller, 1951*	1.68 ± 0.01	1.641	0.04	325.6 ± 0.2	323.9	1.7	
HD 114519	RS CVn	3	SAO 63388	1997.074	644/70	16		-	-not detected-	-	-	-	-	-	
ADS 8811		4	Weis 22389	1997.071	644/70	16		-	0.257 ± 0.003	-	-	145 ± 1	-	-	
ADS 9301		2	HD 130870	1997.468	644/70	10		Van den Bos, 1949*	0.222 ± 0.01	0.219	0.003	161.2 ± 1	164.7	-3.5	

Table 1. Table of measurements. λ denotes the wavelength and $\Delta \lambda$ the bandwidth. The column labelled Mult. gives the number of stars in the system (multiplicity). The column labelled Obj. give the name of the measured components of the multiple star. Predicted values of ρ and θ are computed from the latest available orbits. For orbits prior to 1982 (followed by a \star), orbital elements were found in the catalogue of Worley \& Douglass, 1996. For ϵ Hya the angular separation ABxC was computed from AB , AC and $\Delta m_{A B}$ as the distance between C and the photocenter of AB . The columns labelled $\Delta \rho$ and $\Delta \theta$ give the residuals in ρ and θ.

$\begin{gathered} \hline \text { Star } \\ \text { ID } \\ \hline \end{gathered}$	Star name	Mult.	$\begin{aligned} & \hline \text { Reference } \\ & \text { star } \end{aligned}$	Epoch	$\begin{gathered} \hline \lambda / \Delta \lambda \\ (\mathrm{nm}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Expos. } \\ (\mathrm{ms}) \\ \hline \end{gathered}$	Obj.	Latest orbit	$\begin{gathered} \hline \rho \\ \left({ }^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \rho_{\text {cal }} \\ & \left({ }^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & \Delta \rho \\ & \left({ }^{\prime \prime}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \theta \\ \left({ }^{\circ}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline \theta_{\mathrm{cal}} \\ \left({ }^{\circ}{ }^{\circ}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \Delta \theta \\ & \left({ }^{\circ}\right) \\ & \hline \end{aligned}$	Δm
ADS 9392		2	HD 134169	1997.468	644/70	16		Starikova, 1982	0.773 ± 0.002	0.839	-0.066	283.2 ± 0.2	283.2	0.0	
ADS 9425		2	none	1997.481	530/57	16		Zulevic, 1990	1.23 ± 0.01	1.23	0.000	167 ± 0.2	166.3	0.7	0.84 ± 0.06
ADS 9505		2	HD 137510	1997.468	644/70	12		Eggen, 1946*	-not detected-	0.101	-	-	215.2	-	
ADS 9643		2	none	1997.481	530/57	16		Muller, 1955*	0.180 ± 0.002	0.217	-0.037	318 ± 1	323	-5	
Cou 612		2	HD 137510	1997.468	644/70	16		Baize, 1993	0.256 ± 0.007	0.161	0.095	208.3 ± 0.8	199.3	9.0	
ADS 10235		3	HD 152896	1997.468	644/70	5	AB	Scardia, 1984	1.425 ± 0.01	1.344	0.081	95.3 ± 0.6	97.2	-1.9	
ADS 10531		2	HD 156632	1997.468	644/70	16		Baize, 1988	0.213 ± 0.004	0.183	0.030	275.4 ± 0.2	276.9	-1.5	
Cou 1145		2	HD 156632	1997.468	644/70	16		Baize, 1990	0.124 ± 0.008	0.098	0.026	89 ± 1	68	21	
Fin 381		2	HD 164615	1997.468	644/70	10		Baize, 1990	-not detected-	0.066	-	-	184.6	-	
ADS 11111	73 Oph	2	HD 166073	1997.468	644/70	12		Heintz, 1984	0.490 ± 0.005	0.510	-0.020	300.5	299.2	1.3	
ADS 11530		2	HD 172151	1997.468	644/70	16		Baize, 1987	0.338 ± 0.007	0.306	0.032	67 ± 1	59.5	7.5	
ADS 11842		2	HD 174966	1997.468	644/70	16		Docobo, 1988	0.226 ± 0.002	0.226	0.000	62.8 ± 1	64.2	-1.4	
ADS 11842		2	HD 174966	1997.471	644/70	$2^{\text {¢ }}$		Docobo, 1988	0.238 ± 0.01	0.226	0.012	62.2 ± 1	64.2	-2.0	
ADS 11998		2	HD 176871	1997.471	644/70			Popovic, 1995a	0.231 ± 0.01	0.377	-0.146	253.5	258.9	-5.4	
Cou 321		2	HD 181751	1997.468	644/70	16		Baize, 1991b	0.093 ± 0.001	0.149	-0.056	135.8 ± 1	97.3	38.5	
		2	none	1997.471	644/70	2^{\dagger}		Baize, 1991b	0.104 ± 0.01	0.149	-0.045	138.6 ± 3.	97.3	41.3	
ADS 12752		2	HD 181751	1997.468	644/70	16		Baize, 1972*	0.362 ± 0.003	0.381	-0.019	10.6 ± 0.2	14.9	-4.3	
ADS 12972		2	HD 187795	1997.468	644/70	16		Baize, 1961*	0.635 ± 0.006	0.553	0.082	144.5 ± 0.4	138.6	5.9	
ADS 14073	β Del	2		1997.561	447/47	2									0.8 ± 0.2
				1997.561	530/57	2									1.0 ± 0.2
			none	1997.561	644/70	1.4		Hartkopf, 1989	0.373 ± 0.004	0.364	0.009	327.4 ± 0.2	325.9	1.5	1.0 ± 0.1
				1997.561	743/69	1									1.0 ± 0.1
				1997.561	855/74	4									1.1 ± 0.1
ADS 14296	λ Cyg	3	ν Cyg	1997.468	644/70	16	AB	Baize, 1983	0.873 ± 0.003	0.925	-0.052	9.9 ± 0.3	9.1	0.8	
			$\nu \mathrm{Cyg}$	1997.468	644/70	16	Aa	Baize, 1991c	-not detected-	0.055	-	-	78.9	-	
								Balega, 1988		0.050	-	-	92.87	-	
ADS 14424		2	none	1997.471	644/70	2^{\dagger}		Heintz, 1962*	0.452 ± 0.01	0.442	0.010	131.6 ± 1	133.9	-2.3	
HD 199629	$\nu^{\text {Cyg }}$	2	none	1997.468	644/70	16			0.108 ± 0.01	-	-	247 ± 3	-	-	
			HD 200030	1997.471	644/70	2^{\dagger}		-not detected-	-	-	-	-	-	-	
			α Cyg	1997.561	447/47	3									0.8 ± 0.1
			$\alpha \mathrm{Cyg}$	1997.561	530/57	3		-	0.115 ± 0.008	-	-	235.8 ± 0.5	-	-	1.0 ± 0.2
			$\alpha \mathrm{Cyg}$	1997.561	644/70	3									1.00 ± 0.07
ADS 14666		2	none	1997.468	644/70	10		Popovic, 1995a	0.288 ± 0.007	0.294	-0.006	123.1 ± 0.5	119.6	3.5	
ADS 15115		2	none	1997.468	644/70	10		Baize, 1961*	0.296 ± 0.006	0.304	-0.008	306.7 ± 0.3	310.4	-3.7	
ADS 15251		2	none	1997.468	644/70	16		Baize, 1981	0.397 ± 0.004	0.426	-0.029	201.8 ± 0.5	203.0	-1.2	
			none	1997.468	644/70	16		Starikova, 1984		0.428	-0.031		202.9	-1.1	
ADS 16214	HR 8652	3	HD 214946	1997.471	644/70	2^{\dagger}	AB	-	0.509 ± 0.01	-	-	122.8 ± 2.	-	-	
			HD 214946	1997.471	644/70	2^{\dagger}	BC	-	0.056 ± 0.006	-	-	44.0 ± 4.	-	-	

Table 1. Table of measurements (continued). For observations made with the PAPA detector, a \dagger has been added in superscript to the exposure time (usually 2 ms).

This article was processed by the author using Springer-Verlag $\mathrm{L}^{\mathrm{A}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ A\&A style file $L-A A$ version 3.

[^0]: Send offprint requests to: É. Aristidi

 * Based on observations made at 2 m Télescope Bernard Lyot, Pic du Midi, France.

