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Abstract. Benthic foraminifera are an important component
of the marine biota, but protocols for investigating their vi-
ability and metabolism are still extremely limited. Classi-
cal studies on benthic foraminifera have been based on di-
rect counting under light microscopy. Typically, these or-
ganisms are stained with Rose Bengal, which binds proteins
and other macromolecules, but does not allow discrimina-
tion between viable and recently dead organisms. The flu-
orescent in situ hybridization technique (FISH) represents a
new and useful approach to identify living cells possessing
an active metabolism. Our work is the first test of the suit-
ability of the FISH technique, based on fluorescent probes
targeting the 18S rRNA, to detect live benthic foraminifera.
The protocol was applied onAmmoniagroup and Miliolids,
as well as on agglutinated polythalamous (i.e.,Leptohalysis
scottii andEggerella scabra) and soft-shelled monothalam-
ous (i.e.,Psammophagasp. and saccamminid morphotypes)
taxa. The results from FISH analyses were compared with
those obtained, on the same specimens assayed with FISH,
from microscopic analysis of the cytoplasm colour, presence
of pigments and pseudopodial activity. Our results indicate
that FISH targets only metabolically active foraminifera, and
allows discerning from low to high cellular activity, validat-
ing the hypothesis that the intensity of the fluorescent sig-
nal emitted by the probe is dependent upon the physiological
status of cells. These findings support the usefulness of this
molecular approach as a key tool for obtaining information
on the physiology of living foraminifera, both in field and
experimental settings.

Correspondence to:C. Borrelli
(borrec@rpi.edu)

1 Introduction

Foraminifera is a group of testate protists, which in deep-
sea ecosystems can become a dominant component of the
benthic fauna, both in terms of abundance and biomass
(Gooday et al., 1998). Since hard-shelled foraminifera
(foraminifera with a calcareous or a multilocular aggluti-
nated test) are largely used for paleoenvironmental recon-
structions, the knowledge of the fossil assemblages is quite
advanced (e.g., Schmiedl and Mackensen, 1997; Katz et al.,
2003; Morigi et al., 2005; Murray, 2006; Morigi, 2009).
However, current biological and ecological studies are still
limited by the lack of reliable protocols to distinguish living
from dead foraminifera within the benthic assemblages and
to study their metabolism.

Over the last 20 years, new methods have therefore been
developed to discern between living and dead foraminifera,
each one having a different degree of accuracy and based on
a different rationale (Bernhard, 2000). Rose Bengal (RB), a
non-vital staining, has been widely used in ecological stud-
ies to recognize presumably dead (unstained) foraminifera
from the living (stained) counterparts (Walton, 1953; Mur-
ray and Bowser, 2000). Other approaches to detect metabol-
ically active foraminifera are based on the use of fluoro-
genic probes (e.g., diacetates of fluorescein -FDA- and AM-
esters of biscarboxyethylcarboxyfluorescein -BCECF-AM-;
Bernhard et al., 1995) that both measure enzymatic activ-
ity, which is required to activate their fluorescence, and cell-
membrane integrity. Also, the use of the enzymatic reduction
of the MTT salt (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-
2H-tetrazolium bromide or thiazolyl blue, which produces
a reddish purple crystal) has been recently proposed as a
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viability assay for living foraminiferal specimens from shal-
low water systems (de Nooijer et al., 2006). Other probes,
such as CellTracker Green CMFDA (CTG), allow detecting
actively metabolizing foraminifera by identifying the pres-
ence of respiratory activity, either in the laboratory or in situ
(Bernhard et al., 2004, 2006; Pucci et al., 2009).

Fluorescent In Situ Hybridization (FISH) is a novel molec-
ular technique, never before utilized in foraminiferal stud-
ies, based on the use of fluorescently-labeled, rRNA-targeted
oligonucleotide probes, which hybridize target molecules
and are later visualized under epifluorescence microscopy.
This technique targets the rRNA inside living cells. rRNA is
the product of DNA transcription and a component of ribo-
somes, which are contained in living and actively metaboliz-
ing cells, as they perform protein synthesis. FISH involves
the use of oligonucleotide probes, which penetrate inside the
cell and specifically hybridize the target rRNA sequences in
the ribosomes. If there are no target sequences in the ribo-
somes, the probes will not hybridize and will be eliminated
by a subsequent washing step. Probes are labeled with an ap-
propriate fluorochrome and cells containing the hybridized
probes can be easily observed under an epifluorescence mi-
croscope equipped with appropriate filters. A higher num-
ber of ribosomes inside the cell, which is dependent upon
the physiological status of cells, means a higher number of
rRNA molecules. During FISH hybridization, each single
probe will theoretically hybridize with a single molecule of
rRNA. Therefore, it is expected that the larger the number of
ribosomes in the cell, the stronger the fluorescence will be.
As a result, the intensity of the FISH signal can be taken as
an indicator of cellular metabolic activity. Moreover, each
cell will show a nearly homogenous fluorescence signal, de-
pending on the concentration and localization of ribosomes
inside the cell.

The use of the FISH approach for identifying metabol-
ically active cells, here defined as cells possessing a high
number of rRNA-containing ribosomes, has been common
in prokaryotic ecology for a decade (Karner and Fuhrman,
1997; Christensen et al., 1999). In this contest, it has been
widely used in a variety of habitats, including marine sedi-
ments and soils, to study Bacteria and Archaea targeting the
16S rRNA (Hugenholtz et al., 2001; Dupperon et al., 2005;
Danovaro et al., 2009). FISH, based on 18S rRNA as a
target molecule, has been applied to eukaryotic single-cell
taxa (marine picoeukaryotes, Not et al., 2002; ciliates, such
asUronemasp., flagellates, nanoflagellates and mixed pro-
tists assemblages; Lim et al., 1993, 1996: Rice et al., 1997a,
1997b; Fried et al., 2002), photosyntetic protists (Medlin and
Kooistra, 2010) and to eukaryotic symbionts of marine inver-
tebrates (e.g.,Symbiodiniumspp., Yokouchi et al., 2003). At
least theoretically, protists are potentially more appropriate
for the use of oligonucleotide probes than prokaryotes, be-
cause they contain a higher number of ribosomes (up to hun-
dreds of thousands per eukaryotic cell versus 1000–10 000
in a bacterial cell) and higher concentrations of rRNA. A

further development of FISH targeting marine eukaryotes is
represented by the COD-FISH, which enables identification
of calcifying microorganisms (Frada et al., 2006). Morever,
the combination of SEM and FISH analyses has been shown
to largely improve the potential of taxonomic and morpho-
logical characterization of a wide range of protists (e.g.,
alveolates, stramenopiles, kinetoplastids and cryptomonads;
Stoeck et al., 2003). Despite the wide potential application
of this technique to foraminiferal ecology, a FISH protocol
has never been set up and tested to distinguish metabolically
active foraminifera in sediments and/or cultures.

In this study, we establish a new protocol, based on FISH
targeting the 18S rRNA, to detect and quantify metaboli-
cally active foraminifera in experimental sets and marine
sediments.

2 Materials and methods

2.1 Sediment sampling and foraminiferal maintenance
under controlled conditions

All foraminifera tested for FISH were extracted from our ex-
perimental sets and/or from natural sediment samples. Sed-
iments were collected from two coastal sites (Falconara and
Portonovo) located in the Central Adriatic Sea, in Octo-
ber 2009, February 2010 and December 2010, using a Van
Veen grab onboard the research boatActea. Samples were
collected at depths of∼5 m (Falconara) and at a depth of
∼15 m (Portonovo site). Water temperatures at the field sites
were 14.4◦C and 15◦C, respectively, in October; 6.2◦C and
6.3◦C, respectively, in February. In December 2010, sam-
ples were collected only in Portonovo and water temperature
was 11.1◦C. The sediment was stored into a plastic box filled
with seawater (collected from the same site of the sample)
and carried to the laboratory within 2–4 h, where it was im-
mediately processed. Only the top 2 cm of the sediment, con-
taining the highest abundance of living foraminifera (Goo-
day, 1996; de Stigter et al., 1998; Bernhard et al., 2008), was
collected.

For cultures, sediments were stored at in situ temperature
and salinity (36, constant during the sampling) and immedi-
ately transferred to the laboratory to reduce possible stress
to the organisms. Two culture sets were prepared in air-
tight boxes. During growth, chemical and physical param-
eters were maintained at a pH of 8, temperature of 23◦C and
salinity of 36. To measure salinity, we used a refractometer
(MR100ATC, Milwaukee, resolution of±0.001). Salinity
was measured on a scale of 0–100, after the instrument cali-
bration with distilled water. pH values were measured with a
pH meter (Hanna Instruments, HI98127, electrode HI73127)
and expressed on the NBS scale. This instrument utilizes
an electrode to measure pH values after a calibration with
two solutions, one at a pH of 4.01 and another one at a pH of
7.01. After that, pH readings were automatically temperature
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Fig. 1. General scheme of the experimental design to test our FISH protocol. See text for details.

(◦C) compensated and expressed on a scale from−2.0 to
16.0 pH, with a resolution of 0.1 and an accuracy of±0.1.
To avoid evaporation and to maintain stable salinity within
the cultures, small quantities of filtered (0.45 µm) seawater,
properly mixed with distilled water, were added every week.
Cultures were fed, every two weeks, with a mixture of algae
(Dunaliella parva, Chlorellasp. andIsochrysissp., Heinz,
2001; Heinz et al., 2001). Prior to injection in the cultures,
the algae were treated in an ultrasound bath.

Samples collected in December 2010 were immediately
processed for FISH analyses. Finally, additional specimens
were picked after 7 weeks without feeding from cores col-
lected at Portonovo in December 2010 and incubated at
pH< 8, temperature of 17◦C and salinity of 30.

2.2 FISH: protocol and optimization

To develop a FISH protocol that could be used on
foraminifera, we adapted the protocol routinely used for ma-
rine Bacteria and Archaea and other microbial eukaryotes,
such as ciliates and dinoflagellates (Karner and Fuhrman,
1997; Hugenholtz et al., 2001; Not et al., 2002; Stoeck
et al., 2003; Yokouchi et al., 2003; Mikulski et al., 2005;
Frada et al., 2006). To test the efficiency of FISH over dif-
ferent foraminiferal taxonomic groups, we selected speci-
mens of the most represented species in coastal marine sed-
iments. For this reason, we used organisms belonging to
the calcareousAmmoniagroup and Miliolids, to aggluti-
nated species (such asLeptohalysis scottiiand Eggerella
scabra) and to soft-shelled monothalamous undetermined
species (e.g.,Psammophagasp. and Silver saccamminid sp.,
Fig. 3 in Gooday et al., 2005; Saccamminid sp. 8, Plate 2
in Sabbatini et al., 2010; and Saccamminid sp. 2, Fig. 6a–c
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Fig. 2. Results of the experiments carried out to optimize the FISH protocol.(A)–(D) FISH performed on foraminiferal tests after removal
of organic material in order to test the possibility of an hybridization between the FISH probe and some components of the shell.(A)–
(B) Ammoniasp.; analyzed under optical microscopy(A) and epifluorescence microscopy(B) after hybridization with the S17 probe;
(C)–(D) Miliolids group individual analyzed under optical microscopy(C)) and epifluorescence microscopy(D) after hybridization with the
S17 probe.(E)–(H) FISH performed on foraminiferal hard shells after EDTA fixation in order to test the possibility of hybridization between
FISH probes and some components of the shell.(E)–(F) Ammoniasp. analyzed by epifluorescence microscopy after EDTA treatment
and hybridization with the S17 probe(E) and EUK 1209 probe(F); (G)–(H) Miliolids group individuals viewed under epifluorescence
microscopy after EDTA treatment and hybridization with the S17 probe(G) and EUK 1209 probe(H). (I)–(L) FISH performed with non-
sense probes to verify a possible non-specific probe binding during in situ hybridization.(I)–(J) Ammoniasp. analyzed using optical(I) and
epifluorescence(J) microscopy.(K)–(L) Individual from the Miliolids group viewed under optical(K) and epifluorescence(L) microscopy.
See text for details. Scale bars = 12.5 µm, except where stated.

in Gooday et al., 2004). To optimize the procedure, we
compared two oligonucleotide probes: (1) EUK 1209R (5′-
GGGCATCACAGACCTG-3′), which is a widely used uni-
versal eukaryotic probe already utilized for FISH analysis
(Lim et al., 1993; Not et al., 2002; Stoeck et al., 2003); and
(2) S17 (5′-CGGTCACGTTCGTTGC-3′), a probe specif-
ically designed for foraminifera and previously used for
phylogenetic analyses within this group (Pawlowski, 2000;
Holzmann et al., 2001; Pawlowski and Holzmann, 2002;
Garcia-Cuetos et al., 2005). According to Pernthaler et
al. (2001) and Hugenholtz et al. (2001), selected foraminifera

were also treated during each FISH session with non-sense
probes “non-EUK 1209R” and “non-S17”, representing the
reverse complement of the probes EUK 1209R and S17
(Fig. 1). These probes are negative controls of FISH as-
say, not having any known rRNA target, and were used to
check for the non-specific incorporation of the probe into the
cells during hybridization. None of the cells hybridized with
non-sense probes showed fluorescence emission (see the Re-
sults section; Fig. 2), which clearly demonstrated that non-
specific probe binding did not occur during in situ hybridiza-
tion analysis.

Biogeosciences, 8, 2075–2088, 2011 www.biogeosciences.net/8/2075/2011/



C. Borrelli et al.: Determination of the metabolically active fraction of benthic foraminifera 2079

30 

 

A B C

D E F

G H I

L M N

O P

Q R

LOW HIGHNO

Metabolically 

Inactive

Active Active

Level of Fluorescence

 1 

Figure 3. 2 

3 
Fig. 3. Fluorescence emission after FISH hybridization.(A) Ammoniasp., 300 µm, at optical microscope;(B) Ammoniasp. at optical mi-
croscope, displaying pseudopodial activity;(C) Ammoniasp., 460 µm from natural sample (Portonovo), hybridization with the S17 probe,
umbilical view, high fluorescence signal;(D) Ammoniasp., 300 µm, from core incubation. FISH hybridization with the S17 probe, low
fluorescence signal;(E) Ammoniasp., 300 µm, from core incubation. FISH hybridization with the S17 probe, high fluorescence signal;
(F) Ammoniasp. 460 µm, Portonovo, ventral view. FISH hybridization with the S17, high fluorescence signal;(G) Eggerella scabra, 400 µm,
from culture maintenance. FISH hybridization with the S17 probe, low fluorescence signal;(H) Eggerella scabra, 430 µm, from core incu-
bation. FISH hybridization with the EUK 1209R probe, low fluorescence signal;(I) Eggerella scabra, 430 µm, natural sample (Portonovo).
FISH hybridization with the EUK 1209R probe, low fluorescence signal;(L) Psammophagasp., 350 µm, from culture maintenance. FISH
hybridization with the S17 probe, low fluorescence signal;(M) Psammophagasp., 270 µm, andPsammophagasp., 300 µm, from culture
maintenance. FISH hybridization with the S17 probe, low fluorescence signal;(N) Silver saccamminid sp, 280 µm, from culture mainte-
nance. FISH hybridization with the S17 probe, low fluorescence signal;(O) Leptohalysis scottii, 650 µm, from natural sample (Portonovo).
FISH hybridization with the EUK 1209R probe, low fluorescence signal;(P) Leptohalysis scottii, 800 µm, from natural sample (Portonovo).
FISH hybridization with the EUK 1209R probe, high fluorescence signal:(Q) Miliolids organism, 600 µm, from natural sample (Portonovo).
FISH hybridization with the S17 probe, low fluorescence signal;(R) Miliolids organism, 620 µm, from natural sample (Portonovo). FISH
hybridization with the S17 probe, high fluorescence signal.
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Table 1. Results of optical microscopy (OM) observations performed on different taxonomic groups from different samples. Ac-
tive = individuals that displayed pseudopodial activity; inactive = individuals that did not show pseudopods. Inactive individuals may be
alive but in a quiescent state (based on cytoplasmatic color, presence of sediment in front of the aperture and presence of pigments inside the
cell). See text for details.

(a) Organisms from culture maintenance

Taxonomic group # organisms # orgamisms active # organisms inactive

Ammoniagroup 20 20
Miliolids 17 17
Agglutinated polythalamous taxa 5 1 4
Soft-shelled monothaloamous taxa 5 1 4

Total 47 2 45

(b) Organisms from core incubation

Taxonomic group # organisms # orgamisms active # organisms inactive

Ammoniagroup 3 3
Miliolids
Agglutinated polythalamous taxa 2 2
Soft-shelled monothaloamous taxa

Total 5 3 2

(c) Organisms from natural samples

Taxonomic group # organisms # orgamisms active # organisms inactive

Ammoniagroup 10 4 6
Miliolids 18 8 10
Agglutinated polythalamous taxa 11 5 6
Soft-shelled monothaloamous taxa 6 1 5

Total 45 18 27

The first step was to extract individual organisms (Fig. 1).
We considered specimens as “active” on the basis of the pres-
ence of detectable pseudopodial activity under an optical mi-
croscope (OM) provided with a phase contrast objective. In
the absence of any pseudopodial activity, we assessed the
cytoplasm color (from yellow to light brown, de Nooijer et
al., 2009) given by the presence of algal pigments (de Nooi-
jer et al., 2008; Filippson et al., 2010) and the occurrence
of sediment material at the aperture proximity and/or cover-
ing the test. Individuals with these features were considered
“potentially alive but inactive” (Table 1). Otherwise, cells
that did not show any of these features were considered as
“dead”. One to five specimens of foraminifera were placed
in a concave slide for taxonomic identification. Water was
removed from the slide and the specimens fixed with 50 µl of
phosphate-buffered saline (PBS) and ethanol (1:1 vol vol−1).
No formaldehyde was used because of its potentially neg-
ative effects on the hybridization procedure, such as possi-
bly resulting in a reduced permeability to oligonucleotide
probes (Hugenholtz et al., 2001). Fixed samples were im-
mediately analyzed or, when this was impossible, stored at

−20◦C for up to one week. For the hybridization protocol,
the PBS:ethanol mixture was removed by exposure to LAF
(Laminar Air Flow) for a few minutes. In this way, ethanol
could be removed without negatively affecting the FISH re-
sults. Then, 40 µl of a mixture (9:1 vol vol−1) of hybridiza-
tion buffer [5M NaCl, 1M Tris/HCl, 35 % formamide and
0.01 % SDS] and probe solution (0.5 ng µl−1 working con-
centration) was added. The percentage of formamide was
chosen based on literature data (for the EUK 1209R probe;
Stoeck et al., 2003) and on the results of preliminary ex-
periments carried out for the definition of the optimal strin-
gency for the probe S17. All probes (including non-sense
probes) had been previously labeled at the 5′ end with the
fluorescent molecule Cy-3 (Eurofins MWG Operon). After
hybridization, slides were placed into a Petri dish and put
into a dark incubation chamber. Within the Petri dishes, we
also placed a small piece of a paper towel soaked with 1 ml
of hybridization buffer, to prevent buffer evaporation from
the samples. Hybridization times varied from 1.5 to 3 h at
46◦C. After incubation, the hybridization mixture was re-
moved and 200 µl of pre-warmed (46◦C) washing buffer [5M
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NaCl, 1M Tris/HCl, 0.5M EDTA, 0.01 % SDS] were added.
The slides were incubated at 48◦C for 15 min and then the
solution carefully removed using a pipette. After that, slides
were rinsed with sterile milliQ water and then dried under
LAF. Finally, slides were observed under an epifluorescence
microscope (Zeiss Axioskop 2, at 100X magnification) using
an appropriate filter set for Cy-3.

In order to differentiate fluorescence emission among
cells, digital images of hybridized foraminifera were ac-
quired, with fixed settings and no scaling, using a Lumix
TZ-65 10.1 megapixels digital camera (Panasonic) attached
to the epifluorescence microscope. This approach was sim-
ilar to that already used for measuring the uptake rates of
fluorescent bacteria by foraminifera (Langezaal et al., 2005).
Then, we estimated the fluorescence emission as the level of
brightness of each picture by constructing a scale of fluores-
cence (Fig. 3).

Initially, we performed tests to verify the suitability of
FISH protocol on foraminiferal cells. While FISH is rou-
tinely used to analyze prokaryotic and other eukaryotic mi-
crorganisms, it has never been applied to foraminifera. This
made it necessary to perform tests to verify the applicability
of FISH to this group of unicellular organisms.

First, foraminiferal individuals were examined under epi-
fluorescence microscopy for autofluorescence (i.e., without
any probe addition) in order to exclude that some cellular
components (e.g., photosynthetic pigments, cofactor F420
and some proteins) displayed autofluorescence (Fig. 1). This
could lead to potential artifacts or misinterpretations in the
analysis of FISH fluorescence (Hugenholtz et al., 2001), as
it might make uncertain the actual source of fluorescence.
Several good-looking organisms, randomly chosen (4 indi-
viduals for Ammoniagroup, Miliolids individuals and ag-
glutinated polythalamous taxa), were checked under epifluo-
rescence microscopy and under the filter set appropriate for
the fluorochrome Cy-3 utilized for FISH. Autofluorescence
is known for a wide range of prokaryotic and eukaryotic
organisms, including nematodes, phytoplankton cells and
stony corals (Booth, 1987; Forge and MacGuidwin, 1989;
Ainsworth et al., 2006). Our results revealed that all spec-
imens of all foraminiferal groups showed null or extremely
weak autofluorescence under the filter set used for Cy-3 de-
tection, suggesting that autofluorescence was not a source of
bias in FISH analysis of foraminifera.

Second, we tested the FISH protocol on dead foraminifera
from both experimental sets and natural sediment samples,
in order to verify the possible fluorescence emission by dead
cells or by empty tests containing detrital cytoplasmatic re-
mains (Fig. 1). This fluorescence emission could be the re-
sult of probe unspecific hybridization with the inner organic
layer of the shell, the protoplasm and other organic residues
of recently-dead organisms (Weiner and Erez, 1984; Bentov
and Erez, 2006). To do this, we applied a washing procedure
to kill cells and to remove the organic matrix. We incubated
cells from one to two hours in 3 % NaClO and, after that,

we washed them in deionised water (7 steps). The washed
shells were also observed under a SEM microscope which,
because of the high magnification, allowed testing the ef-
fectiveness of the washing protocol in removing the organic
component(s) of the test. In this framework, 3 individuals
from Ammoniagroup and 2 from Miliolids were hybridized
with EUK 1209R probe while, 4Ammoniagroup individuals
and 3 Miliolids organisms were tested with the foraminiferal
specific S17 one (Fig. 2). SEM observations provided us
evidence that this protocol was highly efficient in remov-
ing all cytoplasmatic remains in both groups. The emission
of fluorescence was null or, when detectable, extremely low
and therefore indistinguishable from the background fluores-
cence. Only in one case, one organism belonging to Miliolids
when hybridized with the S17 probe, displayed a fluorescent
signal evident only along the shell edge. This signal could
be caused by an inefficiency in the removal of the residual
organic matter (along the perimeter of the inner chambers of
the test, where the fluorescence signal was localized) with the
washing procedure described above. Due to this result, the
procedure was modified by increasing the incubation time
in 3 % NaClO from 1 to 2 h. We doubled the time of Na-
ClO treatment to obtain a more efficient removal of organic
residues from shells. This procedure allowed eliminating any
fluorescent signal in the two dead Miliolids specimens sub-
sequently analyzed. An important step for the optimization
of the protocol was to further demonstrate that shells and
their organic components did not hybridize with probes and
to verify that tests were not a barrier for probes permeation.
For this reason, 12 specimens (6 individuals fromAmmonia
group and 6 from Miliolids) were incubated in EDTA 0.1M
for 36 h, according to the protocol described in Le Cadre and
Debenay (2006), then hybridized using both probes (Fig. 1).
The result of our experiment clearly showed that the shell
and its organic components did not hybridize with probes
and therefore verifies that the test did not hamper the probe
penetration inside the cell, and that the fluorescence was not
the result of the unspecific hybridization between probes and
organic components of the foraminiferal test (Fig. 2).

The steps discussed above allowed us to establish a FISH
protocol that was unbiased by false positives. The results of
the analyses performed after optimization are shown in the
following paragraph.

2.3 Statistical analyses

The Chi-squared 2-sample test with Yates continuity correc-
tion was utilized to test for differences between the FISH re-
sults obtained with the two probes (EUK 1209R and S17).
The test was performed using the software R 2.11.1. The T-
test for paired data was performed to test differences in the
numbers of specimens classified as “active” and “inactive”
by optical microscopy and FISH analysis for each taxonom-
ical group.

www.biogeosciences.net/8/2075/2011/ Biogeosciences, 8, 2075–2088, 2011
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Fig. 4. Comparison between OM and FISH efficiency. “Active” OM = individuals that displayed pseudopodial activity; “inactive”
OM = individuals that did not show pseudopods but, on the basis of cytoplasmatic color, presence of sediment in front of the aperture
and of pigments inside the cell, may be alive but in a quiescent state. “Metabolically active” FISH = individuals that emitted fluorescence,
reported as low or high basing on the signal intensity; “metabolically inactive” FISH = individuals that did not emit any visible fluorescence.

Table 2. Results of FISH analyses performed on different taxonomic groups. Comparison between EUK 1209R and S17 probe results. See
text for details.

Taxonomic group # specimens # specimens tested # specimens FISH % stained # specimens # specimens FISH % stained
with EUK 1209R fluorescence with specimens tested with fluorescence specimens

probe EUK 1209R probe S17 probe with S17 probe

Ammoniagroup 33 19 17 89 14 11 79
Miliolids 35 25 22 88 10 8 80
Agglutinated polythalamous taxa 18 9 7 78 9 8 89
Soft-shelled monothalamous taxa 11 3 3 100 8 6 75

Total 97 56 49 88 41 33 80

3 Results: application of FISH protocol

Because it is impossible testing, on the same organism, FISH
and any other techniques that imply the use of dyes or probes,
we decided to compare our FISH protocol with the optical
microscopy. For this reason, the first step has been the ob-
servation of all the organisms, belonging to different taxo-
nomic groups from different samples (culture maintenance,
core incubation and natural sediment samples), under an op-
tical microscope. Results are shown in Table 1. The organ-
isms were classified as “active” and “inactive” under the opti-
cal microscope (OM), based on the characteristics described
in the Materials and Methods section. All 20 individuals be-
longing to theAmmoniagroup from our culture maintenance
setting were considered “inactive” under the optical micro-
scope (Table 1a), while the 3 organisms from core incubation
samples, which showed pseudopodial activity, were classi-
fied as “active” (Table 1b). Finally, 4 of the 10 individuals
from the natural sediment samples were “active” and 6 were
“inactive” (Table 1c). In the Miliolids group, all 17 indi-

viduals from the culture maintenance were “inactive”. Con-
versely, 8 of the 18 organisms from natural sediment samples
were classified as “active” and 10 as “inactive” (Table 1c).
Five agglutinated taxa cells from culture sets (Table 1a), all
belonging to the speciesEggerella scabra,were also ana-
lyzed (1 was “active” and 4 were “inactive”, Table 1a). The
2 organisms from the core incubation also were “inactive”
(Table 2b). From natural samples, 11 agglutinated individ-
uals (belonging toEggerella scabraandLeptohalysis scottii
species) were picked. Five were classified as “active” and
6 as “inactive” (Table 1c). Finally, only one of the 5 soft-
shelled monothalamous organisms (i.e.,Psammophagasp.)
from the culture sets was “active”, while the others were
“inactive” and did not show any pseudopodial activity (Ta-
ble 1a). From natural samples, only 1 of the 6 soft-shelled
monothalamous organisms (Psammophagasp. and saccam-
minid morphotypes) showed pseudopodial activity and was
“active”, while the other 5 were classified as “inactive” (Ta-
ble 1c; Fig. 4). All these individuals were subsequently ana-
lyzed by FISH (Fig. 1).
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We performed our FISH protocol on a total of 97 individu-
als (Table 2), which were representative of the foraminiferal
groupsAmmonia, Miliolids, agglutinated polythalamous and
soft-shelled monothalamous taxa. In detail, FISH protocol
was performed on 33 specimens ofAmmoniagroup (Ta-
ble 2); 19 of them were tested using EUK 1209R probe and,
of these, 17 emitted fluorescence. The remaining 14 were
tested using the specific foraminiferal probe S17 and 11 emit-
ted fluorescence. Among the 35 individuals of Miliolids as-
sayed (Table 2), 25 were hybridized with EUK 1209R and 22
emitted fluorescence, while eight out of ten, hybridized with
S17, emitted fluorescence. For agglutinated polythalamous
taxa, 18 organisms were hybridized, nine with EUK 1209R
and nine with S17. After hybridization with EUK 1209R
probe, seven emitted fluorescence while only one out of the
nine assayed with the S17 probe did not result in a fluores-
cence signal. Among soft-shelled monothalamous taxa, all
the three individuals tested with EUK 1209R emitted fluores-
cence, while six out of eight cells assayed with S17 emitted
fluorescence.

Table 2 shows the percentages of cells which produced
a positive FISH signal using the two probes (the universal
eukaryotic EUK 1209R and the foraminiferal-specific S17).
The probes showed a comparable efficiency in staining liv-
ing individuals. In particular, the percentage of cells stained
ranged from 78 to 100 % using the EUK 1209R probe and
from 75 to 89 % with the S17 probe (Table 2). The chi-
squared 2-sample test with Yates continuity correction, per-
formed to test differences between the results obtained using
the probes EUK 1209R and S17 revealed that the results ob-
tained with the two probes were not significantly different
(p-value> 0.05).

Table 3 reports the results of the FISH analyses performed
on the organisms described in Table 1, and interpreted us-
ing a fluorescence scale (as reported in Fig. 3). This pro-
cedure allowed us to distinguish, based on the different flu-
orescence emission, between “metabolically active” (low to
high fluorescence) and inactive (no fluorescence) individuals
(Fig. 3 and Fig. 4). Based on this fluorescence scale, cells
that did not show any fluorescence signal or displayed back-
ground fluorescence were classified as “inactive” (Table 3;
Fig. 4). Organisms with a low fluorescence emission after
FISH hybridization were classified as “metabolically active”
but in a quiescent state (low activity), while organisms that
showed high fluorescence were judged as “metabolically ac-
tive” (high activity). The results clearly highlight that this
classification of metabolically active/inactive state based on
the fluorescence signal after hybridization is different from
the one obtained using the optical microscope. Five of the 26
Ammoniagroup individuals, from natural samples and cul-
ture, classified as “inactive” under the optical microscope,
did not emit fluorescence, while nine emitted a strong flu-
orescence signal, indicating potentially intense metabolism;
the other 12 cells displayed a low fluorescence (Table 3).
Conversely, six of the sevenAmmoniagroup organisms, clas-

sified as “active” under the optical microscope, showed a
strong fluorescence, while only one showed a low fluores-
cence signal (low metabolic activity). Five of the 27 inactive
Miliolids did not show any fluorescence, while ten exhibited
a very strong fluorescence signal. The remaining 12 organ-
isms had a low fluorescence emission (Table 3). However,
all eight cells classified as “active” using microscope obser-
vations yielded “metabolically active” using FISH analysis.
Among the 12 agglutinated individuals classified as “inac-
tive” under optical microscope, one did not emit fluorescence
and nine showed low fluorescence emission (probably cor-
responding to a quiescent/dormant state); 2 were “metabol-
ically active”, displaying a strong fluorescence signal (Ta-
ble 3). Among the other six agglutinated individuals, classi-
fied as “active” by optical microscopy, four were classified as
“metabolically active” also using FISH, while two showed a
low fluorescence emission. Finally, 11 soft-shelled monotha-
lamous specimens were analyzed. Two organisms of the nine
classified as “inactive”, from natural samples, did not show
fluorescence; six showed a low fluorescence signal, (low
metabolic activity), while the remaining one (Saccamminid
sp. 8) displayed an intense fluorescence (high metabolic ac-
tivity). The two Psammophagasp. specimens from natu-
ral and culture maintenance samples, previously classified as
“active”, also displayed intense fluorescence (high metaboli-
cally activity).

Even if cells showed comparable intensities of fluores-
cence emission, there were some differences among the dif-
ferent taxonomic groups. In both theAmmoniagroup and
Miliolids specimens, the fluorescence was apparently homo-
geneous in the cell protoplasm even if, in some instances in
theAmmoniagroup, the fluorescence was concentrated in the
last chamber or in the first ones (Fig. 3e). In case of Miliolids,
the fluorescence was highest along the edge of the shell. This
signal was different from that observed in one case after the
washing procedure during the optimization of our FISH pro-
tocol. In fact, in that case the fluorescence was localized just
along the perimeter of the test and not inside the cell, while
the signal registered on living organisms was homogeneous
in the cell, strongest along the edge of the shell. Also in ag-
glutinated polythalamous foraminifera, the fluorescence ap-
peared weaker and quite homogeneously distributed within
the organisms (Fig. 3i, p) while, in soft-shelled monothalam-
ous individuals, the fluorescence signal was more localized
in different regions of the cell (Fig. 3m). We can not ex-
clude that a difference in shell composition could bias the
fluorescence emission. However, it is evident that there is
clear variability of fluorescence emission due to the different
conditions. This means that the main signal is well recogniz-
able, and this issue in not really affecting our results.

Optical microscopy (“active” vs. “inactive” organisms)
and FISH (null, low and high fluorescence) analyses yield
different results (Fig. 4; Tables 1 and 3). The number of
specimens considered “inactive” after OM was 74, while
those classified “inactive” after FISH were 13 (as sum of
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Table 3. Classification of fluorescence emission after FISH hybridization performed on organisms belonging to different taxonomic groups
(already shown in Tables 1 and 2). No = no fluorescence emission; low = weak fluorescence emission; high = strong fluorescence emission.
Fluorescence intensity was used as an index of metabolic activity (inactive vs. active). See text for details.

Level of fluorescence

Inactive Active Active
Taxonimic group # organisms No Low High

Ammoniagroup 33 5 13 15
Miliolids 35 5 12 18
Agglutinated polythalamous taxa 18 1 11 6
Soft-shelled monothalamous taxa 11 2 6 3

Total 97 13 42 42

individuals from all taxonomic groups). The T-test for
paired data performed on numbers of specimens detected
as “inactive” by optical microscopy and FISH analysis, for
each taxonomic group, revealed significant differences (p-
value< 0.05) between the two techniques. The metabolically
inactive (no fluorescence) individuals detected by FISH were
significantly lower (p-value<0.05) than those revealed by
optical microscopy.

4 Discussion

Fluorescent in situ hybridization has been widely utilized
for a decade for the identification of living bacteria and ar-
chaeal cells in a variety of habitats, including marine sedi-
ments and soils (Karner and Fuhrman, 1997; Christensen et
al., 1999). As emphasized in Kerkhof and Ward (1993) and
Smith and del Giorgio (2003), the capacity of FISH to detect
metabolically active bacterial cells is related to the cellular
rRNA content, widely recognized as an index of cellular ac-
tivity (Karner and Fuhrman, 1997). In addition, due to the
employment of taxonomic-specific probes, FISH allows to
distinguish bacterial and archaeal cells belonging to differ-
ent taxonomic groups (Hugenholtz et al., 2001). FISH also
has been used on several eukaryotic protists, such as ciliates,
flagellates and mixed protists assemblages (Lim et al., 1993,
1996; Fried at al., 2002), with different purposes and results.
For example, Lim et al. (1996) utilized FISH as a quantitative
method for examining natural assemblages of protists; Fried
at al. (2002) used fluorescent in situ hybridization, together
with silver stain technique, to improve ciliate identification
and counting; Medlin and Kooistra (2010) recently reported
FISH as a useful tool to estimate the diversity in marine pho-
tosynthetic protist communities. This molecular technique
has shown promising results also in detecting the metaboli-
cally active fraction of organisms in assayed samples. The
results of Lim et al. (1993), who applied rRNA-based probes
in the observation of marine nanoplanktonic protists, clearly
showed that the hybridization was different in cells under dif-

ferent physiological states. In particular, they showed that a
very strong signal after hybridization of cells in early to mid-
logaritmic phase of growth (when it is assumed that cells are
under an intense metabolic activity), while a weaker signal
was typical in cells in stationary growth (when the metabolic
activity is reduced; Lim et al., 1993).

Based on the success of FISH in other groups, we tested
its ability to detect metabolically active foraminifera, and to
discern between different metabolic statuses. Because the
rRNA cellular content is known to be proportional to the
growth rate of a cell (DeLong et al., 1989), we expected that
the physiological condition of foraminiferal cells would af-
fect the amount of probe-bound signal and consequently the
intensity of the hybridization signal. We hypothesized that
nourished individuals are more active than starved and/or
stressed ones, and thus, nourished individuals should emit
a higher fluorescence signal as a result of a higher number of
active ribosomes in the cells (which are busy in synthesizing
proteins to sustain cell growth). To test this hypothesis, we
used assayed foraminifera from different experimental sets
(i.e., culture maintenance and core incubation) and from nat-
ural samples, as described above. Our results clearly indicate
that the FISH approach discriminates different metabolic sta-
tus of cells through a gradient in the fluorescence emission,
and without any statistical differences between the univer-
sal eukaryotic probe (EUK 1209R) and the foraminiferal-
specific probe (S17). Our results are similar to those pub-
lished in Eller et al. (2007), where the authors show the use
of specific probes to characterize phytoplankton samples tar-
geting different taxonomic groups belonging to Haptophyta
and Heterokonta. After they tested several new probes to de-
tect organisms at different taxonomic levels, they found that
the signal with specific probes showed an intensity that was
comparable to that of the universal eukaryotic probe EUK
1209R.

In addition, our results show that FISH provides the means
to discern different physiological statuses (from low to high),
thus providing a more detailed and robust way to distinguish
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between active and inactive organisms when compared to op-
tical microscopy. All the organisms, classified as “active” un-
der the OM (basing on their visible pseudopodia), were clas-
sified as “metabolically active” also using FISH and showed
a high fluorescence signal. Only in three cases (one individ-
ual belonging toAmmoniagroup and two individuals belong-
ing to agglutinated polythalamous taxa), organisms showing
pseudopodial activity displayed a low fluorescence intensity
after FISH hybridization, which may suggest low metabolic
activity but not complete dormancy of the cell. We thus
can hypothesize that the low fluorescence may be the result
of stress to the cell during manipulation for FISH analyses.
These results, if true, highlight the high sensitivity of FISH
in detecting also short-term changes in the cellular metabolic
status. However, if excluding the three cases of low fluores-
cence in those organisms showing pseudopodial activity, the
hybridization results from all the other “active” organisms as-
sayed with FISH hybridization underline that the FISH does
not produce false negative results.

However, our results showed that the use of only OM
may lead to an over-estimation of inactive cells. Indeed,
the number of specimens considered “inactive” after opti-
cal microscopy (74) is significantly higher than those clas-
sified “inactive” after FISH (13). This important difference
is possibly a consequence of the capability of the FISH pro-
tocol to discriminate among those organisms claimed as “in-
active” under the optical microscope based on the absence
of pseudopodial activity and those that were metabolically
active (high or low fluorescence signal). This was observed
in 9 organisms belonging to theAmmoniagroup, 10 Mili-
olids, two individuals belonging to agglutinated polythalam-
ous taxa and 1 to soft-shelled monothalamous taxa. These
results may be evidence that the lack of visible pseudopodial
activity per se does not mean complete metabolic inactivity
of the cell (de Nooijer et al., 2008). For these reasons, the
FISH protocol developed here could represent an innovative
and complementary procedure to those traditionally utilized,
e.g., Rose Bengal staining, FDA and BCECF-AM probes,
MTT salt and CellTracker Green.

Rose Bengal is a cheap, easy and fast procedure, resulting
useful for environmental sample analysis but it is well known
to be not completely reliable for the staining of recently dead
cells, because remnants of tissues may remain preserved (and
thus stainable) for a long time within dead animals (Murray
and Bowser, 2000). As such, since the Rose Bengal binds
proteins and other macromolecules, the potential for generat-
ing false positive cells is quite high. Rose Bengal remains the
cheaper and faster method to grossly evaluate the live/dead
proportions in a foraminiferal assemblage, but the Rose Ben-
gal stain does not provide detailed and accurate information
on the metabolic status of cells. The salt MTT, analogous
to Rose Bengal staining, does not provide information on
the metabolic activity of the organisms. In addition, this
approach could produce false positives and needs the use
of antibiotics to stop bacterial activity that also could cause

staining of dead organisms (de Nooijer et al., 2006). Other
approaches to detect metabolically active foraminifera are
based on fluorogenic probes (e.g., diacetates of fluorescein –
FDA- and AM-esters of biscarboxyethylcarboxyfluorescein
– BCECF-AM-; Bernhard et al., 1995) that measure both en-
zymatic activity (required to activate their fluorescence) and
cell-membrane integrity. The limit of these probes is the
duration of postmortem enzymatic activity, which imposes
some limitations in the experimental design (Bernhard et al.,
1995). This issue might represent a potential problem for an-
other widely-utilized probe, the CellTracker Green CMFDA
(CTG) that can be applied to both unicellular and multicellu-
lar marine organisms (Danovaro et al., 2010). Even if it has
the advantage of being a “non-terminal method” (Bernhard
et al., 1995; Pucci et al., 2009), the CTG-generated fluores-
cence can be masked by other sources of fluorescence, such
as the presence of bacterial stocks or nematodes living inside
the foraminiferal shell (Pucci et al., 2009). In this context,
the FISH protocol could add more information to that ob-
tained using the other techniques mentioned above. In fact,
this molecular technique permits discrimination between ac-
tive and inactive cells, due to the detection of their rRNA
content, and to assess different metabolic states of each cell.
The high lability of rRNA is expected to exclude staining
events even after a recent cell death, potentially reducing the
possibility of false positives.

5 Conclusions

We propose the FISH as a complementary technique, which
distinguishes between different metabolic conditions (as low
and high fluorescence) and detects quiescent/dormant cells.
Our study shows that this technique is reliable and does not
generate false positive results (i.e., detection of a fluores-
cence signal from totally inactive cells). This characteris-
tic offers the possibility to use FISH in the framework of
short-term experimental studies, where postmortem persis-
tence of enzymatic activity can introduce a potential bias
if traditional viability techniques are used. Possible appli-
cations of the FISH technique include the evaluation of the
physiological response following ecotoxicological or dietary
experiments, and the detection of short-term changes in the
foraminiferal metabolic status. As an additional advantage,
FISH does not require laboratory-intensive incubations with
antibiotics (as needed for MTT staining, for example) and
allows sample storage at−20◦C for later analysis , after the
picking of organisms and the fixation step (with PBS and
ethanol). However, one disadvantage of FISH, along with
the necessity of expensive facilities (i.e., epifluorescence mi-
croscope), is its difficulty to be used as screening procedure
for large volumes of sediment. For this reason, FISH does
not represent an alternative tool to those traditionally utilized
in studies of foraminiferal ecology; rather, it is a complemen-
tary molecular technique that is useful in cases in which other
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techniques may fail. The conditions and species used in this
study are obviously not representative of all natural condi-
tions and foraminiferal species. Future studies applying this
methodology will add more data to validate it. However, it is
important to highlight the potential of this technique to study
foraminiferal physiology and ecology, with applications both
in natural and experimental settings.
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