Dependency Pairs Termination in Dependent Type

Theory Modulo Rewriting Frédéric Blanqui 12 , Guillaume Genestier 23 , and Olivier Hermant We introduce a termination criterion for a large class of programs whose operational semantics can be described by higher-order rewriting rules typable in the λΠ-calculus modulo rewriting (λΠ/R for short).

λΠ/R is a system of dependent types where types are identified modulo the β-reduction of λ-calculus and rewriting rules given by the user to define not only functions but also types. Those rewriting rules can be non-orthogonal, meaning that they can overlap or be non-linear. An example including overlapping and a type defined by rewriting rules is the propositional integer comparison:

symbol Prop : TYPE symbol ⊥ : Prop symbol : Prop symbol Prf : Prop ⇒ TYPE symbol infix ≤ : Nat ⇒ Nat ⇒ Prop rule Prf -→ Πc:Prop . Prf c ⇒ Prf c rule (s x) ≤ 0 -→ ⊥ rule Prf ⊥ -→ Πc:Prop . Prf c rule 0 ≤ y -→ rule x ≤ x -→ rule (s x) ≤ (s y) -→ x ≤ y
Dependency pairs are a key concept at the core of modern automated termination provers for first-order term rewriting systems. Arts and Giesl [START_REF] Arts | Termination of term rewriting using dependency pairs[END_REF] proved that a first-order rewriting relation terminates if and only if there are no infinite chains, that are sequences of dependency pairs interleaved with reductions in the arguments. We extend this notion of dependency pair to higher-order rewriting. Then we prove that, for a large class of rewriting systems R, the combination of β and R is strongly normalizing on terms typable in λΠ/R if, there is no infinite chain.

To do so, we first construct a model of this calculus based on an adaptation of Girard's reducibility candidates [START_REF] Girard | Proofs and types[END_REF], and prove that every typable term is strongly normalizing if every symbol of the signature is in the interpretation of its type (Adequacy lemma). We then prove that this hypothesis is verified if there is no infinite chain.

Our criterion has been implemented in SizeChangeTool. For now, it takes as input Xtc (used for the termination competition) or Dedukti files, but it could be easily adapted to a subset of other languages like Agda. As far as we know, this tool is the first one to automatically check termination in λΠ/R, which includes both higher-order rewriting and dependent types.

Definition 1 (λΠ/R). λΠ/R is the PTS λP [START_REF] Barendregt | Lambda calculi with types[END_REF], enriched by a finite signature F and a set R of rules (∆, f l → r) such that FV(r) ⊆ FV(l) and ∆ is a context associating a type to every variable of l. Each f ∈ F has a type Θ f and a sort s f . f is (partially) defined if it is the head of the left-hand side of a rule.

Let → = → β ∪ → R where → β is the β-reduction of λ-calculus and → R is the smallest relation containing R and closed by substitution and context. The typing rules are the ones of λP too, but the conversion is enriched with R and function symbol introduction is similar to variable introduction.

Γ a : A A → * * ← B Γ B : s (conv) Γ a : B Γ Θ f : s f (fun) Γ f : Θ f

Dependency Pairs in Dependent Type Theory Modulo Rewriting Blanqui, Genestier and Hermant

We assume that → is locally confluent and preserves typing. For all f , we require Θ f : s f . As a β step can generate an R step, and vice versa, we cannot expect to prove the termination of → β ∪→ R from the termination of → β and → R . The termination of λΠ/R cannot be reduced to the termination of the simply-typed λ-calculus either because of type-level rewriting rules.

So we build a model of our calculus by interpreting types into sets of terminating terms, adapting Girard's candidates [START_REF] Girard | Proofs and types[END_REF]. To do so, we assume given a well-founded order on symbols of sort P. This interpretation is such that if f is a function symbol of type Π(x : T).U y, then f x ∈ U y implies x i ∈ T i if i is an accessible position in f (accessibility is similar to the constraint of positivity of inductive types, for rewriting; see [START_REF] Blanqui | Definitions by rewriting in the calculus of constructions[END_REF] for a definition).

We then extend this definition to interpret all types, such that if T → U , then T = U . We use σ Γ to denote that for all x : T in Γ, σ(x) ∈ T σ .

Lemma 2 (Adequacy). Assuming for all f , f ∈ Θ f , if Γ t : T and σ |= Γ, then tσ ∈ T σ .

The hypothesis "for all f , f ∈ Θ f " can be reduced to the absence of infinite chains, as shown by Arts and Giesl for first-order rewriting [START_REF] Arts | Termination of term rewriting using dependency pairs[END_REF].

Definition 3 (Dependency pairs). Let f l > g m iff there is a rule f l → r ∈ R, g is (partially) defined and g m is a maximally applied subterm of r. f t 1 . . . t p > g u 1 . . . u q iff there are a dependency pair f l 1 . . . l i > g m 1 . . . m j with i ≤ p and j ≤ q and a substitution σ such that, for all k ≤ i, t k → * l k σ and, for all k ≤ j, m k σ = u k .

We consider a pre-order on F compatible with typing and rewriting (ie. if g ∈ Θ f or r £ g for f l → r ∈ R, then f g). R is well-structured and accessible if for every rule (∆, f l → r), r is typable using only symbols smaller or equal to f and for every substitution

σ, if Θ f = Π x : T .U , then [x → l]σ |= x : T implies σ |= ∆.
Theorem 4. The relation → = → β ∪ → R terminates on terms typable in λΠ/R if → is locally confluent and preserves typing, R is well-structured and accessible, and > terminates.

Following [START_REF] Blanqui | Definitions by rewriting in the calculus of constructions[END_REF], accessibility can be checked, by imposing that every variable occurring in the right-hand side of a rule is accessible in the left-hand side. Following [START_REF] Wahlstedt | Dependent type theory with first-order parameterized data types and well-founded recursion[END_REF], to prove that > terminates, we can use Lee, Jones and Ben-Amram's size-change termination criterion [START_REF] Lee | The size-change principle for program termination[END_REF].

Thus, we obtain a modular criterion extending Arts and Giesl's theorem that a rewriting relation terminates if there are no infinite chains [START_REF] Arts | Termination of term rewriting using dependency pairs[END_REF] from first-order rewriting to dependentlytyped higher-order rewriting.

This result also extends Wahlstedt's work [START_REF] Wahlstedt | Dependent type theory with first-order parameterized data types and well-founded recursion[END_REF] from weak to strong normalisation. Like Wahlstedt's work, Agda's termination checker [START_REF] Abel | foetus -Termination Checker for Simple Functional Programs[END_REF] is designed for rules defined by constructors pattern matching, enforcing the rewriting system to be orthogonal and every definition to be total. Our criterion requires a much weaker condition: local confluence.

3

 3

1 INRIA 2

 12 LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay 3 MINES ParisTech, PSL University