
HAL Id: hal-02442462
https://hal.science/hal-02442462

Submitted on 27 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-consistent 1-D solution of multiquantum-well laser
equations

G. Debaisieux, G. Herve´-Gruyer, Marcel Filoche, S. Bouchoule, J. Palmier

To cite this version:
G. Debaisieux, G. Herve´-Gruyer, Marcel Filoche, S. Bouchoule, J. Palmier. Self-consistent 1-D
solution of multiquantum-well laser equations. Optical and Quantum Electronics, 1997, 29 (6), pp.651-
660. �10.1023/A:1018588408036�. �hal-02442462�

https://hal.science/hal-02442462
https://hal.archives-ouvertes.fr


Self-consistent 1-D solution
of multiquantum-well laser equations

G . D E B A I S I E U X , G . H E R V EÂ - G R U Y E R , M . F I L O C H E ,
S . B O U C H O U L E , J . F . P A L M I E R

France Telecom, CNET/PAB, Laboratoire de Bagneux
196 Avenue Henri-Ravera, BP 107, 92225 Bagneux, Cedex, France

Received 12 December 1996; revised and accepted 10 February 1997

This paper presents a self-consistent 1-D multiquantum-well laser simulation in which,
for the ®rst time, the SchroÈdinger equation is solved over the whole quantum-well zone,
taking into account well-to-well coupling. The computed light-intensity curve is com-
pared with experimental results for an InGaAs/InGaAsP multiquantum-well laser and
also with simpli®ed models. The quantum calculation has an important in¯uence on the
carrier density pro®le in the active region. This results in a signi®cant difference in the
estimation of the threshold current with respect to other simpli®ed models.

1. Introduction
Multiquantum-well (MQW) lasers are now considered as key devices in optical telecom-
munications systems. Numerical simulation at microscopic level may be of great help for
the design and optimization of those devices. It requires the solving of a set of coupled
equations, which describe the device electrical and optical properties.
This set of equations consists of the Poisson equation, the SchroÈ dinger equation, elec-

trical transport equations, the Helmholtz equation and a photon rate equation for optical
properties. Various solutions of that system have been proposed [1, 2] but none of these
takes correctly into account SchroÈ dinger global solutions. In some approaches the
SchroÈ dinger equation is solved once as a pre-processing step and the discrete levels are
calculated with ¯at bands [1]. In other works, the SchroÈ dinger equation is independently
solved in each well [2].
In this paper, a 1-D MQW laser simulation is presented in which the SchroÈ dinger

equation is introduced as a full part of the coupled system and globally solved over the
entire range of quantum wells in the active layer. The model takes into account such e�ects
as band bending and coupling between wells.
This model is applied to an InGaAs/InGaAsP multiquantum-well laser and experi-

mental L-I curves are compared with the computed one. This model is also compared with
the simple model in which the SchroÈ dinger equation is not included in the equation set and
carrier densities are calculated everywhere assuming a 3-D density of states.
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2. Model
In the steady state, MQW laser physics can be described by the following set of
equations.

2.1. Poisson equation

r�er/� � q�nÿ p ÿ D� �1�
where e is the permittivity, / the electrostatic potential, q the electron charge, n the
electron concentration, p the hole concentration and D the doping concentration.

2.2. Transport equations (drift-diffusion model)
Current densities:

Jn � qnlnr/n

Jp � qplpr/p

�2�

Continuity:

div Jn � qUn

div Jp � qUp

�3�

where Jn is the electron current density and Jp the hole current density, /n and /p are the
quasi-Fermi levels for electrons and holes, ln and lp are the carrier mobilities for electrons
and holes. The recombination terms Un and Up include spontaneous �Usp�, Auger �UAuger�,
Schockley±Read±Hall �URSH� and stimulated recombinations.

2.3. Carrier densities
Carrier densities are calculated within the parabolic approximation. Two cases are dis-
tinguished.

2.3.1. Carrier densities in the quantum-well zone
The quantum-well zone consist of wells and barriers, where the SchroÈ dinger equation is
consistently solved over the whole region. Assuming a slowly varying e�ective mass, a
Ben±Daniel±Duke Hamiltonian is used:

H � ÿ �h2

2

@

@z
1

m�z�
@

@z
� /�z� �4�

where m is the particle e�ective mass. The SchroÈ dinger equation is solved twice, once for
electrons in the conduction band and once for holes in the valence band. When the discrete
energy levels Ei and wavefunctions wi are known, carrier densities are given by:

n�z� � kbTme�z�
p�h2

X
i

jwe
i �z�j2 log 1� exp

/n�z� ÿ Ee
i

kBT

� �� �
� Nc�z�F1=2

/n�z� � /�z� ÿ vb
kBT

� �

p�z� � kbTmh�z�
p�h2

X
i

jwh
i �z�j2 log 1� exp

Eh
i ÿ /p�z�

kBT

 ! !

� Nv�z�F1=2

ÿ/�z� � vb ÿ Eg;b ÿ /p�z�
kBT

� �
�5�
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where kB is Boltzmann's constant, T is the temperature assumed to be constant over the
structure, vb is the barrier a�nity (all barriers are assumed to be of the same material), Eg;b

is the barrier bandgap, and F1=2 is the Fermi integral.
It can be seen in Equation 5 that carrier densities are the sum of two terms. The ®rst

term is the contribution of discrete states. The second term is an approximation of the
contribution of continuum states. It is evaluated assuming a continuous band edge for
those states over the quantum-well zone.

2.3.2. Carrier densities in bulk layers
3-D density of states is assumed. Carrier densities are given by the classical expressions:

n � NcF1=2
/n � /ÿ v

kBT

� �
; p � NvF1=2

ÿ/� vÿ Eg ÿ /p

kBT

� �
�6�

2.4. Helmholtz equation
The Helmholtz equation is given by:

DE � �k20er ÿ b2�E � 0 �7�

where E is the optical ®eld and b the modal propagation constant.
The optical permittivity is given by:

er�z� � �n2�z� ÿ aH
�n�z�
k0

g�n; p� � j
�n�z�
k0

g�n; p� �8�

where j2 � ÿ1, aH is the linewidth enhancement factor, n is the refractive index, g�n; p� is
the local gain and k0 is the wave vector at the emission wavelength.

2.5. Photon rate equation
The photon rate equation is given by:

vg 2 Im�b� ÿ aint � log�R�
L

� �
Nph � �bRsp � 0 �9�

where vg is the group velocity, aint are the intrinsic losses, L is the device length, R is the
facet re¯ectivity, Nph is the photon density, �b is the spontaneous emission factor and Rsp is
the spontaneous emission rate. It is stressed that the photon rate equation is 1-D integral
over the length of the active zone. Thus, Nph and Rsp are de®ned as the 1-D integral over
the length of the active zone (perpendicular to the plane of the quantum wells) of the 3-D
photonic density and the 3-D spontaneous emission rate.

2.6. Gain
2.6.1. Local gain
As an MQW laser is used, a logarithmic expression of gain [3] is assumed:

gl�n; p� � a ln
min�n; p�

nt

� �
where a is the characteristic gain and nt is the transparency density.
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2.6.2. Gain compression
Gain compression is introduced using the gain compression factor es, giving for the actual
expression of the local gain:

g�n� � gl�n; p�
1� es eNph

�10�

where eNph is the 3-D photon density evaluated assuming eNph � NphjEj2 where jEj2 is the
normalized 1-D optical ®eld.

2.7. Light output power
Taking into account the axial intensity pro®le along the longitudinal direction, light
output power is given by [4]:

Pout � vg�hxw
1ÿ R

2
���
R
p Nph �11�

where �hx is the photon energy at the emission wavelength, w is the width of the active zone
and R is the re¯ection coe�cient assumed to be equal for both facets of the laser.

2.8. Total current
As a longitudinal variation of Nph is assumed in Equation 11, a similar variation of current
must be assumed in order to remain consistent. Therefore the following expression for the
total current is assumed:

I � JLw
1ÿ R

ln�1=R� ���Rp �12�

where J is the 1-D current density and L is the length of active zone.

3. Numerical procedure
3.1. Discretization
The Poisson and SchroÈ dinger equations are discretized within a ®rst-order ®nite element
scheme. The Poisson equation is solved using a Newton±Raphson procedure, where the
o�-diagonal terms in the derivative matrix are neglected [5].
The SchroÈ dinger equation is solved using the bisection method for eigenvalues and

inverse iteration for eigenvectors. For numerical e�ciency, discretization of the SchroÈ -
dinger equation is performed on a restricted zone of the structure chosen to include the
quantum wells and the tails of the localized wavefunctions. This zone corresponds to the
domain represented in Fig. 2. Details on the solution of this equation can be found in [6].
The transport equations are discretized using the box method, ensuring total current

conservation through the whole structure. An ohmic contact is assumed for the boundary
condition. Transport equations are solved using a Newton±Raphson procedure. More
details on the Poisson and transport equations solutions can be found in [7].
The Helmholtz equation is discretized within the ®nite-element scheme and solved with

an inverse iteration method (fundamental mode only). Neumann boundary conditions are
assumed for the optical ®eld.

3.2. Solution of the coupled equations by an iterative procedure
The coupled equations described in Section 2 are solved together by use of a Sharfetter
Gummel scheme. In this scheme the potential / is the main variable for the Poisson
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equation, the quasi-Fermi levels /n and /p for the transport equation, the propagation
constant b for the Helmholtz equation and the photon density Nph for the photon rate
equation.
An initial solution is obtained by solving the Poisson±transport equations without

stimulated recombination. That solution is then used to solve the complete set of equa-
tions.
The basic principle of the iteration procedure is presented in Fig. 1. The innermost loops

are constituted by the Poisson and SchroÈ dinger equations on the one hand and the
transport equations on the other. In the ®rst loop the Poisson and SchroÈ dinger equations
were tightly linked in order to prevent algorithm destabilization. Each new equation
introduced in the system adds another loop. This is the case for the Helmholtz equation
and the photon rate equation; the latter gives the most external loop of the algorithm.
To prevent destabilization or oscillation of the coupled algorithm, relaxation has to be

incorporated in the scheme, especially for solving the Poisson±SchroÈ dinger and transport
equations. Convergence of a single loop on one variable may indeed induce destabilization
of another loop or both. To prevent this, a damping coe�cient is used when calculating
the derivatives for the Newton±Raphson procedure and a tight control of the number of
iterations of each loop.

Figure 1 Principle of iterative procedure.
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These mechanisms, once properly tuned, allowed both convergence with standard cri-
terion convergence and reduction of computation time. For example, computation in the
case presented in Fig. 2 (full model ± see below) takes about 1 h on an HP j210 work-
station.

4. Application to an MQW InGaAs/InGaAsP laser
Our model is used to simulate a nine-well MQW laser fabricated in our laboratory. The
material of the quantum wells is In0:47Ga0:53As. The material of the barriers is InGaAsP
lattice matched on InP �kgap � 1:2 lm�. The material of the cladding layers in InP. The

thickness of the wells is 50 AÊ and of barriers 60 AÊ . The quantum-well zone is surrounded
by a separate con®nement layer of 300 AÊ on the p-side and 900 AÊ on the n-side. Doping
concentration is 0:5� 1018 cmÿ3 for the p-side and 1� 1018 cmÿ3 for the n-side. See
Appendix 1 for other parameters.
In that structure, the quantum wells are tightly coupled by thin barriers. This is illus-

trated by Fig. 2 where the electron wave function of the lowest discrete energy level and
the hole wave function of the highest discrete energy level in the wells are plotted. Coup-
ling is shown through a signi®cant probability density jwj2 in the barrier.
Figure 3 shows three light-intensity (or L-I) curves: the experimental curve, the nu-

merical curve obtained by the model presented in Section 2 and the numerical curve
obtained by the same model and parameters except that the SchroÈ dinger equation was
removed from the equation set and the carrier densities were calculated with Equation 6 in
all layers. Results are commented on below. Also discussed is how the results di�er from
those of simple models commonly used for semiconductor lasers.

4.1. Slope of the L-I curve
In semiconductor lasers the slope of the L-I curve at threshold may be given by

Figure 2 First-level wavefunctions.
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dP
dI
� 1

2

�hx
q

1

1ÿ ai
L
lnR

�13�

The value of ai was chosen so that this simple model should ®t the experimental data, over
a wide range of L values. This method of choosing ai is consistent with our model because
integrating Equation 2 leads to the approximate relation:

jÿ jth � qvgNph ai ÿ ln�R�
L

� �
�14�

and using Equation 14 with Equations 11 and 12 gives Equation 13. Thus, in our example
with L � 210 lm and ai � 45 cmÿ1 a good agreement is found between computation and
experimental data. This high value of intrinsic losses is nevertheless standard for this type
of quantum-well laser which has a large number of wells leading to a large number of layer
interfaces in the active zone and a relatively high con®nement factor. Intrinsic losses,
which mainly take place in the active zone, are therefore enhanced when compared, for
instance, with those of a single quantum-well laser.
Above threshold, for large current values, the experimental data show light saturation

that is not taken into account by our model, even if light saturation is present through
Equation 10. In our example, experimental output power is lower by 0.5 mW than cal-
culated output power at about 80 mA, that is more than six times the threshold current.
In order to match the experimental light power saturation with Equation 10, a gain

compression coe�cient would have to be taken which is at least four times larger than was
taken for the simulation, leading to a value larger than the commonly accepted values.
Therefore gain compression is discarded as the only mechanism to explain light saturation.
Thermal e�ects due to experimental conditions are also discarded. Accordingly, we at-
tribute the di�erence between computation and experiment to other mechanisms not in-
cluded in our 1-D model. For instance, the model cannot take into account e�ects such as
lateral current losses or lateral inhomogeneities of carrier densities.

Figure 3 Light-intensity curves.
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4.2. Threshold current
The stimulated recombination at threshold is negligible and with the 1-D model the
threshold current is evaluated with Equation 3:

Ith � qwL
Z
z

�URSH � Usp � UAuger�dz �15�

If it is supposed that carriers are evenly distributed in the wells and close to their mean
value, then carrier densities may be considered as independent of z and Equation 15 results
in:

Ith � qV �URSH � Usp � UAuger� � qV �An� Bnp � Cnp�n� p�� �16�
where V is the active zone volume, and n and p are the average carrier densities for
electrons and holes. Coe�cients A, B and C account for RSH recombination, spontaneous
recombination and Auger recombination respectively. Furthermore, the threshold density
can be evaluated by assuming n � p and solving:

Cg�nth� � aint ÿ lnR
L

�17�

where C is the optical con®nement factor evaluated without carrier injection. It is shown
here that this assumption is erroneous for MQW lasers and may result in large mis-
evaluation of the threshold current.
The threshold current is a very sensitive parameter especially to the RSH, Auger and

spontaneous recombination coe�cients whose values are still under discussion for MQW
lasers. Consequently, good agreement between experimental value and simulation may be
found for both models using parameter values in the commonly accepted range. However,
di�erent models, using the same set of parameters, may give very di�erent values for the
threshold current as shown in Table I.
The di�erence between the full model and the simpli®ed model can be explained through

the way of estimating carrier densities in the quantum-well zone: 2-D Fermi statistics in
the full model and 3-D Fermi statistics in the simpli®ed model. In particular, the same
propagation constant is needed to satisfy Equation 9. However, at threshold, as we
evaluate carrier density di�erently, we obtain the same propagation constant by two
di�erent carrier density pro®les (Fig. 4). Therefore, the recombination rate pro®le is
greatly a�ected. To illustrate this, Fig. 5 shows the Auger recombination pro®le for both
models. As threshold current is mainly due to recombination currents, a large di�erence is
found between the di�erent models.
This shows that carrier pro®le in the quantum wells has great importance for MQW

laser simulation, because it can lead to a mis-evaluation of the threshold current, by about
+15% in our example.

TABLE I Threshold current: experimental and computed values

Experimental value Ith � 12:5 mA

Full model (Section 2) Ith � 12:4 mA
Simpli®ed model (no SchroÈ dinger) Ith � 14:5 mA

Equations 16 and 17 with

C � 8:14� 10ÿ2 and n � p � nth � 4:1� 1018 cmÿ3 Ith � 10:8 mA
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The full model can be applied whatever the coupling between wells. In can be partic-
ularly applied to other structures with wider barriers. In that case, well-to-well coupling
might disappear leading to a possible simpli®cation of the model as the SchroÈ dinger
equation needs only to be independently solved in each well. However, in that case, the full
model can still be used. For example, a similar analysis was performed on an eight-well
lattice-matched GaInAs/GaInAsP/InP quantum-well laser with identical well and barrier
width (100 AÊ ) leading to analogous results.

Figure 4 Comparison of carrier densities in quantum-well zone.

Figure 5 Comparison of Auger recombination rate in quantum-well zone.
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5. Conclusion
A self-consistent model has been presented for 1-D MQW laser simulation, which takes
into account both band bending and coupling in quantum wells through the SchroÈ dinger
equation. The computed L-I curve has been compared with experimental results and a
good agreement has been found near threshold, for a given set of parameters. However,
our computations cannot achieve a predictive ability due to uncertainties on the param-
eters, such as the recombination coe�cients.
Nevertheless, the comparison between our quantum model, which rigorously deals with

the quantum-well zone, and simpli®ed models shows a large di�erence in the spatial carrier
density pro®le. This has important consequences on spatial carrier recombination rate
pro®les and hence on the estimate of the threshold current.
We expect that our rigorous treatment of the quantum-well zone has important con-

sequences on other fundamental parameter modelling for MQW lasers, such as the dif-
ferential gain. This will be the subject of future work.
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Appendix 1 Main numerical parameters used in simulation

Parameter Symbol and value

Intrinsic losses aint � 45 cmÿ1

Facet re¯ectivity R � 0:31
Gain parameters for logarithmic expression g � a ln

ÿ n
nt
�

a � 1342 cmÿ1; nt � 1:5� 1018 cmÿ3

Gain compression coe�cient es � 5� 10ÿ17 cmÿ3

Henry's factor aH � 3:5
Group index ng � 3:8
RSH coe�cient A � 2:5� 108 sÿ1

Spontaneous recombination coe�cient B � 1� 10ÿ10 cm3 sÿ1

Auger coe�cient C � 1:5� 10ÿ29 cm6 sÿ1

Emission wavelength k � 1:55 lm
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