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Convergence of a finite-volume scheme for a heat
equation with a multiplicative stochastic force

Caroline Bauzet, Flore Nabet

Abstract We present here the discretization by a finite-volume scheme of a heat
equation perturbed by a multiplicative noise of Itô type and under homogeneous
Neumann boundary conditions. The idea is to adapt well-known methods in the de-
terministic case for the approximation of parabolic problems to our stochastic PDE.
In this paper, we try to highlight difficulties brought by the stochastic perturbation
in the adaptation of these deterministic tools.

Key words: Stochastic heat equation, Itô integral, multiplicative noise, Itô formula,
predictable process, Finite Volume Method.
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1 Introduction

In this section, we present the stochastic heat equation we are studying. After deriv-
ing assumptions on the data, we explain the goal of the paper and give the definition
of weak solution we are looking for. More precisely, we are interested in the follow-
ing stochastic heat equation set in (0,T )×Ω ×Θ ,

∂t

(
u(t,x,ω)−

∫ t

0
λu(s,x,ω)dW (s)

)
−∆u(t,x,ω) = 0, (1)
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where Ω is an open bounded polygonal subset of R2, T > 0, W = {Wt ,Ft ;06 t 6
T} is a standard adapted one-dimensional continuous Brownian motion defined on
the classical Wiener space (Θ ,F ,P) and λ ∈ R. An initial condition is given by a
deterministic function u0 ∈ L2(Ω):

u(0,x,ω) = u0(x), x ∈Ω , ω ∈Θ , (2)

and we consider homogeneous Neumann boundary condition :

∇u(t,x,ω) ·n(x) = 0, t ∈ (0,T ), x ∈ ∂Ω , ω ∈Θ , (3)

where n denotes the unit vector to ∂Ω , outward to Ω . In order to make the lecture
more fluent, we omit in the sequel the random variable ω . Note that the present
study can be easily adapted to the case where Ω is a subset of R3 but for the sake of
readability, we restrict the presentation to the 2-dimensional case.

In this paper, the stochastic integral
∫ .

0 λudW is understood in the sense of Itô, so
that due to its non-anticipative construction with simple processes, we must consider
an explicit time-discretization of this object. Note that the unknown u appears in the
stochastic integral, thus the noise is said to be multiplicative, otherwise it is additive.

The numerical analysis of heat equation (and generally second-order parabolic
equations) under stochastic perturbation, random source term or random coefficients
has been the subject of several studies by the way of finite-element approximations
(see [7] for a thorough presentation of the state of the art on this subject). The aim
of the present paper is to expose tools of stochastic calculus used to adapt known
methods in the deterministic case to get the convergence of a suitable finite-volume
scheme for the approximation of problem (1)-(2)-(3). This work stands for an in-
troductive study in order to apprehend more complex problems such as the finite-
volume approximation of stochastic nonlinear degenerate parabolic equations, hav-
ing in mind the deterministic case treated by [6].

In what follows, we will show the convergence of a suitable numerical scheme
through a stochastic process u, weak solution of (1)-(2)-(3) in the following sense:

Definition 1 A predictable process u with values in L2(Ω) is a weak solution of (1)-
(2)-(3) if u ∈ L2

(
(0,T )×Θ ;H1(Ω)

)
∩L∞

(
(0,T );L2(Ω ×Θ)

)
and if it satisfies P-

a.s in Θ and for any ψ ∈ AT = {ϕ ∈ C∞
(
R×R2

)
: ϕ(T, .) = 0} the variational

formulation∫ T

0

∫
Ω

u(t,x)∂tψ(t,x)dxdt−
∫ T

0

∫
Ω

∇u(t,x) ·∇ψ(t,x)dxdt +
∫

Ω

u0(x)ψ(0,x)dx

=
∫ T

0

∫
Ω

∫ t

0
λu(s,x)dW (s)∂tψ(t,x)dxdt. (4)

Remark 1 The predictability property of u with values in L2(Ω) is a condition
of measurability of the solution u with respect to the filtration F = (Ft)06t6T ,
which represents the history of the Brownian motion up to time T . It is required
since we consider a multiplicative noise. More precisely, it means that u belongs to
L2
(
(0,T )×Θ ,PT ,dt⊗P;L2(Ω)

)
where PT denotes the predictable σ -field gen-
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erated by (see [8, p.27])

{X : (0,T )×Θ → R : X is left-continuous and ∀t ∈ [0,T ],Xt is Ft -measurable} .

We denote by N 2
W (0,T ;L2(Ω)) the space of predictable processes with values in

L2(Ω). Endowed with the norm ||X ||2 =
∫ T

0
∫

Θ
||X ||2L2(Ω)

dPdt, it is a Hilbert space.

Remark 2 An application of Itô derivation formula (see [3, Theorem 4.17, p.105])
allows us to remark that the right-hand side of (4) can also be written in the following
manner∫ T

0

∫
Ω

∫ t

0
λu(s,x)dW (s)∂tψ(t,x)dxdt =−

∫
Ω

∫ T

0
λu(t,x)ψ(t,x)dW (t)dx.

2 Meshes, scheme and discrete norms

We will use a classical two-point flux approximation scheme with an admissible
mesh as in [5]. Firstly, we remind for convenience this definition adapted to our sub-
set Ω of R2 and give some notations. Secondly, we present the finite-volume scheme
used to approximate the weak solution u of (1)-(2)-(3). Thirdly, we introduce dis-
crete L2(Ω)-norm and H1(Ω)-seminorm used for the stability results exposed in the
next section.

An admissible mesh T is given by a family of disjoint open polygonal subsets
of Ω , called ”control volumes” and denoted by K such that:

• Ω = ∪K∈T K;
• if K,L ∈T , K 6= L, then K̊∩ L̊ = /0;
• if K,L ∈ T , K 6= L, either the 1-dimensional Lebesgue measure of K∩L is 0 or

K∩L is the edge σ of the mesh separating the control volumes K and L;
• at each K ∈ T , we associate a point xK ∈ K, called the center of K, such that if

K,L are two neighbouring control volumes, the edge σ = K|L which separates K
and L is orthogonal to the straight line going through xK and xL.

Once an admissible finite-volume mesh T of Ω is fixed, we will use in the sequel
the following notations.

Notations

• E[.] denotes the expectation, i.e the integral over Θ with respect to the probability
measure P.

• E is the set of the edges of the mesh T and Eint = {σ ∈ E : σ 6⊂ ∂Ω} the set of
interior edges.

• For any K ∈ T , EK is the set of the edges of the control volume K and mK the
Lebesgue measure of K.

• For any σ = K|L, mσ is the length of σ and dK|L the distance between the centers
xk and xL.

• h =size(T ) = sup{diam(K),K ∈T }, the mesh size.
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In order to compute an approximation of u on [0,T ], we take N ∈N∗ and consider
a fixed time step ∆ t = T

N ∈R
∗
+. We first define the set {u0

K ,K ∈T } by the discretiza-
tion of the initial condition using its mean value over the control volume K,

u0
K =

1
mK

∫
K

u0(x)dx. (5)

The equations satisfied by the discrete unknowns denoted by un
K , n∈ {0, · · · ,N−1},

K ∈T are given by the following explicit scheme

mK

∆ t
(un+1

K −un
K)+ ∑

σ∈EK∩Eint

mσ

dK|L
(un

K−un
L) =

mK

∆ t
λun

K(W
n+1−W n), (6)

where W n = W (n∆ t),∀n ∈ {0, · · · ,N}. Note that since the Brownian motion W is
standard, thus W (0) = 0. The random dependence of the discrete unknowns un

K
n ∈ {1, · · · ,N}, comes from the randomness of the increments W n+1−W n, again
for convenience, we omit the random variable ω and write un

K instead of un
K(ω). We

define the piecewise constant approximate solution (u∆ t
T ) on (0,T )×Ω ×Θ from

the discrete unknowns un
K by

u∆ t
T (t,x,ω) = un

T (x,ω) = un
K(ω) = un

K , t ∈ [n∆ t,(n+1)∆ t), x ∈ K, ω ∈Θ , (7)

where (un
T )T defined on Ω×Θ is the sequence of the approximate solution at time

tn = n∆ t for n ∈ {0, ...,N}.

Remark 3 Let us mention that using properties of the Brownian motion W , for all
K ∈T and all n ∈ {0, · · · ,N}, un

K is Fn∆ t -measurable. Thus, u∆ t
T is predictable with

values in L2(Ω) as an elementary process adapted to the filtration (Ft)06t6T .

We then define for any n ∈ {0, ..,N} the following discrete L2(Ω)-norm ||.||L2(Ω)

and H1(Ω) seminorm |.|21,T for the approximate sequence (un
T )T , P-a.s in Θ

||un
T ||

2
L2(Ω) = ∑

K∈T
mK |un

K |2 and |un
T |

2
1,T = ∑

σ=K|L∈Eint

mσ

dK|L
|un

K−un
L|2.

3 Convergence of the scheme

In this section, we propose a study of the approximate sequence (u∆ t
T ). After the

derivation of boundedness estimates for (u∆ t
T ) independent of the discretization pa-

rameters ∆ t and h, we propose to show the convergence of (u∆ t
T ) towards a weak

solution u of (1)-(2)-(3) in the sense of Definition 1.
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Proposition 1 Let T > 0, T be an admissible mesh, N ∈ N∗ and ∆ t = T
N ∈ R∗+.

Assume that the condition

∆ t
mK

∑
σ∈EK∩Eint

mσ

dK|L
6

1
2
, ∀K ∈T (8)

is satisfied. Then there exists a constant C > 0 only depending on T,Ω ,λ and u0
such that

sup
n6N

E
[
||un

T ||
2
L2(Ω)

]
+

N−1

∑
n=0

∆ tE
[
|un

T |
2
1,T
]
6C.

Proof We will principally use here properties of the Brownian motion W for the
control of its discrete increments W n+1−W n (see [3, p.87]). For any n∈ {0, · · · ,N−
1}, note that since E[W n+1−W n] = 0, one gets that for any Fn∆ t -measurable ran-
dom variable X : Θ → R, E[(W n+1−W n)X ] = E[W n+1−W n]E[X ] = 0. Thus, by
multiplying (6) by un

K and taking the expectation, since a(b−a) = 1
2 (b

2−a2− (a−
b)2) for any a,b ∈ R, one gets

mK

2∆ t
E
[
|un+1

K |2−|un
K |2−|un+1

K −un
K |2
]
+ ∑

σ∈EK∩Eint

mσ

dK|L
E [(un

K−un
L)u

n
K ] = 0.

Moreover thanks to (6), by noting that E[(W n+1−W n)2] = ∆ t, one has

E
[
|un+1

K −un
K |2
]
= ∆ tE

[
|λun

K |2
]
+E

( ∆ t
mK

∑
σ∈EK∩Eint

mσ

dK|L
(un

K−un
L)

)2
 ,

and one arrives at

mK

2
E
[
|un+1

K |2−|un
K |2
]
+∆ t ∑

σ∈EK∩Eint

mσ

dK|L
E [(un

K−un
L)u

n
K ]

6∆ t
mK

2
λ

2E
[
|un

K |2
]
+

∆ t
2

(
∆ t
mK

∑
σ∈EK∩Eint

mσ

dK|L

)(
∑

σ∈EK∩Eint

mσ

dK|L
E
[
|un

K−un
L|2
])

.

Summing over K ∈ T and using the condition (8), thanks to classical reorderings
of the summations, we obtain

∑
K∈T

mKE
[
|un+1

K |2
]
+2∆ t ∑

σ=K|L∈Eint

mσ

dK|L
E
[
|un

K−un
L|2
]

6 (1+∆ tλ 2) ∑
K∈T

mKE
[
|un

K |2
]
+

1
2

∆ t ∑
K∈T

∑
σ∈EK∩Eint

mσ

dK|L
E
[
|un

K−un
L|2
]

which leads to

E
[
‖un+1

T ‖2
L2(Ω)

]
+∆ tE

[
|un

T |
2
1,T
]
6 (1+∆ tλ 2)E

[
‖un

T ‖
2
L2(Ω)

]
. (9)
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Summing (9) over n ∈ {0, · · · ,m}, the discrete Gronwall lemma gives the expected
L∞(0,T ;L2(Ω ×Θ)) bound,

E
[
‖um

T ‖
2
L2(Ω)

]
6 (1+∆ tλ 2)eλ 2T ||u0||2L2(Ω), ∀m ∈ 0, · · · ,N.

Summing (9) over n ∈ {0, · · · ,N−1} we obtain the L2
(
(0,T )×Θ ;H1(Ω)

)
bound,

N−1

∑
n=0

∆ tE
[
|un

T |
2
1,T
]
6
(

1+T λ
2(1+∆ tλ 2)eλ 2T

)
||u0||2L2(Ω).

Remark 4 Let us mention that the stochastic perturbation does not impact the con-
dition (8) on the time and space discretization parameter to get a stability result on
the finite-volume approximation (u∆ t

T ). Indeed, the condition is the same as in the
deterministic case (which corresponds to λ = 0).

Remark 5 Note that Proposition 1 also holds for a more general stochastic noise
taking the form

∫ .
0 g(u)dW with g : R→ R Lipschitz-continuous. It also implies

boundedness of the sequence (g(u∆ t
T )) and so the existence of a weak limit gu in

N 2
W ((0,T );L2(Ω)) for a subsequence of (g(u∆ t

T )). When g is not a linear function,
the convergence result stated in Theorem 1 below requires a compactness tool com-
patible with the random variable in order to affirm that gu = g(u). This extension
will be carried out in a future work.

Theorem 1 For m ∈ N, let Tm be an admissible mesh, Nm ∈ N∗ and ∆ tm = T
Nm

satisfying the condition (8). Let (u∆ tm
Tm

) be given by (5)-(6)-(7) with T =Tm and N =

Nm. Then there exists a subsequence of (u∆ tm
Tm

), still denoted (u∆ tm
Tm

), which converges
weakly in L2((0,T )×Ω ×Θ) towards a weak solution u of (1)-(2)-(3) in the sense
of Definition 1.

Proof We will only give here the idea of the proof to handle the stochastic term
and refer to [5, Proof of Theorem 18.1 p.858] for the deterministic contributions.
Let m ∈ N, A be a P-measurable set and ψ ∈C∞(R×R2) such that ψ(T, .) = 0 and
∇ψ · n = 0 on (0,T )× ∂Ω . Since Ω is a polygonal subset of R2, the set of such
functions ψ is dense in the set AT for the L2(0,T ;H1(Ω))-norm (see [4]). For the
sake of simplicity we shall use the notations T = Tm, h = size(Tm) and ∆ t = ∆ tm.
We define the piecewise constant in space function ψT on (0,T )×Ω by

ψT (t,x) =
1

mBK

∫
BK

ψ(t,y)dy, ∀x ∈ K, t ∈ (0,T ),

where BK ⊂ K is a ball centered at xK and mBK denotes its Lebesgue measure. We
multiply (6) by ∆ t1AψT (n∆ t,xK), sum the result over n ∈ {0, · · · ,N−1} and K ∈
T , to get after taking the expectation : T1,m +T2,m = T3,m, where
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T1,m = E

[
1A

N−1

∑
n=0

∑
K∈T

mK(un+1
K −un

K)
1

mBK

∫
BK

ψ(n∆ t,x)dx

]

T2,m = E

[
1A

N−1

∑
n=0

∆ t ∑
K∈T

∑
σ∈EK∩Eint

mσ

dK|L
× (un

K−un
L)

mBK

∫
BK

ψ(n∆ t,x)dx

]

T3,m = E

[
1A

N−1

∑
n=0

∑
K∈T

λmKun
K(W

n+1−W n)
1

mBK

∫
BK

ψ(n∆ t,x)dx

]
.

Proposition 1 allows us to extract firstly a subsequence of (u∆ t
T ), still denoted (u∆ t

T ),
which converges as m → +∞ to an element u in L∞((0,T );L2(Ω ×Θ)) for the
weak-? topology. Secondly, since (u∆ t

T ) is bounded in N 2
W (0,T ;L2(Ω)), one can

affirm that u is predictable with values in L2(Ω) (see Remark 1) and that the
previous convergence also holds (up to a subsequence) for the weak topology in
N 2

W (0,T ;L2(Ω)). Now, following [1] (see Remark 6), [2] and [5], one shows that

T1,m −−−−→
m→+∞

−E
[

1A

∫ T

0

∫
Ω

u(t,x)∂tψ(t,x)dxdt
]
−E

[
1A

∫
Ω

u0(x)ψ(x,0)dx
]

T2,m −−−−→
m→+∞

−E
[

1A

∫ T

0

∫
Ω

u(t,x)∆ψ(t,x)dxdt
]
.

By adapting the classical result of the two-point flux approximation scheme, one
shows that u ∈ L2((0,T )×Θ ;H1(Ω)) by introducing a definition of discrete gradi-
ent for (u∆ t

T ). Since the stochastic integral IT : X 7→
∫ T

0 X(t,x,ω)dW (t) is linear and
continuous from N 2

W (0,T ;L2(Ω)) to L2(Ω ×Θ), it is particularly weakly continu-
ous and so the regularity of ψ gives

E
[

1A

∫
Ω

∫ T

0
u∆ t

T (t,x)ψT (t,x)dW (t)dx
]
−−−−→
m→+∞

E
[

1A

∫
Ω

∫ T

0
u(t,x)ψ(t,x)dW (t)dx

]
.

Using successively Cauchy-Schwarz inequality on Ω ×Θ , Itô isometry and Propo-
sition 1, one shows by following [2] in the hyperbolic setting that (using the notation
|Ω | for the area of Ω )∣∣∣∣T3,m−E

[
1A

∫
Ω

∫ T

0
λu∆ t

T (t,x)ψT (t,x)dW (t)dx
]∣∣∣∣

6
√
|Ω |

N−1

∑
n=0

(
∑

K∈T
E

[∫
K

∣∣∣∣∫ (n+1)∆ t

n∆ t
λun

K (ψT (n∆ t,x)−ψT (t,x))dW (t)
∣∣∣∣2 dx

]) 1
2

=
√
|Ω |

N−1

∑
n=0

(
∑

K∈T
E
[∫ (n+1)∆ t

n∆ t

∫
K

∣∣λun
K(ψT (n∆ t,x)−ψT (t,x))

∣∣2dxdt
]) 1

2

6|λ |T
√
|Ω |||∂tψ||∞ sup

n6N
E
[
||un

T ||
2
L2(Ω)

]√
∆ t −−−−→

m→+∞
0.
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Thus T3,m −−−−→
m→+∞

E
[

1A

∫
Ω

∫ T

0
λu(t,x)ψ(t,x)dW (t)dx

]
. Finally, for any ψ ∈ AT

and any P-measurable set A, one gets

E
[

1A

∫ T

0

∫
Ω

u(t,x)∂tψ(t,x)dxdt
]
+E

[
1A

∫
Ω

u0(x)ψ(0,x)dx
]

−E
[

1A

∫ T

0

∫
Ω

∇u(t,x) ·∇ψ(t,x)dxdt
]
=−E

[
1A

∫
Ω

∫ T

0
λu(t,x)ψ(t,x)dW (t)dx

]
,

and the result holds using Remark 2. �

Remark 6 In the deterministic case, Theorem 1 is classically proved by multiply-
ing (6) by ∆ tψ(n∆ t,xK) where xK is the center of the control volume K. Here, the
application of Itô isometry gives us a coefficient

√
∆ t which is not sufficient to

compensate the summation over n ∈ {0, · · · ,N−1}. Indeed, in this case there exists
C̃ψ > 0 which only depends on ψ such that

√
|Ω |

N−1

∑
n=0

(
∑

K∈T
E
[∫ (n+1)∆ t

n∆ t

∫
K

∣∣λun
K(ψ(n∆ t,xK)−ψ(t,x))

∣∣2dxdt
]) 1

2

6
√

∆ t
√
|Ω ||λ |

(
sup
n6N

E
[
||un

T ||
2
L2(Ω)

]) 1
2

C̃ψ

N−1

∑
n=0

(∆ t +h),

but this last term does not converge to 0 when m tends to +∞ under reasonable
assumptions over h and ∆ t. Choosing here the mean-value on BK allows us to show
both the convergence of the terms T3,m and T2,m (using for T2,m similar arguments as
in the deterministic framework, see [1, Proposition 3.5]).
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