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 which leads us to an adaptive non-parametric kernel estimator of the stationary density µ of the jump diffusion X.

Introduction

Diffusion phenomena arise from a Markovian stochastic modeling and as a solution of SDEs with or without jumps in many areas of applied mathematics. Their investigation concerns different mathematical branches and therefore research interest in questions such as existence and regularity of solutions of stochastic differential equations has constantly grown over the past years. The study of the statistical properties of diffusion models has emerged since such models are widely used for applications in finance and biology. Diffusion processes with jumps, in particular, have been used in neuroscience for instance in [START_REF] Ditlevsen | The MorrisLecar neuron model embeds a leaky integrate-and-fire model[END_REF] while in finance they have been introduced to model the dynamic of asset prices [START_REF] Kou | A Jump-Diffusion Model for Option Pricing[END_REF], [START_REF] Merton | Option pricing when underlying stock returns are discontinuous[END_REF], exchange rates [START_REF] Bates | Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark[END_REF], or volatility processes [START_REF] Barndorff-Nielsen | Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics[END_REF].

In this work, we aim at estimating adaptively the invariant density µ associated to the process (X t ) t≥0 , solution of the following multivariate stochastic differential equation with Levy-type jumps:

X t = X 0 + t 0 b(X s )ds + t 0 a(X s )dW s + t 0 R d \{0} γ(X s -)z μ(ds, dz), (1) 
where W is a d-dimensional Brownian motion and μ a compensated Poisson random measure with a possible infinite jump activity. We assume that a continuous record of observations X T = (X t ) 0≤t≤T is available. Practical concerns raise new questions such as the dependence of statistical features on the observation scheme: it is, for the applications, a subject of interest to consider basic questions in different observation scenarios. From a theoretical point of view, it is however also of substantial interest to work under the assumption that a continuous record of the diffusion considered is available. In this framework, it belongs to the folklore of the statistics for stochastic processes without jumps that the invariant density can be estimated under standard nonparametric assumptions with a parametric rate (cfr Chapter 4.2 in [START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF]). The proof relies on the existence of diffusion local time and its properties and so such a result is restricted to the one -dimensional setting.

Regarding the literature on statistical properties of multidimensional diffusion processes in the continuous case, an important reference is given by Reiss and Dalalyan in [START_REF] Dalalyan | Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case[END_REF], where they show an asymptotic statistical equivalence for inference on the drift in the multidimensional diffusion case. As a by-product of the study they prove, under isotropic Hölder smoothness constraints, convergence rates of invariant density estimators for pointwise estimation which are faster than those known from standard multivariate density estimation. Their result relies on upper bounds on the variance of additive diffusion functionals, proven by an application of the spectral gap inequality in combination with a bound on the transition density of the process. Still in the continuous case, in a recent paper, Strauch [START_REF] Strauch | Adaptive invariant density estimation for ergodic diffusions over anisotropic classes[END_REF] has extended their work by building adaptive estimators in the multidimensional diffusion case which achieve fast rates of convergence over anisotropic Hölder balls. The notion of anisotropy plays an important role. Indeed, the smoothness properties of elements of a function space may depend on the chosen direction of R d . The Russian school considered anisotropic spaces from the beginning of the theory of function spaces in 1950-1960s (in [START_REF] Nikolskii | Approximation of Functions of Several Variables and Embedding Theorems[END_REF] the author takes account of the developments). However, results on minimax rates of convergence in classical statistical models were rare for a lot of time. The question of optimal bandwidth selection based on i. i. d. observations for density estimation with respect to sup -norm risk was not completely solved until the pretty recent developments gathered in [START_REF] Lepski | Multivariate density estimation under sup-norm loss: oracle approach, adaptation and independence structure[END_REF]. The methodology detailed in Goldenshluger and Lepski [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] inspired the datadriven selection procedure of the bandwidth of the kernel estimator proposed by many authors such as Strauch in [START_REF] Strauch | Adaptive invariant density estimation for ergodic diffusions over anisotropic classes[END_REF] and Comte, Prieur and Samson in [START_REF] Comte | Adaptive estimation for stochastic damping Hamiltonian systems under partial observation[END_REF] and provides the starting point for the study of our adaptive procedure as well.

In this paper, we provide a non-parametric estimator of the invariant density µ with a fully data-driven procedure of the bandwidth. We propose to estimate the invariant density µ by means of a kernel estimator, we therefore introduce some kernel function K : R → R. A natural estimator of µ at x ∈ R d in the anisotropic context is given by μh,T (x) = 1

T d l=1 h l T 0 d m=1 K( x m -X m u h m )du,
where h = (h 1 , ..., h d ) is a multi -index bandwidth, which will be chosen through the data-driven selection procedure. We first prove some bounds on the transition semigroup and on the transition density that will be useful to find sharp upper bounds on the variance of integral functionals of the diffusion X. Through them, we find the following convergence rates for the pointwise estimation of the invariant density of our diffusion with jumps:

E[|μ h,T (x) -µ(x)| 2 ] < ∼        (log T ) (2-(1+α) 2 )∨1 T for d = 1, log T T for d = 2, T -2 β 2 β+d-2 for d ≥ 3,
where α ∈ (0, 2) is the degree of jumps activity of the Lévy process and β is the harmonic mean smoothness of the invariant density over the d different dimensions.

We remark that the rate we find for d ≥ 3 is the same Strauch found in [START_REF] Strauch | Adaptive invariant density estimation for ergodic diffusions over anisotropic classes[END_REF] in absence of jumps, which is also the rate gathered in [START_REF] Dalalyan | Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case[END_REF] up to replacing the mean smoothness with β, the common smoothness over the d dimensions.

The case d = 1 evidences the main difference between what happens with and without jumps. Indeed, if in the continuous case the optimal convergence rate was 1 T , now the rate we found is between log T T and (log T ) 3 2

T

. It is worth noting here that such a convergence rate is not necessarily the optimal one in the jumps framework. As a matter of fact in the continuous case different approaches, as the diffusion local time, have been used to get the rate 1 T ; we do not exclude the possibility that also in presence of jumps the implementation of other methods could lead to a convergence rate faster than the one presented here above for the mono-dimensional setting. To complete the comparison to the continuous framework, we recall that in both [START_REF] Dalalyan | Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case[END_REF] and [START_REF] Strauch | Adaptive invariant density estimation for ergodic diffusions over anisotropic classes[END_REF] the convergence rate found in the case d = 2 was (log T ) 4 T and so the convergence of the estimator seems being faster in presence of jumps than without them. The reason why it happens is that, to find

E[ μh -µ 2 A ] ≤ c 1 inf h∈HT (B(h) + V (h)) + c 1 e -c2(log T ) 2 , (2) 
where we have denoted as • A the L 2 norm on A, a compact subset of R d and as H T the set of candidate bandwidths; B(h) is a bias term and V (h) an estimate of the variance bound. We remark that the estimator leads to an automatic trade -off between the bias and the variance: the second term on the right hand side of ( 2) is indeed negligible compared to the first one. Moreover, as the rate optimal choice h(T ) belongs to the set of candidate bandwidths H T , (2) turns out being

E[ μh -µ 2 A ] ≤ c 1 T -2 β 2 β+d-2 + c 1 e -c2(log T ) 2 ,
where β is the mean smoothness of the invariant density. The paper is organised as follows. We give in Section 2 the assumptions on the process X. In section 3 we define the anisotropic Hölder balls and we construct our estimator. Section 4 is devoted to the statements of our main results; which will be proven in the two following sections. In particular, we show how we get the convergence rates for the invariant density estimation in Section 5 while in Section 6 we prove the estimator we find through our bandwidth selection procedure is adaptive. Some technical results are moreover presented in the Appendix.

Model Assumptions

We consider the question of nonparametric estimation of the invariant density of a d-dimensional diffusion process X, assuming that a continuous record X T = {X t , 0 ≤ t ≤ T } up to time T is observed. This diffusion is given as a strong solution of the following stochastic differential equations with jumps:

X t = X 0 + t 0 b(X s )ds + t 0 a(X s )dW s + t 0 R d \{0} γ(X s -)z μ(ds, dz), t ∈ [0, T ], (3) 
where b :

R d → R d , a : R d → R d × R d and γ : R d → R d × R d ; W = (W t , t ≥ 0) is a d-dimensional Brownian motion and µ is a Poisson random measure on [0, T ] × R d associated to the Lévy process L = (L t ) t∈[0,T ] , with L t := t 0 R d z μ(ds, dz).
The compensated measure is μ = µ -μ; we suppose that the compensator has the following form: μ(dt, dz) := F (dz)dt, where conditions on the Levy measure F will be given later. The initial condition X 0 , W and L are independent.

In what follows, we suppose the following assumptions hold: A1: The functions b(x), γ(x) and a(x) are globally Lipschitz and, for some c ≥ 1,

c -1 I d×d ≤ a(x) ≤ cI d×d ,
where I d×d denotes the d × d identity matrix. Denoting with |.| and < ., . > respectively the Euclidian norm and the scalar product in R d , we suppose moreover that there exists a constant c > 0 such that, ∀x ∈ R d , |b(x)| ≤ c.

Under Assumption 1 the equation (3) admits a unique non-explosive càdlàg adapted solution possessing the strong Markov property, cf [START_REF] Applebaum | Lévy processes and stochastic calculus[END_REF] (Theorems 6.2.9. and 6.4.6.).

A2 (Drift condition) :

There exist C > 0 and ρ > 0 such that < x, b(x) > ≤ -C|x|, ∀x : |x| ≥ ρ.

We furthermore need the following assumptions on the jumps: A3 (Jumps) : 1.The Lévy measure F is absolutely continuous with respect to the Lebesgue measure and we denote F (z) = F (dz) dz . 2. We suppose that there exist c > 0 such that for all

z ∈ R d , F (z) ≤ c |z| d+α , with α ∈ (0, 2) and that supp(F ) = R d . 3. The jump coefficient γ is upper bounded, i.e. sup x∈R d |γ(x)| := γ max < ∞. We suppose more- over that, ∀x ∈ R d , Det(γ(x)) = 0. 4. If α = 1, we require for any 0 < r < R < ∞ r<|z|<R zF (z)dz = 0.
5. There exists ǫ > 0 and a constant c > 0 such that R d |z| 2 e ǫ|z| F (z)dz ≤ c.

As we will see in Lemma 2 below, Assumption 2 ensures, together with the last points of Assumption 3, the existence of a Lyapunov function. The process X admits therefore a unique invariant distribution π and the ergodic theorem holds. We assume the invariant probability measure π of X being absolutely continuous with respect to the Lebesgue measure and from now on we will denote its density as µ: dπ = µdx. For any set S ⊂ R d we define µ(S) := S µ(x)dx and, by abuse of notation, we will write µ(f

) := E[f (X 0 )] = R d f (x)µ(x)dx for functions f : R d → R. We define moreover L 2 (µ) := f : R d → R : R d |f (x)| 2 µ(x)dx < ∞ and L 1 (µ) := f : R d → R : R d |f (x)|µ(x)dx < ∞ .
For each g ∈ L 1 (µ) we denote as g L 1 (µ) := µ(|g|) the L 1 norm with respect to µ on R d . The transition semigroup of the process X on L 1 (µ) is

P t f (x) := E[f (X t )|X 0 = x].
The transition density is denoted by p t and it is such that P t f (x) = R d f (y)p t (x, y)dy; we will see in Lemma 1 that it exists.

The process X is called β -mixing if β X (t) = o(1) for t → ∞ and exponentially β -mixing if there exists a constant γ > 0 such that β X (t) = O(e -γt ) for t → ∞, where β X is the β -mixing coefficient of the process X as defined in Section 1.3.2 of [START_REF] Doukhan | Mixing: properties and examples[END_REF]. We recall that, for a Markov process X with transition semigroup (P t ) t∈R + and L(X 0 ) = η, the β -mixing coefficient of X is given by

β X (t) := sup s∈R + R d P t (x, .) -ηP s+t (x, .) ηP s (dx, .), (4) 
where ηP t = L(X t ) and λ stands for the total variation norm of a signed measure λ.

For the exponential mixing property of general multidimensional diffusions, the reader may consult Theorem 3 of Kusuoka and Yoshida [START_REF] Kusuoka | Malliavin calculus, geometric mixing, and expansion of diffusion functionals[END_REF] for the α -mixing; Meyn and Tweedie [START_REF] Meyn | Stability of Markovian processes III: FosterLyapunov criteria for continuous-time processes[END_REF], Stramer and Tweedie [START_REF] Stramer | Existence and stability of weak solutions to stochastic differential equations with non-smooth coefficients[END_REF] and Veretennikov [START_REF] Veretennikov | Bounds for the mixing rate in the theory of stochastic equations[END_REF] for the β -mixing. The mixing property for general diffusions with jumps has been investigated by Masuda in [START_REF] Masuda | Ergodicity and exponential beta -mixing bounds for multidimensional diffusions with jumps[END_REF]. Now we mention the notion of exponential ergodicity in the sense of [START_REF] Meyn | Stability of Markovian processes III: FosterLyapunov criteria for continuous-time processes[END_REF].

Definition 1. We say that X is exponentially ergodic if it admits a unique invariant distribution π and additionally if there exist positive constants c and ρ for which, for each f centered under µ,

P t f L 1 (µ) ≤ ce -ρt f ∞ .
We will see in Lemma 2 that both the exponential ergodicity and the exponential β -mixing can be derived from our assumptions.

In Lemmas 2 and 1 below we will prove some bounds on the transition semigroup and on the transition density that will be useful to establish tight upper bounds on the variance

V ar( T 0 f (X s )ds), f ∈ L 2 (µ)
of integral functionals of the diffusion X.

Bounds of this type were proven before, in [START_REF] Dalalyan | Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case[END_REF] (cf. their Proposition 1), by combining estimates based on the spectral gap inequality and on upper bounds on the transition densities of X. Through them they prove, under isotropic Hölder smoothness constraints, convergence rates of invariant density estimators for pointwise estimation which are considerably faster than those known from standard multivariate density estimation. We replace the spectral gap inequality with a control from L 1 to L ∞ given by the exponential ergodicity. Moreover, contrary to [START_REF] Dalalyan | Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case[END_REF], we don't need to assume that such controls hold true since we get them as consequence of Lemma 1 and 2 below, having required some assumptions only directly on the model (3).

In the next section we will construct adaptive estimators for the density in the multidimensional diffusion case with jumps, which achieve fast rates of convergence over anisotropic Hölder balls.

Construction of the estimator

In several cases, the regularity of some function g : R d → R depends on the direction in R d chosen.

We thus work under the following anisotropic smoothness constraints.

Definition 2. Let β = (β 1 , ..., β d ), β i > 0, L = (L 1 , ..., L d ), L i > 0. A function g : R d → R is said to belong to the anisotropic Hölder class H d (β, L) of functions if, for all i ∈ {1, ..., d}, D k i g ∞ ≤ L i ∀k = 0, 1, ..., ⌊β i ⌋, D ⌊βi⌋ i g(. + te i ) -D ⌊βi⌋ i g(.) ∞ ≤ L i |t| βi-⌊βi⌋ ∀t ∈ R,
for D k i g denoting the k-th order partial derivative of g with respect to the i-th component, ⌊β i ⌋ denoting the largest integer strictly smaller than β i and e 1 , ..., e d denoting the canonical basis in R d .

From now on we deal with the estimation of the density µ belonging to the anisotropic Hölder class H d (β, L).

Given the observation X T of a diffusion X, solution of (3), we propose to estimate the invariant density µ by means of a kernel estimator. To estimate some µ ∈ H d (β, L) we therefore introduce some kernel function

K : R → R satisfying R K(x)dx = 1, K ∞ < ∞, supp(K) ⊂ [-1, 1], R K(x)x l dx = 0, for all l ∈ {0, ..., M } with M ≥ max i β i .
Denoting by X j t , j ∈ {1, ..., d} the j-th component of X t , t ≥ 0, a natural estimator of µ at x = (x 1 , ..., x d ) T ∈ R d in the anisotropic context is given by μh,T (x) = 1

T d l=1 h l T 0 d m=1 K( x m -X m u h m )du. ( 5 
)
As we will see in Section 4.2, a main question concerns the choice of the multi-index bandwidth h = (h 1 , ..., h d ) T .

4 Main results

Convergence rates for invariant density estimation

We want to investigate on the convergence rates for invariant density estimation. In order to determine the asymptotic behaviour of our estimator for T → ∞, we study the variance of general additive functionals of X in d dimension. To do so, we need some properties as the exponential ergodicity of the process and a bound on the transition density. Such properties will be derived from our assumptions through the following lemmas, that we will prove in the appendix.

The following bounds on the transition density and on the transition semigroup hold true.

Lemma 1. Suppose that A1 -A3 hold. Then, for T ≥ 0, there exists a transition density p t (x, y) for which for any t ∈ [0, T ] there are a c 0 > 0 and a λ 0 > 0 such that, for any pair of points x, y ∈ R d , we have

p t (x, y) ≤ c 0 (t -d 2 e -λ0 |y-x| 2 t + t (t 1 2 + |y -x|) d+α
).

Lemma 2. Suppose that A1 -A3 hold. Then the process X is exponentially ergodic and exponentially β -mixing.

On the basis of the two previous lemmas we can prove the following bound on the variance, which is the heart of the study on the convergence rate.

Proposition 1. Suppose that A1 -A3 hold and let f : R d → R be a bounded, measurable function with support S satisfying |S| < 1. Then, there exists a constant C independent of f such that

• V ar( T 0 f (X t )dt) ≤ CT f 2 ∞ |S| 2 (1 + (log( 1 |S| )) 2-(1+α) 2 + log( 1 |S| )) for d = 1, • V ar( T 0 f (X t )dt) ≤ CT f 2 ∞ |S| 2 (1 + log( 1 |S| )) for d = 2, • V ar( T 0 f (X t )dt) ≤ CT f 2 ∞ |S| 1+ 2 d for d ≥ 3.
From the bias -variance decomposition in the anisotropic case (see Proposition 1 in [START_REF] Comte | Anisotropic adaptive kernel deconvolution[END_REF]) we get the following bound

E[|μ h,T (x) -µ(x)| 2 ] < ∼ d l=1 h 2β l l + T -2 V ar( 1 d l=1 h l T 0 d m=1 K( x m -X m t h m )dt).
We want to bound the variance here above using Proposition 1 on the function f (y) :=

1 d l=1 h l d m=1 K( xm-ym hm )
. As it will be explained in the proof of Proposition 2 in Section 5, for d ≥ 3 it is

V ar( 1 d l=1 h l T 0 d m=1 K( x m -X m t h m )dt) ≤ cT ( d l=1 h l ) 2 d -1 ,
which leads us to the following convergence rate.

Proposition 2. Suppose that A1 -A3 hold. If µ ∈ H d (β, L), then the estimator given in (5) satisfies, for d ≥ 3, the following risk estimates:

E[|μ h,T (x) -µ(x)| 2 ] < ∼ d l=1 h 2β l l + T -1 ( d l=1 h l ) 2 d -1 . (6) 
Defined 1 β := 1 d d l=1 1 β l , the rate optimal choice h l = h l (T ) = ( 1 T ) β β l (2 β+d-2) yields the convergence rate E[|μ h,T (x) -µ(x)| 2 ] < ∼ T -2 β 2 β+d-2 .
We underline that, in the continuous case, the convergence rate found by Strauch in [START_REF] Strauch | Adaptive invariant density estimation for ergodic diffusions over anisotropic classes[END_REF] for the estimation of the invariant density µ belonging to the anisotropic Hölder class

H d (β + 1, L) is T -2(β+1) 2(β+1)+d-2 , for d ≥ 3.
In Proposition 2 we estimate µ over anisotropic Hölder class H d (β, L) and we therefore extend [START_REF] Strauch | Adaptive invariant density estimation for ergodic diffusions over anisotropic classes[END_REF] to the jumps -diffusion case: the convergence rate we obtain is the same it was in the case without jumps, which is also analogous to the rate first obtained by Reiss and Dalalyan in [START_REF] Dalalyan | Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case[END_REF] for the estimation of the invariant density µ over isotropic Hölder class H d (β + 1, L), up to replacing the mean smoothness β + 1 with β +1, the common smoothness over the d different dimensions.

For d = 1 and d = 2, the bound on the variance changes. Therefore, the rate optimal choice h will be different as well, as explained in following two propositions. Proposition 3. Suppose that A1 -A3 hold. If µ ∈ H d (β, L), then the estimator given in (5) satisfies, for d = 1, the following risk estimates:

E[|μ h,T (x) -µ(x)| 2 ] < ∼ h 2β + 1 T (1 + (log( 1 h )) 2-(1+α) 2 + log( 1 h )). (7) 
The rate optimal choice for h yields to the convergence rate

E[|μ h,T (x) -µ(x)| 2 ] < ∼ (log T ) (2-(1+α) 2 )∨1
T .

It is worth remarking that, in Proposition 3, it is stated the main difference between the case with and without jumps. Indeed, if in the continuous case the convergence rate was 1 T , now it depends on the degree of the jumps α and it is between log T T and (log T )

3 2 T .
We need to say that the convergence rate we have found here above for the estimation of the invariant density of a stochastic differential equations with jumps in the one dimensional setting is not necessarily the optimal one. In the continuous case other methods have been explored for such an estimation when d = 1, as the use of diffusion local time to get the optimal rate 1 T . We do not rule out the possibility to get a sharper bound through the exploitation of other approaches also for the jumps case, finding therefore a convergence rate faster than the one presented in the previous proposition.

Proposition 4. Suppose that A1 -A3 hold. If µ ∈ H d (β, L), then the estimator given in (5) satisfies, for d = 2, the following risk estimates:

E[|μ h,T (x) -µ(x)| 2 ] < ∼ h 2β1 1 + h 2β2 2 + 1 T (1 + log( 1 h 1 h 2 )). (8) 
The rate optimal choice for h yields to the convergence rate

E[|μ h,T (x) -µ(x)| 2 ] < ∼ log T T .
Comparing our result with the convergence rate obtained in the continuous case over isotropic Hölder class H d (β + 1, L) in [START_REF] Dalalyan | Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case[END_REF] and anisotropic Hölder class H d (β + 1, L) in [START_REF] Strauch | Adaptive invariant density estimation for ergodic diffusions over anisotropic classes[END_REF], which is (log T ) 4 T in both works, one can observe that the convergence rate seems being faster in presence of jumps. The reason why it happens is that in [START_REF] Dalalyan | Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case[END_REF] they assume the transition density to be upper bounded by

C(t -d 2 + t 3d 
2 ), which is a bound different from the one we get from Lemma 1. If the term t 3d 2 would have been absent in their assumption, e. g. for bounded drift, then the convergence rate in the continuous case could have been improved to log T T , which is also what we get in the jump-diffusion case. In [START_REF] Strauch | Adaptive invariant density estimation for ergodic diffusions over anisotropic classes[END_REF], Nash and Poincaré inequalities lead the author to an upper bound on the transition density which is analogous to the one found in [START_REF] Dalalyan | Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case[END_REF] (see Remark 2.4 of [START_REF] Strauch | Adaptive invariant density estimation for ergodic diffusions over anisotropic classes[END_REF]).

From the pointwise estimation of the invariant density gathered in the three previous propositions we move to the estimation on L 2 (A), where A is a compact set of R d . In the sequel, for A ⊂ R d compact and for g ∈ L 2 (A), g

2 A := A |g(x)| 2 dx denotes the L 2 norm with respect to Lebesgue on A.
As a consequence of Propositions 2, 3 and 4 and the fact that the constants which turn out in the proofs do not depend on x, the following corollary holds true:

Corollary 1. If µ ∈ H d (β, L)
, then for the rate optimal choice for h = h(T) provided in Propositions 2, 3 and 4 we have the following risk estimates:

E[ μh,T -µ 2 A ] < ∼ V d (T ) :=        (log T ) (2-(1+α) 2 )∨1 T for d = 1 log T T for d = 2 T -2 β 2 β+d-2 for d ≥ 3. (9) 
The proof of Corollary 1 will be given in Section 5.

Adaptive procedure

The question of density estimation belongs to the canonical framework of nonparametric statistics. As detailed in Propositions 3 and 4, both the bandwidth and the upper bound on the rate of convergence appearing on the right hand side of ( 7) and ( 8) do not depend on the unknown smoothness of the invariant density µ and so there is no gain in implementing a data-driven bandwidth selection procedure for density estimation in the framework of continuous observations of a one or two dimensional diffusion process with jumps. Hence, throughout the sequel we restrict to the case d ≥ 3.

It is clear from the previous section that for d ≥ 3, instead, the proposed bandwidth choice depends on the regularity of the density µ, which is unknown. This is why we study a data-driven bandwidth selection device. We emphasize that the d selected bandwidths are different, and this anisotropy property is important in our setting: the regularity in each direction can be various. The bandwidth selection procedure has to be able to provide such different choices for h 1 , h 2 , ... , h d .

To select h adequately, we propose the following method, inspired from Goldenshluger and Lespki [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF]. We define the set of candidate bandwidths H T as

H T ⊂ h = (h 1 , ..., h d ) T ∈ (0, 1] d : (log T ) 2d T d 3 ≤ d l=1 h l ≤ ( 1 log T ) 3d d-2 , (10) 
The conditions on d l=1 h l we have just given are needed to use Talagrand inequality, on the basis of which we show our adaptive result. We suppose moreover that the growth of |H T | is at most polynomial in T , which is there exists c > 0 for which |H T | ≤ cT c . An example of H T is the following set of candidate bandwidths:

H T := h = (h 1 , ..., h d ) T ∈ (0, 1] d : h i = 1 k i with k i ∈ N, (log T ) 2d T d 3 ≤ d l=1 1 k l ≤ ( 1 log T ) 3d d-2
.

(11) In correspondence of the variation of h ∈ H T , we have the following family of estimators, defined as in ( 5)

F (H T ) := μh (x) := 1 T T 0 K h (X u -x)du : x ∈ R d , h ∈ H T where, for y ∈ R d , it is K h (y) := d l=1 1 h l d m=1 K( y m h m ). (12) 
We aim at selecting an estimator from the family F (H T ) in a completely data-driven way, based only on the observation of the continuous trajectory of the process X solution of (3). We now turn to describing the selection procedure from F (H T ), which is based on auxiliary estimators relying on the convolution operator. According to our records, it was introduced in [START_REF] Lepski | Adaptive non-parametric estimation of smooth multivariate functions[END_REF] as a device to circumvent the lack of ordering among a set of estimators in anisotropic case, where the increase of the variance of an estimator does not imply a decrease of its bias.

For any bandwidths h

= (h 1 , ..., h d ) T , η = (η 1 , ..., η d ) T ∈ H T and x ∈ R d , we define K h * K η (x) := d j=1 (K hj * K ηj )(x j ) = d j=1 R K hj (u -x j )K ηj (u)du.
We moreover define the kernel estimators μh,η (x) := 1

T T 0 (K h * K η )(X u -x)du, x ∈ R d .
We remark that for how we have defined the kernel estimators, since the convolution is commutative, it is μh,η = μη,h .

The proposed selection procedure relies on comparing the differences μh,η -μη . We define

A(h) := sup η∈HT ( μh,η -μη 2 A -V (η)) + , (13) 
with

V (h) := k T ( d l=1 h l ) 2 d -1 ,
where k is a numerical constant which is large. In particular, it is sufficient to choose it bigger than the constants 2k * 0 and 2k 0 which appear in Lemma 4. Even if k is not explicit, it can be calibrated by simulations as done for example in Section 5 of [START_REF] Comte | Adaptive estimation for stochastic damping Hamiltonian systems under partial observation[END_REF] through the implementation of a method inspired by Goldenshluger and Lepski [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF] and rewritten most recently by Lacour, Massart and Rivoirard in [START_REF] Lacour | Estimator selection: a new method with applications to kernel density estimation[END_REF]. Heuristically, A(h) is an estimate of the squared bias and V (h) of the variance bound. It is worth noticing that the penalty term V (h) which is used here comes from Proposition 1 for the function f being the Kernel function. Thus, the selection is done by setting

h := arg min h∈HT (A(h) + V (h)). ( 14 
)
We introduce the following notation: µ h := K h * µ, which is the function that is estimated without bias by μh , i.e. E[μ h (x)] = µ h (x). Moreover we define µ h,η := K h * K η * µ and a bias term

B(h) := µ h -µ 2 Ã
, where we have denoted as

. à the L 2 -norm on Ã, a compact set in R d which is such that à := ζ ∈ R d : d(ζ, A) ≤ 2 √ d .
The following result holds.

Theorem 1. Suppose that assumptions A1 -A3 hold. Then, we have

E[ μh -µ 2 A ] ≤ c 1 inf h∈HT (B(h) + V (h)) + c 1 e -c2(log T ) 2 ,
for c 1 and c 2 positive constants.

The bound stated in Theorem 1 shows that the estimator leads to an automatic trade-off between the bias µ hµ 2 Ã and the variance V (h), up to a multiplicative constant c 1 . The last term is indeed negligible. The proof of Theorem 1 is postponed to Section 6.

We recall that Proposition 2 provides us the rate optimal choice h(T ) for d ≥ 3, which is 2) . Using such a bandwidth we will prove in Section 6 the following theorem.

h l (T ) = ( 1 T ) β β l (2 β+d-
Theorem 2. Suppose that assumptions A1 -A3 hold and let H T be defined by [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF]. Then, we have

E[ μh -µ 2 A ] ≤ c 1 ( 1 T ) 2 β 2 β+d-2 + c 1 e -c2(log T ) 2 ,
for c 1 and c 2 positive constants.

Underlining once again that the second term in the right hand side of the equation here above is negligible compared to the first, we have that the risk estimates we get using the bandwidth provided by our selection procedure converges to zero fast. In particular, its convergence rate coincides to the optimal one provided by both [START_REF] Dalalyan | Asymptotic statistical equivalence for ergodic diffusions: the multidimensional case[END_REF] and [START_REF] Strauch | Adaptive invariant density estimation for ergodic diffusions over anisotropic classes[END_REF] in the case without jumps.

Proof convergence rates for invariant density estimation

In this section we prove Propositions 2, 3 and 4, which gives us the convergence rate for the estimation of the invariant density µ ∈ H d (β, L) in the three different situation: d = 1, d = 2 and d ≥ 3. We emphasize that all the constants will appear in the proofs do not depend on the point x considered. We start showing the bound on the variance gathered in Proposition 1.

Proof of Proposition 1

Proof. We consider first of all the case d ≥ 3. We define the function f c := fµ(f ). From the symmetry and the stationarity we have

V ar( T 0 f (X s )ds) = 2 T 0 s 0 E[f c (X s )f c (X t )]dtds = 2 T 0 s 0 E[f c (X 0 )f c (X s-t )]dtds
Applying the change if variable u := st, using Fubini and computing the integral we have that the quantity here above is equal to 2

T 0 (T -u)E[f c (X 0 )f c (X u )]du. Let now 0 < δ < D ≤ T ,
where the specific choice of δ and D will be given later. The idea is to deal with the integral here above in different way for u which is in different intervals. For this reason we see

T 0 (T - u)E[f c (X 0 )f c (X u )]du as δ 0 (T -u)E[f c (X 0 )f c (X u )]du + D δ (T -u)E[f c (X 0 )f c (X u )]du + T D (T -u)E[f c (X 0 )f c (X u )]du. ( 15 
)
We now observe that

δ 0 (T -u)E[f c (X 0 )f c (X u )]du = δ 0 (T -u)(E[f (X 0 )f (X u )]-(µ(f )) 2 )du ≤ cT δ 0 | < P u f, f > µ |du, (16) 
where we have denoted as < ., . > µ the scalar product deriving by the norm with respect to the measure µ, for which < g, h > µ := R d g(x)h(x)µ(x)dx, each g, h ∈ L 2 (µ). In the last inequality we have moreover used that (µ(f )) 2 is always more than 0. Now we use Cauchy-Schwartz inequality and the fact that

P u f is a contraction map in L 2 (µ) to get δ 0 | < P u f, f > µ |du ≤ δ 0 P u f 2 µ f 2 µ du ≤ δ 0 f 4 µ du ≤ f 2 ∞ µ(S)δ, (17) 
where in the last inequality we have used the estimation

f 2 µ = S |f (x)| 2 µ(x)dx ≤ f 2 ∞ µ(S).
Concerning the second integral in [START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF], we remark that (16) still holds on [δ, D]. We then estimate it through the definition of transition semigroup. It is

D δ | < P u f, f > µ |du ≤ D δ R d |f (x)| R d |f (y)|p u (x, y)dyµ(x)dxdu. (18) 
We want to use the bound on the transition density given in Lemma 1 which holds for t ∈ [0, T ] but it is not uniform in t big. Nevertheless, for t ≥ 1, we have

p t (x, y) = R d p t-1 2 (x, ζ)p 1 2 (ζ, y)dζ ≤ c R d p t-1 2 (x, ζ)(e -λ0(y-ζ) 2 1 2 + 1 ( 1 2 + |y -ζ|) d+α )dζ ≤ ≤ c R d p t-1 2 (x, ζ)dζ ≤ c
, where the constant c changes from line to line. The right hand side of ( 18) is therefore upper bounded by

D δ R d |f (x)|c R d |f (y)|(u -d 2 e -λ0 |y-x| 2 u + u (u 1 2 + |y -x|) d+α + 1)dy µ(x)dx du ≤ ≤ D δ S |f (x)|c S |f (y)|(u -d 2 +u 1-(d+α) 2 +1)dy µ(x)dx du ≤ c f 2 ∞ µ(S)|S| D δ (u -d 2 +u 1-(d+α) 2 +1)du,
where we have bounded in both integrals the absolute value of f with its infinity norm. Now we want to calculate the integral with respect to the variable u. We observe that, since d ≥ 3, 1 -d 2 < 0. The exponent of the second term in the integral here above, after having integrated, is 2 -d+α 2 . It is more than zero if d < 4α, which is possible only if α ∈ (0, 1) and d = 3, less then zero otherwise. Therefore, we have to consider the two different possibilities, according to the fact that the exponent would be positive or negative. It follows

D δ | < P u f, f > µ |du ≤ c f 2 ∞ µ b (S)|S|(δ 1-d 2 + δ 2-d+α 2 1 {d≥4-α} + D 2-d+α 2 1 {d<4-α} + D). (19) 
We are now left to estimate the third integral of [START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF]. From Lemma 2 it follows it is upper bounded by

cT T D | < P u f c , f c > µ |du ≤ cT T D P u f c 2 L 1 (µ) f c 2 ∞ du ≤ c T T D (e -ρu f c ∞ ) 2 f c 2 ∞ du. ( 20 
) We recall it is f c (x) = f (x) -µ(f ), where µ(f ) = S f (x)µ(x)dx. Therefore we have |f c (x)| ≤ |f (x)| + |µ(f )| ≤ |f (x)| + f ∞ µ(S) (21) 
and so

f c ∞ ≤ f ∞ + f ∞ µ(S) ≤ c f ∞ ,
where in the last inequality we have used the following estimation

|µ(S)| ≤ µ ∞ |S| ≤ c|S| (22) 
and the fact that |S| < 1. Therefore we get cT

T D | < P u f c , f c > µ |du ≤ c T f 2 ∞ T D e -ρu du ≤ c T f 2 ∞ e -ρD . (23) 
Replacing ( 17), ( 19) and ( 23) in [START_REF] Kutoyants | Statistical inference for ergodic diffusion processes[END_REF] we have that

| T 0 (T -u)E[f c (X 0 )f c (X u )]du| ≤ c T f 2 ∞ |S|(δ+|S|δ 1-d 2 +|S|δ 2-d+α 2 1 {d≥4-α} +|S|D 2-d+α 2 1 {d<4-α} + (24) +|S|D) + c T f 2 ∞ e -ρD .
We now want to choose δ and D for which the estimation here above is as sharp as possible. Recalling that the exponent on δ are less than zero in the second and the third terms of the right hand side of (24), we have that for a small choice of δ would correspond the smallness of the first term while the second and the third would be big, the opposite would hold for a big δ. In the same way, the behaviour of the last two terms of the right hand side of (24) relies on the choice D. Aiming at balancing them, we define δ := |S| 

| T 0 (T -u)E[f c (X 0 )f c (X u )]du| ≤ c T f 2 ∞ (|S| 1+ 2 d +|S| 1+ 4-α d +|S| 2 (log|S|) 2-d+α 2 +|S| 2 log|S|+|S| 2 ),
which give us the result we wanted remarking that both 2 and 1 + 4-α d are always more than 1 +2 d for d ≥ 3 and α ∈ (0, 2). Otherwise, if T ≤ (-2 ρ log(|S|)), by the definition of D we obtain D = T . We still have

|S| 2 D 2-d+α 2 1 {d<4-α} ≤ c|S| 2 (log|S|) 2-d+α 2 
and, moreover, the last integral which we dealt with in [START_REF] Stramer | Existence and stability of weak solutions to stochastic differential equations with non-smooth coefficients[END_REF] is in this case between T and T and so its contribution is null. Hence, the result still holds true.

We now consider the case d = 1. We can act exactly like we did in the case d ≥ 3, splitting the integral in three parts. Estimations ( 17) and ( 23) still holds while, using again Lemma 1 on the interval [δ, D], we have

| D δ (T -u)E[f c (X 0 )f c (X u )]du| ≤ cT f 2 ∞ µ(S)|S| D δ (u -1 2 + u 1-(1+α) ≤ cT f 2 ∞ µ(S)|S|(D 1 2 + D 2-(1+α) 2 + D),
where we have used that now, integrating, both the exponent we get are positive. In total in the case d = 1, using also [START_REF] Nikolskii | Approximation of Functions of Several Variables and Embedding Theorems[END_REF], we therefore have

V ar( T 0 f (X s )ds) ≤ cT f 2 ∞ (|S|δ + |S| 2 (D + D 2-(1+α)
2

) + e -ρD ).

As we have already done, we want to make the estimation here above as sharp as possible. This time there isn't any constraint on the smallness of δ and so we can choose directly δ := 0. Regarding D we observe that, if α > 1, then 2

-(1+α) 2 < 1; otherwise 2 -(1+α) 2 > 1.
In each case we have the same trade off we had in the case d ≥ 3 and so we keep taking D := [max(-2 ρ log(|S|), 1)] ∧ T ; it follows V ar(

T 0 f (X s )ds) ≤ cT f 2 ∞ |S| 2 (1 + (log |S|) 2-(1+α) 2 + log( 1 |S| )).
In the case d = 2 estimations ( 17) and ( 23) keep holding true. The bound on the transition density gathered in Lemma 1 for d = 2 yields

| D δ (T -u)E[f c (X 0 )f c (X u )]du| ≤ cT f 2 ∞ µ(S)|S| D δ (u -1 + u 1-(2+α) 2 + 1)du ≤ ≤ cT f 2 ∞ µ(S)|S|(log( D δ ) + D 2-(2+α) 2 + D), having remarked that 2 -(2+α) 2 = 1 -α 2 > 0 because α ∈ (0, 2)
. This entails, using also [START_REF] Nikolskii | Approximation of Functions of Several Variables and Embedding Theorems[END_REF], V ar(

V ar( T 0 f (X s )ds) ≤ cT f 2 ∞ (|S|δ + |S| 2 (log( D δ ) + D 2-(2+α) 2 + D) + e -ρD ).
T 0 f (X s )ds) ≤ cT f 2 ∞ |S| 2 (1 + log( 1 |S| )),
where we have also used that 2 -(2+α) 2 is always less than 1 and so (log

( 1 |S| )) 2-(2+α) 2 < log( 1 |S|
). The proposition is therefore proved.

Proof of Proposition 2

Proof. Estimation ( 6) is a straightforward consequence of the bias -variance decomposition and Proposition 1 applied to f (y) :=

1 d l=1 h l d m=1 K( xm-ym hm ), whose support S is such that |S| ≤ c d l=1 h l and which is by construction such that f ∞ ≤ c( d l=1 h l ) -1 .
To find the optimal choice of h we define h l (T ) := ( 1T ) a l for l ∈ {1, ..., d} and we look for a 1 , ... a d such that the upper bound of the mean-squared error in the right hand side of (6) would result as small as possible. Replacing the definition of h l (T ) in the bias -variance decomposition, it means searching for a 1 , ..., a d for which we get the balance and so we have to resolve the following system:

β i a i = β i+1 a i+1 ∀i ∈ {1, ..., d -1} 2β d a d = 1 + ( 2 d -1) d l=1 a l .
We observe that, as a consequence of the first d -1 equations, we can write a l as β d β l a d for each l ∈ {1, ..., d -1}. Therefore, the last equation becomes

2β d a d = 1 + ( 2 d -1)β d a d d l=1 1 β l . Defining 1 β := 1 d d l=1 1 β l , it follows 2β d a d = 1 + ( 2 d -1)β d a d d β , which yields a d = β β d (2 β + (d -2))
and, replacing it in the system, we have

a l = β β l (2 β + (d -2)) ∀l ∈ {1, ..., d} .
Taking in the right hand side of ( 6) the rate optimal choice h l (T ) = ( 1 T )

β β l (2 β+(d-2))
we get the convergence rate wanted.

Proof of Proposition 3

Proof. The upper bound of the mean-squared error follows from the decomposition bias -variance and from Proposition 1, recalling that for f (X t ) := 1 h K( x-Xt h ) we have f ∞ ≤ ch -1 and its support S is such that |S| ≤ ch. Now, aiming at balancing the terms, we take h := ( 1 T ) a ; getting the mean-squared error is upper bounded by

( 1 T ) 2aβ + 1 T + (a log T ) 2-(1+α) 2 T + a log T T .
If a gets bigger clearly h gets smaller; it is enough to take a such that 2aβ > 1 to obtain the first two terms here above are negligible compared to the last ones, which gives us the convergence rate

(log T ) 2-(1+α) 2 T for α ≤ 1, log T T for α > 1.

Proof of Proposition 4

Proof. Again, (8) follows naturally from the bias -variance decomposition and Proposition 1.

Regarding the convergence rate, we take again h l := ( 1 T ) a l for l = 1, 2. It follows log( 1h1h2 ) = a 1 log T + a 2 log T and so the mean-squared error is upper bounded by

( 1 T ) 2a1β1 + ( 1 T ) 2a2β2 + c log T T .
Taking a 1 and a 2 big enough to make the first two terms here above negligible compared to the third, we get the convergence rate log T T .

Proof of Corollary 1

Proof. It is a straightforward consequence of Propositions 2, 3 and 4 after having remarked that the constants which turn out in all the previous propositions do not depend on the point x considered. Indeed, such propositions yield

E[ μh,T -µ 2 A ] = E[ A |μ h,T (x) -µ(x)| 2 dx] ≤ c A cV d (T )dx ≤ c|A|V d (T ).

Proof of the adaptive procedure

The heart of the proof of Theorem 1 consist of finding an upper bound for the expected value of A(h), which is gathered in the following proposition.

Proposition 5. Suppose that assumptions A1 -A3 hold. Then, ∀h ∈ H T ,

E[A(h)] ≤ c 1 B(h) + c 1 e -c2(log T ) 2 .
Proposition 5 will be proven after the proofs of Theorems 1 and 2.

6.1 Proof of Theorem 1.

Proof. From triangular inequality it follows ∀h ∈ H

T μh -µ 2 ≤ c( μh -μh, h 2 + μh, h -μh 2 + μh -µ 2 ) (25)
By the definition (13) of A(h) it follows that the first and the second term of ( 25) are respectively upper bounded by A(h) + V ( h) and A( h) + V (h), having also used on the second term that μh, h = μh ,h . Then, since h has been defined in [START_REF] Kusuoka | Malliavin calculus, geometric mixing, and expansion of diffusion functionals[END_REF] as the h ∈ H T for which A(h) + V (h) is minimal, we clearly have that

A( h) + V ( h) ≤ A(h) + V (h).
Hence, for any h ∈ H T , we get

μh -µ 2 ≤ c(A(h) + V (h) + μh -µ 2 ). ( 26 
)
We want an upper bound for the expected value of the left hand side of the equation ( 26) and so we need to evaluate

E[ μh -µ 2 ] = E[ A |μ h (x) -µ(x)| 2 dx].
From the standard bias variance decomposition, recalling that

µ h = K h * µ is such that E[μ h (x)] = µ h (x), we get E[ A |μ h (x) -µ(x)| 2 dx] = A |µ h (x) -µ(x)| 2 dx + A E[|μ h (x) -µ h (x)| 2 ]dx.
Now, we can upper bound the first term of the right hand side here above by enlarging the integration domain getting

A |µ h (x) -µ(x)| 2 dx ≤ Ã |µ h (x) -µ(x)| 2 dx = B(h). (27) 
Moreover, as consequence of Proposition 1 in the case d ≥ 3 we obtain, as it was in Proposition 2,

A E[|μ h (x) -µ h (x)| 2 ]dx = A V ar( 1 
T d l=1 h l T 0 d m=1 K( x m -X m u h m )du)dx ≤ |A| c T ( d l=1 h l ) 2 d -1 .
(28) Comparing the upper bound given in (28) with the definition of V (h) and using also [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF] and ( 27) we get, for each h ∈ H T ,

E[ μh -µ 2 ] ≤ c(B(h) + V (h)) + E[A(h)].
Now from Proposition 5 and the arbitrariness of the bandwidth h we are considering it follows

E[ μh -µ 2 ] ≤ c 1 inf h ′ ∈HT (B(h ′ ) + V (h ′ )) + c 1 e -c2(log T ) 2 ,
as we wanted.

As a consequence of Theorem 1 we get, considering the rate optimal choice h l (T ) = ( 1 T )

β β l (2 β+d-2)
provided by Proposition 2, the estimation gathered in Theorem 2. Its proof relies on the fact that, for how we have found it in Proposition 2, if the rate optimal bandwidth belongs to H T then the inf h∈HT (B(h) + V (h)) is clearly realized by it.

Proof of Theorem 2

Proof. We observe that, for the rate optimal choice h(T ) of the bandwidth, the conditions gathered in the right hand side of [START_REF] Gloter | Jump filtering and efficient drift estimation for Lévy-driven SDEs[END_REF], which are

(log T ) 2d T d 3 ≤ d l=1 h l ≤ ( 1 log T ) 3d d-2 , hold true. Indeed, d l=1 h l (T ) = ( 1 T ) β 2 β+d-2 d l=1 1 
β l = ( 1 T ) d 2 β+d-2 .
the upper bound condition is therefore

( 1 T ) d 2 β+d-2 ≤ ( 1 log T ) 3d d+2 ,
which is true if and only if log T ≤ T d-2

3(2 β+d-2) . Now we observe that

d-2 3(2 β+d-2) > 0 for β > 1 -d 2 ,
which is always true since d ≥ 3. In particular we can write d-2 3(2 β+d-2) =: γ ∈ (0, 1) and, given that eventually for T going to ∞ it is log T ≤ T γ , we have

d l=1 h l (T ) ≤ ( 1 log T ) 3d d+2 . In the same way it is ( 1 T ) d 2 β+d-2 ≥ (log T ) 2d T d 3
.

For the same reasoning as here above it is true if ( 1 3 -1 2 β+d-2 ) 1 2 =: γ is positive. Being β > 1 and d ≥ 3, it turns out γ > 0, as we wanted. Up to consider hl (T ) :=

1 ⌊T β β l (2 β+d-2) ⌋
instead of h l (T ), which is asymptotically equivalent and which leads to the same convergence rate, we have that the rate optimal choice belongs to the set of candidate bandwidths H T proposed in [START_REF] Goldenshluger | Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality[END_REF]. Having now h(T ) ∈ H T , for how we have found the rate optimal choice in Proposition 2, the inf h∈HT (B(h) + V (h)) is clearly realized by it and so the bound stated in Theorem 1 is actually (see also Corollary 1)

E[ μh -µ 2 A ] ≤ c 1 ( 1 T ) 2 β 2 β+d-2 + c 1 e -c2(log T ) 2 ,
as we wanted.

We have showed Theorem 1 using, as main tool, the bound on E[A(h)] stated in Proposition 5. Its proof, as we will see in the next section, relies on the use of Berbee's coupling method as in Viennet [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF] and on a version of Talagrand inequality given in Klein and Rio [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF].

Proof of Proposition 5

Proof. To find a bound for E[A(h)], for each h ∈ H T we want to use Talagrand inequality, stated on random variables which are independent. Therefore, we start introducing some blocks which are mutually independent. We do it through the use of Berbee's coupling method as done in Viennet [START_REF] Viennet | Inequalities for absolutely regular sequences: application to density estimation[END_REF], Proposition 5.1 and its proof p. 484. We assume that T = 2p T q T , with p T integer and q T a real to be chosen. We split the initial process X = (X t ) t∈[0,T ] in 2p T processes of a length q T : for each j ∈ {1, ..., p T } we consider X j,1 := (X t ) t∈[2(j-1)qT ,(2j-1)qT ] and X j,2 := (X t ) t∈[(2j-1)qT ,2jqT ] . Then, there exist a process (X * t ) t∈[0,T ] satisfying the following properties: 1. For j ∈ {1, ..., p T } the processes X j,1 and X * j,1 := (X * t ) t∈[2(j-1)qT ,(2j-1)qT ] have the same distribution and so have the processes X j,2 and X * j,2 := (X * t ) t∈[(2j-1)qT ,2jqT ] . 2. For j ∈ {1, ..., p T }, P(X j,1 = X * j,1 ) ≤ β X (q T ) and P(X j,2 = X * j,2 ) ≤ β X (q T ), where β X is the β -mixing coefficient of the process X as in (4).

3. For each k ∈ {1, 2}, X * 1,k , ..., X * pT ,k are independent.

We denote by μ * h the estimator computed using X * t instead of X t and we write μ *

h = 1 2 (μ * (1) h + μ * (2)
h ) to separate the part coming from X * .,1 (super -index (1)) and those coming from X * .,2 (super -index (2)), having μ * (1)

h := 1 pT qT pT j=1 (2j-1)qT 2(j-1)qT K h (X * u -x)du.
In a natural way we define moreover μ * h,η := K η * μ * h , which can be written again as 1 2 (μ * (1)

h,η + μ * (2) h,η
), to separate the contribution of X * .,1 and X * .,2 . With this background we can evaluate E[A(h)]. We recall that, as defined in [START_REF] Kou | A Jump-Diffusion Model for Option Pricing[END_REF],

A(h) := sup η∈HT ( μh,η -μη 2 -V (η)) + .
Now we can see μh,η -μη as sum of different terms which we deal with singularly:

μh,η -μη := (μ h,η -μ * h,η ) + (μ * h,η -µ h,η ) + (µ h,η -µ η ) + (µ η -μ * η ) + (μ * η -μη ).

As a consequence of the triangular inequality and of the definition of A(h) the following estimation holds true:

A(h) ≤ sup η∈HT [ μh,η -μ * h,η 2 +( μ * h,η -µ h,η 2 - V (η) 2 ) + + µ h,η -µ η 2 +( µ η -μ * η 2 - V (η) 2 ) + + μ * η -μη 2 ] = = sup η∈HT [ 5 j=1 I h,η j ]
We start considering I h,η 5 . We define the set

Ω * := {X t = X * t ∀t ∈ [0, T ]} .
As a consequence of the second property of the process X * and of the β -mixing with exponential decay showed in Lemma 2 we get, recalling that 2p T q t = T (with q T and p T to be chosen),

P(Ω * c ) ≤ 2p T β X (q T ) ≤ c T q T e -γqT . (29) 
From the definition of μ * h and Jensen inequality it is

μ * η -μη 2 = A ( 1 T T 0 K η (X t -x) -K η (X * t -x)dt) 2 dx1 Ω * c ≤ ≤ c A 1 T 2 T ( T 0 K 2 η (X t -x) + K 2 η (X * t -x)dt)dx1 Ω * c ≤ c K η 2 ∞ 1 Ω * c (30) 
By the definition [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF] we get that, ∀h ∈ H T , K h ∞ ≤ ( d l=1 h l ) -1 . We recall that, from how we have defined in [START_REF] Gloter | Jump filtering and efficient drift estimation for Lévy-driven SDEs[END_REF] the set H T , we have that ∀h ∈ H

T d l=1 h l > (log T ) 2d T d 3
and so

K η 2 ∞ < 1 ( d l=1 η l ) 2 ≤ T 2d 3 (log T ) 4d .
Replacing this bound in (30) it follows

sup η∈HT μ * η -μη 2 ≤ c T 2d 3 (log T ) 4d 1 Ω * c .
We take its expectation and we use (29), getting a term which depends on q T , a real to be chosen.

From the arbitrariness of q T we get a convergence to zero as fast as we want, for T going to ∞. Indeed, taking q T := (log T ) 2 yields ∀h, η ∈ H T ,

E[| sup η∈HT I h,η 5 |] = E[| sup η∈HT μ * η -μη 2 |] ≤ c T 2d 3 +1 (log T ) 4d+2 e -γ(log T ) 2 . ( 31 
)
Regarding sup η∈HT I h,η 1 , we estimate it through (31) and the following lemma, which will be proven in the appendix.

Lemma 3. Let f : R d → R be a bounded, measurable function with support S satisfying diam(S) ≤ 2 √ d; à a compact set in R d such that A ⊂ à and à = ζ : d(ζ, A) ≤ 2 √ d and g a function in L 2 ( Ã). Then, f * g A ≤ f 1,R d g 2, à ,
where we have denoted as

. A the usual L 2 norm on A, . 1,R d the L 1 norm on R d and . 2, Ã the L 2 norm on Ã.
We recall that μh,η = K η * μh and μ * h,η = K η * μ * h . Therefore, remarking that diam(K) ≤ 2 and so by the definition of

K η it is diam(K η ) ≤ 2 √ d, we can use Lemma 3, which yields sup η∈HT I h,η 1 = sup η∈HT K η * (μ h -μ * h ) 2 ≤ sup η∈HT K η 2 1,R d μh -μ * h 2 Ã .
Taking the expected value, using that K η 1,R d ≤ c ∀η ∈ H T and the equation (31), remarking that the dependence on the integration set considered is hidden in the constant c in which this time will appear | Ã| instead of |A| we get

E[| sup η∈HT I h,η 1 |] ≤ c T 2d 3 +1 (log T ) 4d+2 e -γ(log T ) 2 . ( 32 
)
We still use Lemma 3 to study sup η∈HT I h,η 3 , recalling that µ h,η = K η * µ h and

µ η = K η * µ b . It yields sup η∈HT I h,η 3 = sup η∈HT K η * (µ h -µ) 2 ≤ sup η∈HT K η 2 1,R d µ h -µ 2 Ã ≤ c µ h -µ 2 Ã = cB(h). (33) 
We are left to study I h,η 2 and I h,η 4 , for which we need the following lemma that will be showed right after the proof of this proposition. Lemma 4. For i = 1, 2, there exist some positive constants c * 1 , c * 2 , c * 3 and a constant k * 0 such that, for any k ≥ k * 0 ,

E[ sup η∈HT ( µ η -μ * (i) η 2 - k T ( d l=1 η l ) 2 d -1 ) + ] ≤ c * 1 T c * 2 e -c * 3 (log T ) 2 . ( 34 
)
Moreover there exist k 0 such that, for any k ≥ k 0 ,

E[ sup η∈HT ( µ h,η - μ * (i) h,η 2 - k T ( d l=1 η l ) 2 d -1 ) + ] ≤ c * 1 T c * 2 e -c * 3 (log T ) 2 . ( 35 
) Concerning I h,η 4 observe it is µ η -μ * η = 1 2 (2µ η - μ * (1) η - μ * (2) η 
). Hence, from triangular inequality and the definition of positive part function, we get

I h,η 4 ≤ c( µ η -μ * (1) η 2 - V (η) 2 ) + + c( µ η -μ * (2) η 2 - V (η) 2 ) + . 
From (34), for a k in the definition of V (η) big enough, for which we have

k 2 > (k * 0 ∨ k 0 ), we get E[ sup η∈HT I h,η 4 ] ≤ c 1 T c2 e -c3(log T ) 2 . (36) 
In the same way, remarking that

I h,η 2 ≤ c( μ * (1) h,η -µ h,η 2 - V (η) 2 ) + + c( μ * (2) h,η -µ h,η 2 - V (η) 2 ) +
and using (35

) it follows E[ sup η∈HT I h,η 2 ] ≤ c 1 T c2 e -c3(log T ) 2 . (37) 
From ( 31) , (32), (33), ( 36) and (37) we obtain, for any h ∈ H T ,

E[A(h)] ≤ c T 2d 3 +1 (log T ) 4d+2 e -γ(log T ) 2 + cB(h) + c 1 T c2 e -c3(log T ) 2 ≤ cB(h) + c 1 e -c2(log T ) 2 ,
as we wanted.

To conclude the proof of the adaptive procedure we need to show Lemma 4, which core is the use of the Talagrand inequality. First of all, we recall the following version of the Talagrand inequality, which has been stated as Lemma 2 in [START_REF] Comte | Adaptive estimation for stochastic damping Hamiltonian systems under partial observation[END_REF] and which is a straightforward consequence of the Talagarand inequality given in Klein and Rio [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF]. Lemma 5. Let T 1 , ..., T n be independent random variables with values in some Polish space X , R a countable class of measurable functions from X into [-1, 1] p and v p (r) :=

1 p p j=1 [r(T j )-E[r(T j )]]. Then, E[(sup r∈R |v p (r)| 2 -2H 2 ) + ] ≤ c( v p e -c pH 2 v + M 2 p 2 e -c pH M ), (38) 
with c a universal constant and where

sup r∈R r ∞ ≤ M, E b [sup r∈R |v p (r)|] ≤ H, sup r∈R 1 p p j=1
V ar(r(T j )) ≤ v.

Proof of Lemma 4

Proof. Since the two cases i = 1 and i = 2 are similar, we study only one of them. We start proving (34), the proof of inequality (35) follows the same line. We first observe it is

E[ sup η∈HT ( µ η -μ * (1) η 2 A - k T ( d l=1 η l ) 2 d -1 ) + ] ≤ η∈HT E[( µ η -μ * (1) η 2 A - k T ( d l=1 η l ) 2 d -1 ) + ]. ( 39 
)
Our goal is now to find a bound for the right hand side of the inequality here above using the version of the Talagrand inequality gathered in Lemma 5. To do it, we need to introduce some notation.

We observe that µ η -μ * (1)

η 2 A = sup r, r =1 < µ η - μ * (1)
η , r > 2 , and the supremum can be considered over a countable dense set of function r such that r = 1; let us denote this set by B(1). We define

T j (z) := 1 q T 2jqT (2j-1)qT K η (X * j,1 t -z)dt; r(T j ) := A T j (z)r(z)dz.
Thus

v pT (r) =< μ * (1) η -µ η , r >= 1 p T pT j=1 [r(T j ) -E[r(T j )]]
is a centered empirical process with independent variables

ψ r (X * j,1 ) := r(T j ) -E[r(T j )] = A ( 1 q T 2jqT (2j-1)qT [K η (X * j,1 t -z) -E[K η (X * j,1 t -z)]]dt)r(z)dz,
to which we want to apply Talagrand inequality (38). Therefore, we have to compute M , H and v as defined in Lemma 5. We start by the calculation of M. For any r ∈ B(1) it is, using the definition of r and Cauchy -Schwartz inequality,

| A T j (z)r(z)dz| ≤ ( A T 2 j (z)dz) 1 2 .

Now from the definition of T and Jensen inequality it follows

A T 2 j (z)dz ≤ A 1 q 2 T q T 2jqT (2j-1)qT K 2 η (X * j,1 t -z)dtdz ≤ c K η 2 ∞ |S| ≤ c( d l=1 η l ) -2 ( d l=1 η l ) = c( d l=1 η l ) -1 ,
where we have also used that the support of K η is on S which size is d l=1 η l . Hence,

| A T j (z)r(z)dz| ≤ c( d l=1 η l ) -1 2 =: M. (40) 
Regarding the computation of H, from the definition of v pT (r) and the fact that the random variables ψ * j,1 r are centered and independents it follows

E[ sup r∈B(1) |v pT (r)| 2 ] = E b [ µ η -μ * (1) η 2 A ] = A V ar( 1 p T pT j=1 1 q T 2jqT (2j-1)qT (K η (X * j,1 t -z)-E[K η (X * j,1 t -z)])dt)dz = = A 1 p T V ar( 1 q T 2jqT (2j-1)qT K η (X * j,1 t -z)dt)dz ≤ c|A| 1 p T 1 q T ( d l=1 η l ) 2 d -1 ,
where in the last inequality we have used the estimation for the variance in the case d ≥ 3 gathered in Proposition 1, considering that taking the Kernel function as f we have that its support S is such that |S| ≤ c( d l=1 η l ). It yields

E[ sup r∈B(1) |v pT (r)| 2 ] ≤ c T ( d l=1 η l ) 2 d -1 =: H 2 (41) 
In order to use Lemma 5, we are left to compute v. We observe it is

1 p T pT j=1 V ar( A 1 q T 2jqT (2j-1)qT K η (X * j,1 t -z)dt r(z)dz) = 1 p T pT j=1 V ar( 1 q T 2jqT (2j-1)qT (K η * r)(X * j,1 t )dt).
We want to prove a tight upper bound for the variance of the integral functional 1 qT 2jqT (2j-1)qT f η (X * j,1 t )dt of the diffusion X * , where we have denoted f η := K η * r. Following the proof we have given of Proposition 1 we have,

V ar( 1 q T 2jqT (2j-1)qT f η (X * j,1 t )dt) ≤ c q 2 T qT 0 (q T -u)E[f η,c (X * j,1 0 ), f η,c (X * j,1 u )]du = = c q 2 T ( D 0 (q T -u)E[f η,c (X * j,1 0 ), f η,c (X * j,1 u )]du + qT D (q T -u)E[f η,c (X * j,1 0 ), f η,c (X * j,1 u )]du),
where we have introduced f η,c (x) := f η (x)µ(f η ) and D a quantity to be chosen in order to balance the contribution of the two integrals here above. We denote moreover as P * t the transition semigroup of the process X * Concerning the integral between 0 and D, we act like we did in [START_REF] Lacour | Estimator selection: a new method with applications to kernel density estimation[END_REF] and we use Cauchy -Schwartz inequality and the fact that P * t is a contraction. It follows

c q 2 T D 0 (q T -u)E[f η,c (X * j,1 0 ), f η,c (X * j,1 u )]du ≤ c q T | D 0 < P * t f η , f η > µ dt| ≤ ≤ c q T D 0 ( P * t f η 2 µ f η 2 µ ) 1 2 dt ≤ c q T D 0 f η 2 µ dt ≤ cD q T , (42) 
where in the last inequality we have used the fact that µ ∞ ≤ c, Young inequality and the definition of the Kernel function and of r in order to say

f η 2 µ = K η * r 2 µ ≤ c K η * r 2 2,R d ≤ c K η 2 1,R d r 2 2,R d ≤ c. (43) 
Regarding the integral between D and q T , we act like we did in (20) using the exponential ergodicity gathered in Lemma 2 to get 

c q 2 T qT D (q T -u)E[f η,c (X * j,1 0 ), f η,c (X * j,1 u )]du ≤ c q T | qT D < P * t f η,c , f η,c > µ dt| ≤ c q T qT D e -ρt f η,c 2 
∞ dt. (44) We now recall that f η,c (x) = f η (x) -µ(f η ) with µ(f η ) = R d f η (x)µ(x)
To estimate the infinity norm of f η,c we remark it is, ∀y ∈ R d ,

|f η (y)| = |K η * r(y)| = | A K η (y-z)r(z)dz| ≤ ( A K 2 η (y-z)dz) 1 2 ( A r 2 (z)dz) 1 2 = ( S K 2 η (y-z)dz) 1 2 ,
where we have used Cauchy -Schwartz inequality and the fact that r ∈ B(1) and so its 2 -norm is equal to 1 by definition. Moreover, the Kernel function is different from 0 only on its support S, which size is d l=1 η l . Hence, recalling also that the infinite norm of K η is upper bounded by c( d l=1 η l ) -1 , we get

|K η * r(y)| ≤ c( K η 2 ∞ |S|) 1 2 ≤ c d l=1 η l . It follows f η,c ∞ ≤ c d l=1 η l + c ≤ c d l=1 η l , (46) 
given that the second term is negligible compared to the first. Replacing (46) in (44), using also (42), we obtain

V ar( 1 q T 2jqT (2j-1)qT f η (X * j,1 t )dt) ≤ c q T (D + e -ρD d l=1 η l ).
We look for a D for which the first and the second term of the right hand side of the inequality here above have the same magnitude. Therefore, we choose D := [max(-1 ρ log( d l=1 η l ), 1)] ∧ q T . Replacing such a value we get, if q T > -1 ρ log(

d l=1 η l ), 1 p T pT j=1 V ar( A 1 q T 2jqT (2j-1)qT K η (X * j,1 t -z)dt r(z)dz) ≤ c q T (1 + log( 1 | d l=1 η l | ))
Otherwise, if q T ≤ -1 ρ log( d l=1 η l ), by the definition of D we have D = q T . We still have the contribution of c qT D which is in this case less than c qT (log(

1 | d l=1 η l | )
) and, moreover, the contribution of the integral between D and q T is now null since we have D = q T . Hence we have

v := c q T (1 + log( 1 
| d l=1 η l | )). ( 47 
)
We use Lemma 5 on the right hand side of (39), recalling that µ η -μ * (1)

η 2 A = sup r∈B(1) < µ η - μ * (1) η , r > 2 = sup r∈B(1)
|v pT (r)| 2 ; with M , H and v as found in (40), ( 41) and (47). It follows

E[ sup η∈HT ( µ η -μ * (1) η 2 - k T ( d l=1 η l ) 2 d -1 ) + ] ≤ ≤ c η∈HT (1 + log( 1 | d l=1 η l | )) p T q T e -c p T T ( d l=1 η l ) 2 d - 1 
1 q T (1+log( 1 | d l=1 η l | )) + ( d l=1 η l ) -1 p 2 T e -c p T 1 √ T ( d l=1 η l ) 1 d -1 2 ( d l=1 η l ) - 1 2 
.

We recall that 2p T q T = T , where q T is chosen above equation ( 31) as (log T ) 2 ; we can therefore upper bound the right hand side of the equation here above with

c η∈HT (1 + log( 1 | d l=1 η l | )) T e - c ( d l=1 η l ) 1-2 d (1+log( 1 | d l=1 η l | )) + (log T ) 4 ( d l=1 η l )T 2 e -c √ T (log T ) 2 ( d l=1 η l ) 1 d ≤ ≤ ( log T T e -c(log T ) 2 + T d 3 -2 (log T ) 2d-2 e -cT 1 6 )|H T |,
where in the last inequality we have used that, by the definition [START_REF] Gloter | Jump filtering and efficient drift estimation for Lévy-driven SDEs[END_REF] we have given of H T , ∀h ∈ H T we have 6 ; we have therefore upper bounded each element of the sum with a quantity which does not depend on η. We have moreover assumed that |H T | has polynomial growth in T ; and so there is a constant c > 0 such that 6 )T c ; inequality (34) follows.

(log T ) 2d T d 3 ≤ d l=1 h l ≤ ( 1 log T ) 3d d-2 and so ( d l=1 η l ) 1-2 d (1 + log( 1 | d l=1 η l | )) ≤ c 1 (log T ) 2 and √ T (log T ) 2 ( d l=1 η l ) 1 d ≥ cT 1 
E[ sup η∈HT ( µ η -μ * (1) η 2 - k T ( d l=1 η l ) 2 d -1 ) + ] ≤ ( log T T e -c(log T ) 2 + T d 3 -2 (log T ) 2d-2 e -cT 1 
As a consequence of Lemma 3 and the definition of Kernel function we moreover have

µ h,η - μ * (1) h,η 2 = K h * (µ η -μ * (1) η ) 2 ≤ K h 2 1,R d µ η -μ * (1) η 2 2, Ã ≤ c µ η -μ * (1) η 2 2, Ã .
Using that and (34) we have just shown we obtain (35).

A Appendix

A.1 Proof of Lemma 1

Proof. Lemma 1 relies on the first point of Theorem 1.1 in [START_REF] Chen | Heat kernels for non-symmetric diffusion operators with jumps[END_REF], which needs the following assumptions on the coefficients a, b, γ and on the jumps.

(H a ) There are c 1 > 0 and β ∈ (0, 1) such that for all x, y ∈ R d , |a(x)a(y)| ≤ c 1 |x -y| β and, for some

c 2 ≥ 1, c -1 2 I d×d ≤ a(x) ≤ c 2 I d×d . (H k ) The function k(x, z) := |z| d+α F ( z γ(x) ) is bounded, measurable and, if α = 1, for any 0 < r < R < ∞ it is r≤z≤R zk(x, z)|z| -d-1 dz = 0. (48) (H b )
The function b belongs to the Kato class K 2 which is, as defined in [START_REF] Chen | Heat kernels for non-symmetric diffusion operators with jumps[END_REF],

K γ := f : R d → R satisfies lim δ→0 sup x δ 0 R d |f (x + y)|η γ,γ-1 (s, y)dy ds = 0 ,
where we have denoted f (x + y) as an abbreviation for f (x + y) + f (xy) and

η α,γ (t, x) := t γ 2 (|x| + t 1 2 ) -d-α .
Through this paper we have assumed that Assumptions A1 -A3 hold. From A1 it follows H a since we have asked the boundedness of a and, in the case in which x and y are such that |x-y| > 1 we have that ∃c such that |a(x)-a(y

)| ≤ |a(x)|+|a(y)| ≤ 2c ≤ 2c|x-y| β , for each β ∈ (0, 1). When |x -y| ≤ 1, instead, we have |a(x) -a(y)| ≤ L|x -y| = L|x -y| 1-β |x -y| β ≤
L|x -y| β , as consequence of the Lipschitz continuity. Regarding H k , we have that k is a bounded function as a consequence of second and third points of A3. Indeed,

|k(x, z)| = |z| d+α |F ( z γ(x) )| ≤ |z| d+α |γ(x)| |z| d+α ≤ γ max < ∞.
Observing moreover that (48) holds true on the basis of the fourth point of A3, H k clearly follows.

We are left to show that b ∈ K 2 . Noticing that (cf also Remark 2.6 in [START_REF] Chen | Heat kernels for non-symmetric diffusion operators with jumps[END_REF])

δ 0 η α,α-1 (s, y)ds = δ 0 s (α-1) 2 (|y| + s 1 2 ) d+α ds ≤ c (|y| 2 ∧ δ) (1+α) 2 |y| d+α = 1 |y| d-1 (1 ∧ δ |y| 2 ) (1+α) 2 , it is enough to show that M 2 b (δ) := sup x∈R d R d |b(x + y)| 1 |y| d-1 (1 ∧ δ |y| 2 ) 3 2 dy -→ 0 as δ → 0 to get b ∈ K 2 .
From Assumption A1 we now b is upper bounded by a constant. Therefore we have sup

x∈R d | R d |b(x + y)| 1 |y| d-1 (1 ∧ δ |y| 2 ) 3 2 dy| ≤ c {y:|y|≤ √ δ} 1 |y| d-1 dy + c {y:|y|> √ δ} 1 |y| d-1 ( δ |y| 2 ) 3 2 dy.
(49) We move to polar coordinates system, getting the right hand side of the equation (49) here above is upper bounded by 

√ δ 0 cdρ + cδ 3 2 ∞ √ δ ρ -3 dρ = c √ δ + cδ

A.2 Proof of Lemma 2

Proof. The exponential ergodicity and the exponential β -mixing of the process X are showed in Proposition 3.8 and the second point of Theorem 2.2 of [START_REF] Masuda | Ergodicity and exponential beta -mixing bounds for multidimensional diffusions with jumps[END_REF].

To use them we have to show that Assumptions 1, 2 and 3* stated in [START_REF] Masuda | Ergodicity and exponential beta -mixing bounds for multidimensional diffusions with jumps[END_REF] hold. Assumption 1 of [START_REF] Masuda | Ergodicity and exponential beta -mixing bounds for multidimensional diffusions with jumps[END_REF] is a regularity condition which corresponds to our assumption A1. We want to show that point b of Assumption 2 of [START_REF] Masuda | Ergodicity and exponential beta -mixing bounds for multidimensional diffusions with jumps[END_REF] holds, which is the following: (b) There exists a constant ∆ > 0 such that X ∆ admits a density p ∆ (x, y) with respect to the Lebesgue measure on R d for every x ∈ R d , and (x, y) → p ∆ (x, y) is bounded in y ∈ R d and in x ∈ K for every compact K ⊂ R d . Moreover, for every x ∈ R d and every open ball U ⊂ R d there exists a point z = z(x, U ) ∈ supp(F ) such that γ(x) • z ∈ U . We observe that the existence of a bounded density has already been proven in Lemma 1. Moreover, from second and third points of A3, we know that supp(F ) = R d and that γ is an invertible matrix. Hence, for every x ∈ R d and every open ball U ⊂ R d there exists a point z = z(x, U ) ∈ R d such that γ(x) • z ∈ U .

To conclude, we have to prove that Assumption 3* holds and so we have to show the existence of a Lyapunov function. We therefore want to provide a function f * which satisfies the drift condition Af * ≤ -c 1 f * + c 2 for c 1 > 0 and c 2 > 0. A denotes the generator of the diffusion, which is the sum of the continuous and discrete part

A c f (x) := 1 2 d i,j=1
a 2 i,j (x)∂ 2 i,j f (x) + 

Since ǫ > 0 can be chosen small; cǫ is therefore less then C and so the first term here above turns out being negative. Moreover, the second term on the right hand side of (56) is o(f * ). Indeed, cǫ( 1 |x| + e -cǫ|x| ) clearly goes to 0 for |x| → ∞ and the domain of integration of the integral defined as J(x) is the set of z such that |z| > |x| 

2 d

 2 and D := [max(-2 ρ log(|S|), 1)] ∧ T . Replacing them in (24) if T > (-2 ρ log(|S|)) we get

  Aiming at balancing the terms, we choose again δ := |S| and D := [max(-2 ρ log(|S|), 1)] ∧ T . It follows that log( D δ ) ≤ c| log | log |S|||+c| log( 1 |S| )| and so, observing that log | log(|S|)| is negligible compared to log( 1 |S| ), the bound on the variance becomes

  dx. Hence, from Cauchy-Schwartz inequality and (43), we get |µ(f η )| ≤ c and therefore |f η,c (x)| ≤ |f η (x)| + c.

  to 0 for δ → 0. It yields that H b holds true. It entails we can use Theorem 1.1 of [4]; Lemma 1 follows.

b 1 0z:|z|≤ |x| 2 γ ∞ 1 0z:|z|> |x| 2 γ ∞ 1 0I 1 ≤ c z:|z|≤ |x| 2 γ ∞ 1 0 |z| 2 γ 2 ∞γ 2 ∞ 2 2 ∞

 111112222 i (x)∂ i f (x) andA d f (x) := R d (f (x + γ(x) • z)f (x)γ(x) • z • ∇f (x))F (z)dz, for every function f : R d → R, f ∈ C 2 (R d ).From the fifth point of condition A3 we know there exists ǫ > 0 such that R d |z| 2 e ǫ|z| F (z)dz ≤ c. For such an ǫ we define f * (x) := e ǫ|x| . We observe it is∂ i f * (x) = ǫe ǫ|x| xi|x| and∂ 2 i,j f * (x) = ǫ x i x j |x| 2 e ǫ|x| (ǫ -1 |x| ) + ǫe ǫ|x| 1 |x| 1 j=i . (50)We therefore have, using also the drift condition gathered in assumption A2, ∀x : |x| > ρ|A c f * (x)| ≤ (x)| -Cǫe ǫ|x| . (51)Concerning the discrete part of the generator, from intermediate value theorem we have|A d f * (x)| ≤ R d (γ(x) • z) T • H 2 f (x+sγ(x)•z) • (γ(x) • z)dsdz,where H 2 f (x+sγ(x)•z) denotes the hessian matrix of the function f computed in the point x+sγ(x)•z.We now split the integral in the right hand side here above, to act differently depending on whether |z| is more or less than |x| 2 γ ∞ . We therefore get|A d f * (x)| ≤ (γ(x) • z) T • H 2 f (x+sγ(x)•z) • (γ(x) • z)dsdz+ + (γ(x) • z) T • H 2 f (x+sγ(x)•z) • (γ(x) • z)dsdz =: I 1 + I 2 .Concerning I 1 , from (50) it follows ǫe ǫ|x+szγ(x)| (ǫ +1 |x + szγ(x)| )F (z)dzds ≤ ≤ cǫe ǫ|x| z:|z|≤ |x| 2 γ ∞ |z| 2 e ǫ|z| γ ∞ (ǫ + 1 |x| -|z| γ ∞)F (z)dz ≤ cǫe ǫ|x| (ǫ in the last inequality we have used the fifth point of A3 and the fact that on the integral we are considering it is |z| ≤ |x| 2 γ ∞ and so1 |x|-|z| γ ∞ ≤ 2|x| . We now study the term I 2 , which isI 2,1 + I 2,2 := z:|z|> |x| 2 γ ∞ ,|x+szγ(x)|≤1 1 0 (γ(x) • z) T • H 2 f (x+sγ(x)•z) • (γ(x) • z)dsdz+ + x) • z) T • H 2 f (x+sγ(x)•z) • (γ(x) • z)dsdz.On I 2,1 we can upper bound the hessian matrix with cǫ and so we getI 2,1 ≤ cǫ z:|z|> |x| 2 γ ∞ ,|x+szγ(x)|≤1 |z| 2 F (z)dz ≤ cǫ z:|z|> |x| 2 γ ∞ |z| 2 e ǫ|z| e -ǫ|z| F (z)dz ≤ cǫe -ǫ |x| 2 γ ∞ ,(53)where in the last inequality we have used that |z| > |x| 2 γ ∞ ; after that we have enlarged the domain of integration and used the fifth point of Assumption A3 to upper bound the integral with a constant. On I 2,2 we still use (50), gettingI ǫe ǫ|x+szγ(x)| (ǫ + 1 |x + szγ(x)| )F (z)dzds ≤ ≤ c(ǫ + 1)ǫe ǫ|x| z:|z|> |x| 2 γ ∞ ,|x+szγ(x)|>1 |z| 2 e ǫ|z| γ ∞ F (z)dz. (54)We define J(x):= z:|z|> |x| 2 γ ∞|z| 2 e ǫ|z| γ ∞ F (z)dz. From (52) (53) and (54), observing that the domain of integration of the integral defined as J contains the one in (54) and using the boundedness of γ, we get|A d f * (x)| ≤ c ǫe ǫ|x| (ǫ + 1 |x| + e -cǫ|x| + (ǫ + 1)J(x)).(55)From (51) and (55) we get, using also the boundedness of a and J which follows from A1 the fifth point of A3, |Af * (x)| ≤ ǫe ǫ|x| (cǫ -C) + cǫe ǫ|x| ( 1 |x| + e -cǫ|x| + J(x)).

. 1 2 2 1,R d g 2 2* g 2 A ≤ c f 2 1 ,R d g 2 2 ,

 122212 Therefore, for |x| → ∞ the contribution of the integral becomes null. It follows Af * ≤ -c 1 f * + o(f * ), as we wanted. We get the drift condition holding true on the proposed function f * and so the Assumption 3* does.A.3 Proof of Lemma 3Proof. We observe that, from the definition of convolution and Cauchy-Schwartz inequality it is|f * g(x)| = R d |f (xy)||g(y)|dy = R d |f (xy)| |g(y)||f (xd .Therefore the following bound on the L 2 norm on A holds true:g(x)| 2 dx ≤ c f 1,R d A ( R d |f (xy)||g(y)| 2 dy)dx. (57)We now use the fact that S, the support of f , satisfies diam(S) < 2 √ d and so, since x ∈ A, it followsÃc |f (x-y)||g(y)| 2 dy = 0 for à compact set of R d such that à := ζ ∈ R d : d(ζ, A) ≤ 2 √ d .Using moreover Fubini's theorem, the right hand side of (57) becomesc f 1,R d A ( à |f (xy)||g(y)| 2 dy)dx = c f 1,R d à |g(y)| 2 ( A |f (xy)|dx)dy ≤ c f , à ,where in the last estimation we have enlarged the integration domain of f to R d . The estimation here above joint with (57) gives us f à .

+ 1)du ≤