
HAL Id: hal-02442233
https://hal.science/hal-02442233v2

Submitted on 24 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Energy stable discretization for two-phase porous media
flows

Clément Cancès, Flore Nabet

To cite this version:
Clément Cancès, Flore Nabet. Energy stable discretization for two-phase porous media flows. Finite
Volumes for Complex Applications IX, Jun 2020, Bergen, Norway. �hal-02442233v2�

https://hal.science/hal-02442233v2
https://hal.archives-ouvertes.fr


Energy stable discretization for two-phase
porous media flows

Clément Cancès and Flore Nabet

Abstract We propose a P1 finite-element scheme with mass-lumping for a model
of two incompressible and immiscible phases in a porous media flow. We prove the
dissipation of the free energy and the existence of a solution to the nonlinear scheme.
We also present numerical simulations to illustrate the behavior of the scheme.
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1 Immiscible two-phase flows in porous media

We are interested in the numerical approximations of the equations governing an
immiscible incompressible two-phase flow in a porous medium. Let Ω ⊂ Rd (d =
2,3) be an open bounded polyhedral subset with Lipschitz boundary condition and
let tf > 0 be an arbitrary finite time horizon. Then the conservation of the wetting
(subscript w) and non-wetting phases (subscript n) are given by

φ∂tsα −∇ · (ηα(sα)Λ∇pα) = qα(sα), α ∈ {w,n}, (1)

where the unknowns are the phase saturations sα , which satisfy

sn + sw = 1, (2)
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and the phase pressures pα . The porosity φ ∈ (0,1) is given, as well as the intrin-
sic permeability Λ , which is assumed to be symmetric and uniformly elliptic. The
mobility ηα : [0,1]→ R is assumed to be continuous and strictly increasing, with
ηα(0) = 0 and ηα(s)> 0 if s > 0. They are extended to the whole R by ηα(s) = 0
if s < 0 and ηα(s) = ηα(1) if s > 1. The sources qα are such that

qα(x,sα) = qinj(x)
ηα(cα)

ηw(cw)+ηn(cn)
−qsink(x)

ηα(sα)

ηw(sw)+ηn(sn)
, (3)

where cw ∈ (0,1] and cn = 1− cw is the prescribed composition of the injected
mixture, and where qinj,qsink ∈ L∞(Ω) are nonnegative, bounded, and such that∫

Ω
qinj =

∫
Ω

qsink. The phase pressures are linked by the capillary pressure relation

pn− pw = γ(sn), (4)

where γ ∈ L1(0,1) is strictly increasing, nonnegative, and blows up as sn tends to
1. This function is extended for s < 0 by γ(s) = γ(0)+ 2s. We further assume that
s 7→ ηw(1− s)γ(s) ∈ L∞(0,1) and s 7→ ηw(1− s)γ ′(s) ∈ L1(0,1). These assump-
tions are satisfied by the usual models of the literature (see for instance [1]). The
system is complemented with no-flux boundary conditions and initial conditions
sini

α ∈ L∞(Ω ; [0,1]) that are compatible with (2). Note that since γ ∈ L1(0,1), then
Γ : s 7→

∫ s
0 γ(a)da is bounded on [0,1]. The phase pressures being only defined up

to a constant, we enforce additionally that
∫

Ω
pn = 0.

Multiplying (1) by pα , summing over α ∈ {n,w}, integrating over Ω , and using
(2) and (4) yields

d
dt

∫
Ω

φΓ (sn)+
∫

Ω
∑

α∈{n,w}
ηα(sα)Λ∇pα ·∇pα =

∫
Ω

∑
α∈{n,w}

qα(sα)pα . (5)

Following [6], we define the global pressure P by P = pn − r(sn) with r : sn 7→∫ sn
0

ηw(1−a)
ηn(a)+ηw(1−a)γ ′(a)da. The definition of P yields

∑
α

ηα(sα)|∇pα |2 = (ηn(sn)+ηw(sw))|∇P|2 + ηn(sn)ηw(sw)

ηn(sn)+ηw(sw)
|∇γ(sn)|2. (6)

In view of the particular form (3) of the source terms,

∑
α∈{n,w}

qα(sα)pα ≤
(
qinj−qsink

)
(P+ r(sn))+qsinkk(sn), (7)

with k(sn) =
ηw(1−sn)

ηw(1−sn)+ηn(sn)
γ(sn). Since ηw(1− ·)γ ′ ∈ L1(0,1) and ηw(1− ·)γ ∈

L∞(0,1), both r and k are bounded on (0,1). Moreover, the extensions outside (0,1)
of ηα and γ ensure that for all ε > 0, there exists Cε such that

|s|+ |k(s)|+ |r(s)| ≤ εΓ (s)+Cε , ∀s ∈ (−∞,1). (8)
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Combining (7) with (6) in (5) together with the uniform ellipticity of Λ , ηn(s)+
ηw(1− s)≥ δ > 0 for all s, and (8) we get that

d
dt

∫
Ω

φΓ (sn)+
∫

Ω

(
|∇P|2 + ∑

α∈{n,w}
ηα(sα)|∇pα |2

)
≤C. (9)

This estimate is enough to establish the existence of a weak solution. In this pa-
per, our goal is to show that this stability is still encoded in very natural numerical
schemes. For the sake of simplicity, we present our analysis in the framework of P1
finite-elements with mass-lumping, but our approach can be extended to a wide fam-
ily of schemes having the structure highlighted in [3, Section 3]. We show here how
to transpose estimate (9) to the discrete setting and to infer the existence of discrete
solutions therefrom. A full convergence study will be carried out in a forthcoming
contribution. While deeply inspired from [7], the goal of this paper is to exploit
more finely the energy estimate which allows to relax some stringent conditions on
the anisotropy, on the mesh and the non-linearities presented in [7].

2 An energy stable finite-element scheme

We study the problem (1)–(4) using a P1 conforming finite-element scheme with
mass-lumping for the space discretization. Let T be a conforming simplicial dis-
cretization of Ω . We denote by T ∈ T a simplex, VT is the set of all the ver-
tices a and VT ⊂ VT the set of the (d + 1) vertices a0, · · · ,ad of the simplex T .
We also denote by Vh = {uh ∈ C(Ω) : uh|T is affine for all T ∈ T } the usual con-
forming P1 finite-element space corresponding to the mesh T and by (ϕa)a∈VT

the basis of Vh. In order to deal with the mass-lumping procedure, for any ver-
tex a ∈ VT , we define the set sa, the boundary ∂sa of which being defined by
the hyperplanes joining the centers of mass of the simplices, edges (and faces if
d = 3) sharing a as a vertex. We can now define the functional space Xh := {u ∈
L∞(Ω) : u|sa is constant for all a ∈ VT }, and the linear mappings πX : C(Ω)→ Xh
and πV : C(Ω)→Vh by π`u(a) = u(a), for any a ∈ VT , for any u ∈C(Ω), `= X ,V .
In order to lighten the notations, for any uh ∈ Vh we write πX uh = uh. We will use
the following Poincaré inequality that can be established as in [2]: there exist C1,
C2 > 0 depending only on the mesh regularity such that for any uh ∈Vh,∥∥∥∥uh−

1
|Ω |

∫
Ω

uh

∥∥∥∥
L2(Ω)

≤C1

∥∥∥∥uh−
1
|Ω |

∫
Ω

uh

∥∥∥∥
L2(Ω)

≤C2‖∇uh‖L2(Ω). (10)

Before detailing the numerical scheme, we have to define the discrete tensor field
Λ h : Ω→Rd×d almost everywhere by Λ h(x) :=Λ T := 1

|T |
∫

T Λ if x∈ T . From there,

we define the matrix AT := (αT
i, j)1≤i, j≤d ∈ Rd×d by
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α
T
i, j = α

T
j,i :=

∫
T

Λ T ∇ϕai ·∇ϕa j

and for any uh,vh ∈Vh one has,

∫
T

Λ T ∇uh ·∇vh =

va1 − va0
. . .

vad − va0

 ·AT

ua1 −ua0
. . .

uad −ua0

 . (11)

Following [4], we can prove that there exists C3 > 0 depending on the regularity of
the mesh and on the anisotropy ratio of Λ and C4 > 0 depending, in addition, on d
such that that for any T ∈T the matrix AT satisfies

cond2(AT )≤C3 and
d

∑
i=1

(
d

∑
j=1
|αT

i, j|

)
(uai)

2 ≤C4u ·AT u, ∀u = (uai) ∈ Rd . (12)

We are now in a position to give the numerical scheme using a backward Euler
scheme for the time discretization. Let (tn)n=0,··· ,N be a partition of the interval [0, tf]
and for n= 1, · · · ,N we denote by τn = tn−tn−1 the time step. We define the discrete
initial data by s0

α,h := ∑a∈VT
s0

α,aϕa ∈Vh with s0
α,a =

1
|sa|
∫
sa

sini
α .

Let sn−1
α ∈Vh be given, we search for sn

α , pn
α ∈Vh such that for any vα,h ∈Vh with

α = (n,w) one has,

φ

∫
Ω

sn
α,h− sn−1

α,h

τn
vα,h +

∫
Ω

η
n
α,hΛ h∇pn

α,h ·∇vα,h =
∫

Ω

qα(s
n
α,h)vα,h, (13a)

sn
n,h + sn

w,h = 1, (13b)

pn
n,h− pn

w,h = γ
n
n,h, (13c)∫

Ω

pn
n,h = 0. (13d)

We have denoted by ηn
α,h = πV η(sn

α,h), γn
n,h = πV γ(sn

n,h) and,

qα(s
n
α,h) = qinj

ηα(cα)

ηw(cw)+ηn(cn)
−qsink

ηα(sn
α,h)

ηw(sn
w,h)+ηn(sn

n,h)
.

Mimicking the continuous case, we define the discrete global pressure and we
can obtain the discrete counterpart of (6).

Proposition 1 Let sn
α,h, pn

α,h ∈Vh be a solution to the scheme (13). Then there exists
C5 > 0 depending on the regularity of the mesh, on the anisotropy ratio of Λ , on δ

and d such that∫
Ω

Λ h∇Ph ·∇Ph ≤C5

(∫
Ω

η
n
n,hΛ h∇pn

n,h ·∇pn
n,h +

∫
Ω

η
n
w,hΛ h∇pn

w,h ·∇pn
w,h

)
,

where Pn
h = pn

n,h−πV r(sn
n,h) ∈Vh.
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Proof We define the functions

fn(s) =
ηn(s)

ηn(s)+ηw(1− s)
and fw(s) =

ηw(1− s)
ηn(s)+ηw(1− s)

.

Then, noting that fn + fw = 1 and using equation (13c), for any T ∈ T and for any
vertices a0,ai ∈ VT , there exists sn

i ∈ [min(a0,ai),max(a0,ai)] such that,

Pn
a0
−Pn

ai
= fn(sn

i )
(

pn
n,a0
− pn

n,ai

)
− fw(sn

i )
(

pn
w,a0
− pn

w,ai

)
.

Since ηα is strictly increasing, for any T ∈T with a0, · · · ,ad as vertices

η
n
α,T :=

1
d +1

d

∑
i=0

ηα(sn
α,ai

)≥ 1
d +1

max
x∈T

ηα(x)≥
1

d +1
ηα(sn

i ). (14)

Thus using that fn, fw ≤ 1 and ηn(s)+ηw(1− s)≥ δ > 0 we obtain,

δ

2(d +1)

d

∑
i=0

∣∣Pn
a0
−Pn

ai

∣∣2 ≤ η
n
n,T

d

∑
i=0

∣∣pn
n,a0
− pn

n,ai

∣∣2 +η
n
w,T

d

∑
i=0

∣∣pn
w,a0
− pn

w,ai

∣∣2 .
Since for any v1,v2,w satisfying |v1|2 + |v2|2 ≥ cond2(AT )|w|2 one has

v1 ·AT v1 + v2 ·AT v2 ≥ w ·AT w,

we use equality (11) associated with the fact that the condition number of AT is
bounded, cf. (12). Then summing the resulting estimate over T ∈T and noting that
the Lagrange vertex-quadrature formula is exact on P1 (see [5, Remark 2.2]) we
obtain the claim. �

Proposition 2 Let sn−1
α,h ∈Vh be given and sn

α , pn
α ∈Vh be a solution to the scheme (13).

There exists C6 > 0 depending on the data of the continuous problem but neither on
the mesh T or nor the time step τn such that,

φ

∫
Ω

Γ (sn
n,h)+ τn ∑

α∈{n,w}

∫
Ω

η
n
α,hΛ h∇pn

α,h ·∇pn
α,h + τn

∫
Ω

∇Pn
h ·∇Pn

h

≤C6

(
1+φ

∫
Ω

Γ (sn−1
n,h )

)
.

Proof Let us choose vα,h = pn
α,h as test function in equation (13a) and then add the

resulting equations. Then, since Γ is convex, thanks to relation (13c) we obtain

φ

∫
Ω

Γ (sn
n,h)+ ∑

α∈{n,w}
τn

∫
Ω

η
n
α,hΛ h∇pn

α,h ·∇pn
α,h

≤ φ

∫
Ω

Γ (sn−1
n,h )+ τn

∫
Ω

∑
α∈{n,w}

qα(s
n
α,h)pn

α,h. (15)
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As for the continuous case, one has

∑
α∈{n,w}

qα(s
n
α,h)pn

α,h ≤
(
qinj−qsink

)(
Pn

h + r(sn
n,h)
)
+qsinkk(sn

n,h). (16)

Using the definition of the discrete global pressure Pn
h and equation (13d), combined

with the discrete Poincaré inequality (10) and (8) give

‖Pn
h‖L1(Ω) ≤C2|Ω |1/2‖∇Pn

h ‖L2(Ω)+
∫

Ω

∣∣r(sn
n,h)
∣∣

≤ ε‖∇Pn
h ‖2

L2(Ω)+ ε
∥∥Γ (sn

n,h)
∥∥

L1(Ω)
+Cε . (17)

Since qinj,qsink ∈ L∞(Ω), the use of the above inequality and of (8) in (16) leads to∫
Ω

∑
α∈{n,w}

qα(s
n
α,h)pn

α,h ≤ ε‖∇Pn
h ‖2

L2(Ω)+ ε
∥∥Γ (sn

n,h)
∥∥

L1(Ω)
+Cε (18)

whatever ε > 0. Using (18) together with Proposition 1 in (15) provides the expected
bound. �

Thanks to equations (13b) and (13c) we see that the saturations and the pressures
of the wetting and non-wetting phases are linked. Thus we can choose the pressure
of the wetting phase and the capillary pressure as main unknowns. Choosing vα,h =
ϕa as test functions in equations (13a) we can rewrite the scheme (13) as a nonlinear
system of 2#VT algebraic equations F n((γ(sn

n,a), pn
w,a)a∈VT

) = 0. Since γ(1) =
+∞, the function F n is continuous but non uniformly continuous. However, we
prove in the following lemma that this situation is avoided for a solution to the
scheme (13).

Proposition 3 Let sn−1
α,h ∈ Vh be such that

∫
Ω

sn−1
w,h ≥ 0 and sn

α,h, pn
α,h ∈ Vh be a so-

lution the scheme (13). There exists στn,T ,ετn,T > 0 depending on the data of the
continuous problem, T , τn and sn−1

n,h such that,

−στn,T ≤ sn
n,a ≤ 1− ετn,T , ∀a ∈ VT .

Proof First of all, thanks to the extension of γ for s < 0, the energy estimate given
in Proposition 2 yields

∫
Ω
((sn

n,h)
−)2 ≤Cn−1, which provides the lower bound.

Then we prove a bound on the pressure of the non-wetting phase pn,h. Thanks to
inequality (17) and the definition of Pn

h one has

‖pn
n,h‖L1(Ω) ≤Cn−1 ⇒ |pn

n,a| ≤
Cn−1

|sa|
, ∀a ∈ VT . (19)

Now, let us note that proving the upper bound is equivalent to proving that there
exists γ?

τn,T
such that for any a ∈ VT , γ(sn,a)≤ γ?

τn,T
.

We choose vw,h = 1 as test function in equation (13a), then since qinj is nonneg-
ative, ηn(s)+ηw(1− s)≥ δ > 0 and cw > 0 (and so ηw(cw)> 0), one has
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sn
w,ai
≥ 1
|Ω |

∫
Ω

sn
w,h >

1
|Ω |

(∫
Ω

sn−1
w,h −

τn

δ
‖qsink‖L∞(Ω)

∫
Ω

ηw(sn
n,h)

)
.

Note that we proved here by induction that
∫

Ω
sn

w,h ≥ 0. Since s 7→ (s+ηw(s))−1 is
Lipschitz, there exists ai ∈ VT such that sn

w,ai
> 0 that is there exists ai ∈ VT such

that sn
n,ai

< 1.
Let af ∈ VT be arbitrary and (aq)q=0,··· ,` be a path from ai to af. Let q ∈

{0, · · · , `− 1}. Using the property (12) of the matrix AT and since the quadrature
formula is exact on P1, Proposition 2 gives

∑
T∈T

η
n
w,T

d

∑
i=1

(
d

∑
j=1
|αT

i, j|

)(
pn

w,h(ai)− pn
w,h(a0)

)2 ≤ C4C6

τn

(
1+φ

∫
Ω

Γ (sn−1
n,h )

)
.

We assume by induction that there exists ετn,T > 0 such that sn
n,aq < 1−ετn,T that is

sn
w,aq > ετn,T . Thus, if T is a simplex with aq,aq+1 as vertices, the definition (14) of

ηn
w,T yields ηn

w,T ≥
η(sn

w,aq )

d+1 ≥ ε ′
τn,T

. Thanks to equations (13c) and (19) it follows
that,∣∣∣γ(sn

n,aq)− γ(sn
n,aq+1

)
∣∣∣− ∣∣∣pn

n,aq − pn
n,aq+1

∣∣∣≤Cτn,T ⇒ γ(sn
n,aq+1

)≤ γ
??
τn,T .

We conclude the proof by induction along the path. �

The bound on the saturation associated with the definition (14) on ηn
w,T yields

ηn
w,T ≥ ηw(ετn,T ). This, combined with the Poincaré inequality (10) and since

γ(sn
n,a) ≤ γ(1− ετn,T ) for any a ∈ VT , allows us to obtain a discrete bound on

the pressure.

Proposition 4 There exists p?
τn,T

> 0 depending on the data of the continuous prob-
lem, T , τn and sn−1

n,h such that
∫

Ω
|pn

w,h|2 ≤ p?
τn,T

.

Thanks to the material introduced above, it is possible to prove the existence of a
solution to the discrete problem using the topological degree theory.

Theorem 1 (Existence of a solution) Let sn−1
n,h ∈ Vh be given, there exists at least

one solution to the scheme (13).

3 Numerical results

We present here numerical results obtained with the software FreeFem [8] in the
two-dimension case by choosing as main unknowns the saturation of the non-
wetting phase and the pressure of the wetting phase. To solve the nonlinear system
we use a Newton method with a stopping criteria on the `∞-norm between two suc-
cessive iterations. The computational domain is the unit square Ω =]0,1[2 and the
mesh is made up of triangles whose mesh size is approximately equal to 0.028. The
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final time is tf = 0.015 and the time step is constant τn = 10−3. We choose the poros-

ity φ = 0.3, the permeability tensor field Λ =

(
1 0
0 100

)
and cw = 0.2. For s ∈ [0,1]

we define the mobility functions by ηn(s) = s2 and ηw(s) = 2s, the capillary pres-
sure by γ(s) = 1√

1−s
and the source functions are defined by qinj = 40.1[0,0.2]×[0.8,1]

and qsink = 40.1[0.8,1]×[0,0.2]. We plot in Figure 1 the approximate saturation of the
non-wetting phase.

(a) t = 0.002 (b) t = 0.01 (c) t = 0.015

Fig. 1: Approximate saturation sn,h in Ω for different times t.

One observes from the outset of the simulation the influence on the injection well
qinj and of the anisotropy ratio in the longitudinal direction. Moreover we can see
that the maximum does not exceed cn = 0.8.
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