
HAL Id: hal-02442221
https://hal.science/hal-02442221v1

Submitted on 16 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Formal Verification of Autonomous Driving
Supervisor Functions

Yasmine Assioua, Rabéa Ameur-Boulifa, Patricia Guitton-Ouhamou

To cite this version:
Yasmine Assioua, Rabéa Ameur-Boulifa, Patricia Guitton-Ouhamou. Towards Formal Verification
of Autonomous Driving Supervisor Functions. 10th European Congress on Embedded Real Time
Software and Systems (ERTS 2020), Jan 2020, Toulouse, France. �hal-02442221�

https://hal.science/hal-02442221v1
https://hal.archives-ouvertes.fr


Towards Formal Verification of Autonomous
Driving Supervisor Functions

Assioua Yasmine
Renault Software Labs

France
yasmine.assioua@renault.com

Ameur-Boulifa Rabea
LTCI, Télécom Paris, Institut polytechnique de Paris

France
rabea.ameur-boulifa@telecom-paris.fr

Guitton-Ouhamou Patricia
Renault Software Labs

France
patricia.guitton-ouhamou@renault.com

Abstract—In the software development lifecycle, errors and
flaws can be introduced in the different phases and lead to
failures. Establishing a set of functional requirements helps
producing safe software. However, ensuring that the (being)
developed software is compliant with those requirements is a
challenging task due to the lack of automatic and formal means
to lead this verification. In this paper, we present our approach
that aims at analysing a collection of automotive requirements
by using formal methods. The proposed approach for formal
verification is evaluated by the application to supervisor functions
of the autonomous driving (AD) system, the system in charge of
self-driving.

Index Terms—Requirements analysis, Reliable systems, Model-
based design, Systems engineering.

I. INTRODUCTION

With the growing complexity of systems and the shorten-
ing of development times, system design requires a robust
engineering process. Conventional development approaches
provide an unified process for system design from require-
ment engineering, analysis to design and implementation.
Such approaches play a major advancement role in software
engineering practices, but quality of designed product in terms
of correctness and robustness still remain very critical. Indeed,
testing is one of the most practical methods of software
quality assurance in industry. But, the process of software
testing cannot show the absence of errors. It can only show
the presence of errors in software systems [22]. Furthermore,
design flaws detected in a late stage can lead to much rework
of earlier performed activities, and increase the risk of budget
and schedule overruns.

A few years ago, the reliability of a software system was
largely determined by the distribution of errors. Thus, there
was a great interest in error rates in software engineering,
as example study published in [15] reporting that 64% of
all errors are introduced during requirements specification
and design, and 36% of the errors are introduced during the
implementation phase. Today, especially in industrial context
reliability engineering focuses on costs of failure caused by
bugs and errors. According to [1] and [28] financial losses
caused by failures represent more than 5% of the overall
turnover of the companies.

Allowing early validation of system requirements through
use of formal methods will significantly improve software
quality and increase productivity of a production in industry.

Indeed, formal methods are deemed as a rigorous software
engineering approach for developing highly reliable systems
because these methods are based on mathematics and logic.

To facilitate the design of correct and safe systems, we
suggest enhancing design process in automotive software
engineering, by offering a rigorous model-based approach
for the formalization of system requirements, and their early
validation. In the paper, we aim to assist developers in their
task by automating and speeding the conformance tests that
must normally be carried out after development. Such tests
usually take some time before a program can be deemed
correct or simply thrown back to the developer for rework. To
this end, we propose a model-based approach for the software
design process, which relies on formal verification technique
to systematically develop a design solution for a set of system
requirements and to completely verify a developed software. A
design solution exists, only if the requirements are complete,
consistent, correct and realizable. In fact, the ability to ensure
that a system design meets system requirements is crucial for
any software from both an economic and a safety point of
view. The avionics industry has long recognized the need for
formal verification inside the development [35] and has spear-
headed the development of several methodologies for adopting
rigourous system formal design, in particular, in the field
of requirements engineering, e.g. Simulink [5] and SCADE
suite [7]. However, the various tools have been developed
with the aim of improving the specifications development are
mostly focused on requirements management and trace-ability.
Unfortunately, even if there is a great interest about the use of
formal methods for early validation of system requirements,
e.g., [11] and [32], there are very few requirements validation
tools available for checking their correctness and functional
consistency before any design or coding fulfills. Among them
Argosim [3] that provides practical tool for debugging the
requirements, and modelling and simulation capabilities for the
validation of systems, from functional requirements engineer-
ing to automatic test-case generation. Similarly to the Argosim
approach our work aims at a design process that allows
for the early validation of system requirements. Important
differences from the existing approaches are our solution is
automotive-specific. The approach focuses on functional and
safety requirements coming from the automotive domain. This
means that the validated models can be optimally adapted



Fig. 1: Simplified view of the autonomous vehicle functional architecture

to automotive projects. Furthermore, the adoption of formal
methods in the analysis process could be improved. Indeed,
the model checking technique is used as an automatic verifi-
cation technique in order to validate of system requirements,
otherwise to guide their revision.

The advocated approach is semi-automated through a new
tools and existing verification tool. We have assessed its
effectiveness on a set of requirements for the software design
of the autonomous vehicle. The experiment is performed on
the supervisor functions of the autonomous driving (AD) sys-
tem. A simplified view of the autonomous vehicle functional
architecture is illustrated in Fig. 1 (as descibed in [18]). It
shows the role of AD-function within the self-driving vehicle.
It gathers data from cameras, radars and other sensors on
different levels to build up a surrounding map, interpret the
situation, determine a trajectory and take up the appropriate
actions to control the actuators of the vehicle. The AD-
function consists of two sub-functions: the AD-Control that
is in charge through inner functions of controlling the activity
of the automated driving function; The AD-supervisor is a
fundamental safety function that prevents unsafe manoeuvres
by supervising the operation of the automated driving function
can disengage the system at any time. The behaviour of
the AD-supervisor is described by a set of states (Active,
Activable, Available,. . . ) and transitions that are detailed in
a set of requirements of the AD-function. These requirements
detail a set of states (Active, Activable, Available,. . . ) of AD-
function and the set of transitions allowed for controlling the
operation of this function in order to ensure that no unsafe
mode could occur, i.e, the unsafe states are not reachable by
the AD-function.

The paper flow is organized as follows: we provide in
Section II an overview of the proposed approach to validate
of requirements specific to automotive domain. In Section III
we apply the approach to restricted set of requirements to
illustrate how models are built from specifications written in
natural language. In Section IV we give arguments validating
our approach by giving the result of applying our methodology
on a realistic case-study. In Section V, we present existing
approaches that dealt with requirements. Section VI concludes
the paper and discusses the limitations as well as possible

directions of our work.

II. APPROACH

To assess the correctness of a software design and to
provide assistance and guidance to the engineers to ensure
that the developed software meets predefined requirements,
we propose a systematic model-based approach for the soft-
ware development activity. The advocated methodology au-
tomate requirements analysis, and through incremental build,
whenever possible, a validated design model which provides
evidence of consistency of requirements and that they are
realizable.

Figure 2 outlines the architecture of our framework that
illustrates the proposed approach to help automating the sys-
tematic verification of requirements. The figure highlights the
relevant steps towards fulfilling the transformation of require-
ments from natural language to exploitable design models that
can be automatically verified. Our framework is composed of
mainly two big parts: the model construction that consists in
constructing a formal model of the software to be developed,
and the automatic verification of the behavioural properties
over the model. This formal verification framework will allow
automotive software to comply with ASILs C and D unit
recommended guidelines in ISO 26262. Our methodology
consists in several steps.

Step1. Requirements Analysis: The first step is to analyse
the requirements of the system under design namely software
under development. Actually, the analysis is naturally focused
on the requirements with clear relevance to the system under
design. A system is defined by a collection of states and the
set of relevant requirements are those that can affect states
of the collection. Requirements are generally expressed in
natural language that is inherently ambiguous, as it is not
tied to a formal semantics; and are often written by different
engineers in various style, which raises a problem with the
expressiveness, the completeness, and the accuracy. Starting
from those requirements described in an informal manner,
we proceed by analysing them for gathering knowledge and
extracting the key elements/key-concepts from their textual
description. During this analysis phase conducted with domain



Fig. 2: Framework for the formal analysis of requirements

experts (requirements engineers), requirements are cleaned,
inconsistencies discovered, and completed if necessary .

At this final parsing stage unambiguous specification of
requirements are derived.

Step2. Model Construction: An initial design model is
automatically built form all the derived requirement patterns.
Actually, the generated requirement patterns are a set of states
and transitions between them. So, a design model in its initial
from is built from these states and transitions. However, as
requirements might be incorrect, missing and conflicting, the
set of states might be incomplete and not sound. For instance,
some requirement patterns specify only the target state (source
state is lacking), so the state machine should be completed; in a
first attempt, we suppose that this state is potentially accessible
from all other states of the state machine, thus the associated
transition is added. Secondly, the plausibility of the additional
information is checked by using a table called the plausibility
table – this table is provided by requirement engineers that
provides the forbidden states by specifying explicitly the
unlawful transitions. If the extra-transitions are not coherent
with the plausibility table, we correct the design model. After
that, if inconsistencies remain the system software engineer
role is required, he can choose among the transitions those
that make sense for creating design model that satisfy a set of
properties. So the design model is progressively revised and
completed until a coherent and complete design model has
been obtained.

Step3. Verification: This step aims at automating the
systematic validation of requirements. The obtained models
are analysed using standard model checking techniques [8], the
analysis determines whether the generated model is error-free
design or not. If the design is correct it proves it automatically;
otherwise it provides an invalidating execution. To facilitate
the production of tool chains the popular model checker
UPPAAL [29] has been used to verify the generated design
models. If assumed properties are satisfied, then the whole
set of requirements is validated; otherwise the design model
should be refined or certain unsatisfied requirements have to be
revised (by returning to the previous stage). Nominal outputs
of the model checker gives a valuable feedback reporting the

requirements that are not compliant and potential failures that
can occur on the generated design solution.

III. MODEL CONSTRUCTION

Any system under design is intended to perform a set of
functions. The functions are captured in requirements, i.e,
statements that describes what system must do and could im-
pose constraints on it. In the model construction design phase,
the generated models intend to describe the functionality of
a software design. This section gives the language for the
requirements specification and the rules for the transformation
of requirements into formal models that are precise in meaning
and amenable to formal analysis, in particular accepted by
model checking algorithms. In the context of our work, the
models that we use in our framework are state machines
(labelled transition systems) that represent the behavioural
semantics of function as a set of reachable states and boolean
(condition) that enables a change of state. Indeed, the set
of states expresses the possible states of the function. The
transitions describe at any given time, how current state can
change upon a condition. State machines formalism presents
number of subsequent benefits for the engineer, it is supported
descriptive and graphical, especially it is formal specification
language. It is worth to note that the work presented in this
paper only covers functional requirements, for non-functional
requirements analysis we are aware of the need to extend the
state machines, in order to allow specifying non-functional
aspects e.g. timing and performance aspects like has been done
in [34] and [30].

One of the main objectives of our approach is to tackle the
ambiguity requirement specifications through the use of struc-
tured approach for the system design. In order to make our
framework user-friendly tool and to improve the requirements
analysis process, in the same way as in CESAR reference
technology platform [33], we propose the use of guided natural
language for a domain specific automotive. This language
can be used for the requirement definition by requirement
engineers. So that, the problem of requirement definition will
be simplified, especially through the use of dictionary for
the used words. All requirements we analysed have fixed



terms and others are attributes that are expressed from one
requirement to another with different syntax. So, we propose
as the guided language the following natural-language-like
templates from which can be derived the set of requirements:

〈function〉 shall be 〈state〉〈condition〉

or
if 〈function〉 is 〈state〉 and 〈condition〉 then

〈function〉 shall be 〈state〉
where if , then, and, is, and shall be are fixed syn-

tax terms, while elements between symbol 〈.〉 are attributes
of the requirement that are filled by a specialist engineer:
〈function〉 expresses a function of the system under design
(that is considered by the requirement), 〈state〉 expresses a
given state of the function, and 〈condition〉 a condition that
enables/disables a change of state. 〈function〉 and 〈state〉 are
specified by their names (identifiers), whereas 〈condition〉s
are boolean expressions built from variables and parameters
compared to given values. Semantically, the requirements of
the first form express that a given function 〈function〉 shall
eventually reach a given state 〈state〉 when a set of conditions
〈condition〉 are satisfied. Notice that the requirements of the
first form specify only the target state, consequently this state
is potentially accessible from all other states. The requirements
of the second form express that if the function is at a given
state and some conditions are satisfied, then another state shall
be reached, resulting in a change of state.

To illustrate our approach and the different phases of
the models construction, we will use throughout the paper
requirements considered in the analysis of AD-function. Our
methodology is general, but in this work it is restricted to
functional requirements that specify the functional behaviour
of the analysed system.

Example 1: Let us consider the following functional
requirements:

• “The lateral jerk requested by the AD-function shall be
limited to a threshold” (FR1)

• “AD-function shall be available on verified road sec-
tions” (FR2)

• “AD-function shall be available at dawn and dusk”
(FR3)

• “if AD-function is not available and vehicle is in Ger-
many or in France, then AD-function shall be available”
(FR4)

Consider the requirements given in Example 1, they are
all related to the same function: AD-function. The first three
requirements are expressed in the first form, while the last
one is expressed in the second form. Note that both FR2
and FR3 refer to a same state AVAILABLE, but with different
conditions relating environmental parameters to associated
values. Also note that FR1 (by using the keyword request)
refers to another function, meaning that the AD-function
requests another function called THE LATERAL JERK.

In order to reduce unnecessary complexity of the model
building process of our methodology takes into consideration

only the requirements referring to the analysed function. Thus,
within the context of the analysis of AD-function, the analysis
should be limited to this function and should not consider other
functions, so the requirement FR1 will be taken away.

We have developed an early version of the parser, it has been
implemented in Python language; it is currently 600 lines of
code.

1) Requirement analysis. An initial step in the parsing
is to extract information about states and about
conditions from the set of analysed requirements.
For our case study we identified several states:
OFF, NOT AVAILABLE, AVAILABLE, ACTIVABLE and
ACTIVE, and several variables e.g. DAY TIME and
ROAD SECTIONS that are compared to different values
to form the conditions, as ROAD SECTIONS=OK,
DAY TIME=DAWN and DAY TIME=DUSK. Sometimes
some conditions are not directly expressed making
the parsing task more strenuous. For example the
condition of requirement FR4 can be interpreted
by the condition VEHICLE LOCATION=GERMANY
or VEHICLE LOCATION=FRANCE only with the
help of the experts who define the variable names
(VEHICLE LOCATION) and their possible values
(GERMANY and FRANCE).

2) Requirements selection. When the process of gathering
knowledge has been completed, the set of collected
states is submitted to an expert who will select ac-
cordingly the set of most relevant requirements for
the analysis. Let us consider the requirements given
in Example 1. Suppose that the list of selected states
are: OFF, NOT AVAILABLE, AVAILABLE, ACTIVABLE,
ACTIVE. The outcome of the selection task is as follows:

• FR1 is rejected because it does not refer to any state
in the list.

• FR2, FR3 and FR4 are selected, they re-
fer to the considered states AVAILABLE and
NOT AVAILABLE.

Actually, the set of relevant requirements are all those
that can affect the list of provided states.

3) Completion. As mentioned before some requirements
are incomplete, as the source state or the targeted state
are not specified, in particular for the requirements
expressed in the first form, in this phase these states will
then be completed. In fact, an incomplete requirement
generates a state on the initial model that should be
completed in the next step. For instance, for the require-
ment FR3 saying that the AD-function shall reach the
state AVAILABLE if the condition DAY TIME=DAWN and
DAY TIME=DUSK is satisfied. Consequently, transitions
should be added. These transitions coming from all
other states to this state are labelled with the condi-
tion (DAY TIME=DAWN∧DAY TIME=DUSK). Thus, we
apply the same process to all incomplete requirements.
At the end of this phase, we generate a complete state
machine. However, the additional transitions might be



not compliant with the expected functionality, they lead
to forbidden behaviour.

4) Check the plausibility. This step aims to check the
correctness of the additional transitions. The model con-
struction relies on the priority table (which is sometimes
provided in the specification documents) to cut out
the meaningfulness and undesirable transitions. For the
example we are considering, the priority table reveals
that the transitions from OFF to ACTIVABLE, also from
NOT AVAILABLE to AVAILABLE are not plausible, so
the model is modified accordingly. In this way, the
plausibility rules are incrementally applied to the design
model. These rules are those defined in the priority table
or provided by software engineer.

5) Model Generation. Where there is no more rule to
apply, the final design model is generated. We use the
UPPAAL model checker tool to display the obtained de-
sign model, and especially to verify safety properties that
can be expressed as logical formulas [16] or simply as
observer automata [23]. Figures Fig. 3 and Fig. 4 show
two examples of the resulting global state machines of
AD-function as captured in UPPAAL’s tool. The two
state machines consists of 5 states, but the number of
transitions is different. To improve the readability of the
generated models, we code the names of states and the
names of the variables used over transitions in a concise
manner. Indeed in practice, during the parsing phase for
each identified variable, parameter, data and associated
values, a new name is created and inserted in a table
together with the domain from where it gets its value.
Such that for each variable encountered the table is ini-
tially consulted to check whether the name of variable or
parameter exists or not. For instance, in Fig. 4 the guard
denoted guardInActivable() represents a conjunction of
16 sub-guards, guardInActivable() = guard1 ∧ . . . ∧
guard16, such that each encoding environmental param-
eters or some variables: the guard guard2 denotes the
boolean expression VEHICLE LOCATION=GERMANY ∨
VEHICLE LOCATION=FRANCE; and the guard guard6

denotes the boolean expression ROAD SECTIONS=OK
and so on.

IV. EXPRERIMENTS

In order to highlight and assess our methodology, we
applied it on a real industrial case study, that is Autonoums
Driving system (AD-system) which is a major function of
the autonomous vehicles. International organisms, such as
NHTSA [6] and OICA [4], have defined autonomous levels
to introduce progressively this innovation. It states that an
Automated Driving System on the vehicle can do all the
driving in all circumstances. The human occupants are just
passengers and need never be involved in driving. Failure in
such system may cause multiple fatalities. So functional safety
assumes critical importance. To trust them, these products
should be designed to enable high-performance, and targeting
highest automotive safety integrity level (ASIL D).

Fig. 3: A non-valid model for the AD-function – An interme-
diate result of the framewok

We handled several case studies, they include Automatic
Park Assist (APA) function that helps make parallel parking
easy. In this paper we illustrated our approach with the AD-
supervisor component that controls state changes of AD-
function, and to ensure that no unsafe can occur, i.e, the unsafe
states are unreachable by the function. Behavioural specifica-
tion of this component is described through 188 functional
requirements. After the first analysis and selection phase 120
requirements are selected. Indeed, the analysis keeps only the
set of relevant requirements: the requirements that can affect
the states of the system. The model is then constructed through
several iterations of refinement and completion. Once the
model construction have been completed 162 state machines
are generated, but not all are valid, i.e, some of them contain
wells or non-plausible transitions. Fig 3 shows an example of
of a generated model that is not valid. As one can notice, states
ACTIVABLE, NOT ACTIVABLE and ACTIVE are not accessible
from the initial state OFF. After removing of non-valid models,
only 17 models remain. These models correspond to possible
implementations of the system under analysis.

Graphical user-interface built on top of UPPAAL allows
engineers to simultaneously see the results of the verification
and accordingly continue modelling. Also, in order to ease
debugging the tool provides a trace showing how a given state
is reachable, and it returns to the engineer a finite error trace,
when it is available (when some properties are not satisfied).
For instance, we can see in Fig. 5 a result of the reachability
analysis. This trace is automatically constructed based on the
trace issued by the tool and displayed as a sequence of states.

Discussion: The experiment and the obtained results
helped in identifying some issues and open challenges. Ac-
tually, as one can notice the model is not too huge in terms of
the number of states. But the conditions over transitions might
be potentially wide because of the amount of data: parameters,
variables, values and constants used by the system; and for
which the satisfiability analysis may become very hard. A
practical way to do this checking is to use of Satisfiability



Fig. 4: A valid model for the AD-function – A result generated by the framework

Modulo Theory (SMT) technology, which has a great ability
for solving satisfiable problems of first order logic [20]. More-
over, these multiple informations (data, parameters, variables,
and constants) are sometimes written with different syntaxes
and terminologies. Even if the parsing process is performed by
the tool in cooperation with the domain experts in charge of
the system (software) design, it remains hard and heavy. There
is a clear need for a standardized formalism, to reduce some of
the burden on the parsing process (requirements interpretation
and analysis phase). We are currently working on the definition
of a requirements specific language (like EARS [31] and RSL
[19]) for the expression of requirements that can fit the specific
automotive domain. This language designed to be user-friendly
will be defined with a user-defined glossary terms and using a
fixed set of syntactical rules. So, it will lead to express system
requirements in a constrained natural language for capturing
safety and functional concerns, will ease analysis and will
make possible the formal analysis of models. A second impor-
tant issue is the expression of guards, and whether for a given
state there are several requirements with different conditions.
So the global condition is constructed by gathering all sub-
conditions in two ways either by using a conjunction operator
(as with our example) or by using a disjunction operator.
For instance from requirements FR2 and FR3 we get several
transitions that are labelled either by a guard in conjunctive
form as:
(VEHICLE LOCATION=GERMANY∨VEHICLE LOCATION=FRANCE)

∧ (ROAD SECTIONS=OK)

or by a guard in disjunctive form as:
(VEHICLE LOCATION=GERMANY∨VEHICLE LOCATION=FRANCE)

∨ (ROAD SECTIONS=OK).

This problem is similar to the one encountered in the
program analysis that is invoked may-must analysis [38].
Within our framework both models are relevant, patently the
conjunctive form and the disjunctive form offer complemen-
tary approaches to analyse the design model. The disjunctive
model can be used to prove that all executions of the program

satisfy some properties, while the conjunctive model can be
used to prove the existence of some program execution that
violates a given property.

V. RELATED WORK

In recent years the early validation of requirements and us-
ing formal methods has become a focus for industrial research
such as [11], [32] and [37]. Formal methods have provided
evidence for cost-effectiveness by their successful use of in
industrial context, in different areas railway, aeronautics and
aerospace [10].

More broadly, the validation and verification of system
requirements has attracted the industrial research initiatives.
Most researches in this area focus on improving the in-
formation provided to stakeholders for feedback, including
simulation as in [39] and [27] and animations as in [24]
and [25]. On the other hand, the principle of validation by
using formal methods is very little explored considering their
reliability. In this context, verification techniques are used to
prove that the developed software meets given requirements.
Such proofs often take the form of checking that a specification
model satisfies some constraints. For instance, authors in
[14], [36] and [21] use model checking technique and show
how to check requirements through examples, such as small
communication protocols, mutual exclusion algorithms, and
small circuits. Additionally, in [26] the author introduces an
approach to software design based on model satisfiability to
find flaws. In all technical approaches it is assumed that a
formal description of the requirements exists, this is not the
case in industrial setting.

The use of natural language in the formalisation of require-
ments was surveyed, in [9] the authors target the specifica-
tion and analysis of requirements by using the pattern-based
Requirements Specification Language (RSL) [19] which is a
formal language with a fixed semantics that is still readable
like natural language.



Fig. 5: Trace expressing an example of execution on the model given in Fig 4

The process of producing a global requirements models on
which it is possible to detect underspecified or inconsistencies
have been the focus of intensive research. Several studies,
for example [2], [12] and [40] focus on formalizing the
semantics of informal or semi-formal modelling notations as
SysML and UML languages. However, these languages are
not the traditional language for expressing requirements in
all companies. Furthermore, they do not have a formal logic-
based semantics, which makes them not suitable for use within
approaches integrating formal methods.

In the context previously described, the objective of our
work is to propose an automatic method helping system and
software architect engineers to visualize, verify and check the
delivered requirements. Most of such architect engineers are
not aware of checking modelling but need to check coherency,
deadlocks, etc . . . when they define or analyse a lot of re-
quirements. Indeed, most of the time delivered requirements
consist of hundreds (and sometimes more) expressions written
in natural language by different stakeholders. The analysis
of requirements is not straightforward for a human spirit. It
is crucial to have a global requirements model to validate
automatically the way the stakeholders think the software-to-
be and to help to find the appropriate corrections.

VI. CONCLUSION

This paper introduces a systematic process for building
design model from functional and safety requirements with
the aim of reducing the effort of testing and defect fixes
late in the software development lifecycle. The design model
provides an early assurance that the requirements specification

are complete, correct and realizable. This first effort led to a
formalisation of a set of requirements of the AD-function, and
we showed a first proof-of-concept regarding the feasibility of
our approach that aims at the exhaustive verification of the
generated model; the correctness of the model is proved by
using the model checking technique. Naturally, our next goal is
to propose a requirements specific language for the expression
of requirements that can fit the specific automotive domain.
As shown in Section III, we introduced the first version of
a structured textual language for the requirements definition.
This language with controlled vocabulary with respect to
dictionary of automotive domain, constrained grammar and
well-defined semantics will lead to express requirements a
(formal) natural-language-like representation that will make
possible to prove formally the requirements consistency and
the design correctness. This language is different from the
languages that already exist for the description of automotive
standards, as [17] and [13]. In the sense, it allows the specifi-
cation of systems at a high abstraction level, without any prior
knowledge about architectural considerations and how the
functions are then allocated to the components of the physical
architecture. Giving the benefits of early verification of the
functional architecture before its mapping onto the physical
architecture. Nevertheless, a practical aim of our approach is
to feed EAST-ADL approach with validated models, that can
help to define an appropriate electronic system.

We are currently extending the proposed language, looking
at further requirements expressing other aspects. Naturally, this
growth requires to annotate models with information required



to perform specific analysis. For timing aspects of systems that
we are dealing with, we propose to enrich our models with
timing information and replace automata with timed automata
that are in fact supported by UPPAAL tool.

REFERENCES

[1] National Survey: The costs of poor quality in industry. Technical report,
AFNOR, October 2017.

[2] E. Andrianarison and J.-D. Piques. SysML for embedded automotive
Systems: a practical approach. In ERTS2 2010, Embedded Real Time
Software & Systems, Toulouse, France, May 2010.

[3] Anonymous. The argosim home page. Available at https://www.argosim.
com/ .

[4] Anonymous. International organization of motor vehicle manufacturers
home page. Available at http://www.oica.net/ .

[5] Anonymous. The mathworks home page. Available at https:// fr.
mathworks.com/products/ simulink.html.

[6] Anonymous. National highway traffic safety administration home
page. Available at https://www.nhtsa.gov/ technology-innovation/
automated-vehicles-safety.

[7] Anonymous. Scade suite – esterel technologies home page. Available
at https://www.ansys.com/products/embedded-software.

[8] C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.
[9] M. Böschen, R. Bogusch, A. Fraga, and C. Rudat. Bridging the gap

between natural language requirements and formal specifications. In
Joint Proceedings of REFSQ-2016 Workshops, Doctoral Symposium,
Research Method Track, and Poster Track co-located with the 22nd
International Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ 2016), Gothenburg, Sweden, March 14, 2016.,
2016.

[10] J. Boulanger. Industrial Use of Formal Methods: Formal Verification.
Wiley, 2013.

[11] M. Bozzano, A. Cimatti, J.-P. Katoen, P. Katsaros, K. Mokos, V. Y.
Nguyen, T. Noll, B. Postma, and M. Roveri. Spacecraft early design
validation using formal methods. Reliability Engineering & System
Safety, 132:20–35, 2014.

[12] E. Brottier, B. Baudry, Y. Le Traon, D. Touzet, and B. Nicolas. Produc-
ing a global requirement model from multiple requirement specifications.
In EDOC’07 (Entreprise Distributed Object Computing Conference),
Annapolis, MD, USA, 2007.

[13] S. Bunzel. Autosar - the standardized software architecture. Informatik
Spektrum, 34(1):79–83, 2011.

[14] W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin,
and J. D. Reese. Model checking large software specifications. IEEE
Transactions on Software Engineering, 24(7):498–520, July 1998.

[15] R. N. Charette. Software engineering environments : concepts and
technology. Intertext Publications, New York, NY, 1986.

[16] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244–263, Apr. 1986.

[17] P. Cuenot, P. Frey, R. Johansson, H. Lönn, Y. Papadopoulos, M.-O.
Reiser, A. Sandberg, D. Servat, R. Tavakoli Kolagari, M. Törngren,
e. H. Weber, Matthias”, G. Karsai, E. Lee, B. Rumpe, and B. Schätz.
The EAST-ADL Architecture Description Language for Automotive Em-
bedded Software, pages 297–307. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[18] R. CUER. Démarche de conception sûre de la Supervision de la fonction
de Conduite Autonome. PhD thesis, INSA Lyon – Institut National des
Sciences Appliquées de Lyon, 2018.

[19] W. Damm, H. Hungar, B. Josko, T. Peikenkamp, and I. Stierand. Using
contract-based component specifications for virtual integration testing
and architecture design. In 2011 Design, Automation Test in Europe,
pages 1–6, March 2011.

[20] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg,
2008. Springer-Verlag.

[21] S. Easterbrook and M. Chechik. A framework for multi-valued reasoning
over inconsistent viewpoints. In Proceedings of the 23rd International
Conference on Software Engineering, ICSE ’01, pages 411–420, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[22] W. E. H. Edward Miller. Tutorial, software testing & validation
techniques. IEEE Computer Society Press, 1981.

[23] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers
and the verification of reactive systems. In Proceedings of the Third
International Conference on Methodology and Software Technology:
Algebraic Methodology and Software Technology, AMAST’93, pages
83–96, Berlin, Heidelberg, 1994. Springer-Verlag.

[24] C. Heitmeyer, J. Kirby, B. Labaw, and R. Bharadwaj. Scr: A toolset for
specifying and analyzing software requirements. In A. J. Hu and M. Y.
Vardi, editors, Computer Aided Verification, pages 526–531, Berlin,
Heidelberg, 1998. Springer Berlin Heidelberg.

[25] Hung Tran Van, A. van Lamsweerde, P. Massonet, and C. Ponsard.
Goal-oriented requirements animation. In Proceedings. 12th IEEE
International Requirements Engineering Conference, 2004., pages 218–
228, Sep. 2004.

[26] D. Jackson. Software Abstractions: Logic, Language, and Analysis. The
MIT Press, 2012.

[27] B. Jeannet and F. Gaucher. Debugging Embedded Systems Require-
ments with STIMULUS: an Automotive Case-Study. In 8th European
Congress on Embedded Real Time Software and Systems (ERTS 2016),
TOULOUSE, France, Jan. 2016.

[28] H. Krasner. The Cost of Poor Quality Software in the US: A 2018
Report. Technical report, CISQ Consortium for IT Software Quality,
September 2018.

[29] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Int. J.
Softw. Tools Technol. Transf., 1(1-2):134–152, Dec. 1997.

[30] R. Mateescu and J. I. Requeno. On-the-Fly Model Checking for
Extended Action-Based Probabilistic Operators. International Journal
on Software Tools for Technology Transfer, 20(5):563–587, Oct. 2018.

[31] A. Mavin and P. Wilkinson. Big Ears (The Return of ”Easy Approach
to Requirements Engineering”). In RE 2010, 18th IEEE International
Requirements Engineering Conference, Sydney, New South Wales, Aus-
tralia, September 27 - October 1, 2010, pages 277–282, 2010.

[32] S. P. Miller, A. C. Tribble, M. W. Whalen, and M. P. E. Heimdahl.
Proving the shalls: Early validation of requirements through formal
methods. Int. J. Softw. Tools Technol. Transf., 8(4):303–319, 2006.

[33] A. Rajan and T. Wahl. CESAR - Cost-efficient Methods and Processes
for Safety-relevant Embedded Systems. Springer, Vienna, 2013.

[34] L. Rioux, R. Henia, and N. Sordon. Using model-checking for timing
verification in industrial system design. In 2017 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pages 377–378, March 2017.

[35] J. Rushby. Formal methods and their role in the certification of critical
systems. In R. Shaw, editor, Safety and Reliability of Software Based
Systems, pages 1–42, London, 1997. Springer London.

[36] T. Sreemani and J. M. Atlee. Feasibility of model checking software
requirements: a case study. In Proceedings of 11th Annual Conference
on Computer Assurance. COMPASS’96, pages 77–88, June 1996.

[37] E. Stachtiari, A. Mavridou, P. Katsaros, S. Bliudze, and J. Sifakis. Early
validation of system requirements and design through correctness-by-
construction. Journal of Systems and Software, 145:52–78, 2018.

[38] A. Stone, M. M. Strout, and S. Behere. May/must analysis and the
dfagen data-flow analysis generator. Information & Software Technology,
51:1440–1453, 2009.

[39] M. Taisch and B. Stahl. Requirements analysis and definition for
eco-factories: The case of emc2. In C. Emmanouilidis, M. Taisch,
and D. Kiritsis, editors, Advances in Production Management Systems.
Competitive Manufacturing for Innovative Products and Services, pages
111–118, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[40] A. Taleghani and J. M. Atlee. Semantic variations among uml statema-
chines. In O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, editors,
Model Driven Engineering Languages and Systems, pages 245–259,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.


