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Static instability or divergence threshold of both potential and circulatory systems with kinematic

constraints depends singularly on the constraints’ coefficients. Particularly, the critical buckling load of

the kinematically constrained Ziegler’s pendulum as a function of two coefficients of the constraint is

given by the Plücker conoid of degree n = 2. This simple mechanical model exhibits a structural instability

similar to that responsible for the Velikhov–Chandrasekhar paradox in the theory of magnetorotational

instability.

1. Introduction

Linear stability analysis of dissipative systems is frequently ac-

companied by violent behavior of critical parameters at the onset

of oscillatory instability (flutter) when dissipation parameters are

infinitesimally small. For example, the critical flutter load of the

celebrated in structural mechanics Ziegler’s pendulum [1,2] ex-

hibits a drop of order O (1) with respect to the undamped case

as soon as the dissipation of order o(ε), where 0 < ε ≪ 1, is

added [3]. Moreover, the zero dissipation limit generically does not

collapse to the undamped result and, if more than one damping

parameter is present corresponding to different dissipation mecha-

nisms, the critical flutter load in the limit of vanishing dissipation

depends on the order in which the damping coefficients tend to

zero. The zero dissipation limits are thus non-commuting—the ef-

fect known also in hydrodynamics [4]. Similar singular phenomena

are known for the critical vibration frequency at the flutter thresh-

old [5]. Already in 1956 the structurally unstable behavior of the

critical flutter load in the presence of small dissipation was re-

lated to the Whitney umbrella singularity on the marginal stability

* Corresponding author. Tel.: +49 3512602154; fax: +49 3512602007.

E-mail address: o.kirillov@hzdr.de (O.N. Kirillov).

boundary by Bottema [6]. Recently, drops in the vibration frequen-

cies of nearly-inextensible post-buckled rods in the limit of van-

ishing thickness were discovered in a pure conservative problem

without dissipation and explained via the Whitney umbrella sin-

gularity [7].

In this respect, a question arises, whether a critical buckling

(or divergence) load in a conservative or non-conservative system

could exhibit the singular behavior described above? Remarkably,

a related phenomenon is well-known in magnetohydrodynam-

ics. Namely, in the theory of magnetorotational instability (MRI),

which is a static instability of a hydrodynamically stable cylin-

drical Couette–Taylor flow of an electrically conducting fluid by

a magnetic field parallel to the axis of rotation, the divergence

threshold in the case of vanishing magnetic field does not collapse

to that of Rayleigh’s centrifugal instability. This effect, known as

the Velikhov–Chandrasekhar paradox, was discovered in 1959–60 in

the works [8,9] and subsequently discussed by many authors who

employ the assumptions that the fluid is inviscid and perfectly

electrically conducting [10–14]. We note that a fluid-mechanical

analogue of magnetorotational instability—the so-called elastorota-

tional instability—is known and studied both theoretically and ex-

perimentally [15].
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Recently, the Velikhov–Chandrasekhar paradox was reconsid-

ered in the works [16,17] in the viscous and resistive setup with

the use of the equations of the WKB approximation derived in [18].

The WKB equations had a form of a non-conservative system

Mẍ + (D + G)ẋ + (P+N)x = 0,

where M = MT , D = DT , P = PT and G = −GT and N = −NT [16].

Since MRI is a static instability, its threshold is determined by the

equation det(P+N) = 0. It turns out [16,17] that the critical shear

determined by the Rossby number at the divergence (MRI) thresh-

old as a function of the Alfvèn frequency and resistive frequency

for arbitrary viscosity (including the inviscid case) is given by the

surface which is reduced to the Plücker conoid of degree n = 2

[19]. The singular surface with a self-intersection and two Whitney

umbrella singularities, one at the Velikhov–Chandrasekhar thresh-

old and another one at the Rayleigh threshold provides a switching

between the two static instability criteria when the ratio of the

Alfvèn frequency to the resistive one is varying.

Is there a pure mechanical analogue of such a switching be-

tween different divergence instability thresholds, for example, in

the problems of buckling of simple structures? A positive answer

comes from the recent study [20] of mechanical systems with the

kinematic constraints motivated by material instability problems

of geomechanics [21–26]. In this Letter we demonstrate that the

kinematic constraints may result in significant changes in the crit-

ical buckling load because the limit of vanishing constraints is

singular. For the example of the Ziegler pendulum under partial

follower load we find that switching between the first and the sec-

ond buckling loads of the unconstrained pendulum is governed in

the presence of a constraint by the Plücker conoid surface.

2. Mechanical systems with kinematic constraints

In [21] it has been proposed to interpret failure in geomaterials

(its relation to landslides is discussed, e.g., in [22–25]) as a loss of

stability of a stress–strain equilibrium state. A usual tool to investi-

gate instability occurrence from a mechanical viewpoint is the Hill

stability condition which is based on the sign of the second-order

work [26]. This criterion corresponds to the loss of definite posi-

tiveness of the elasto-plastic stiffness matrix (the constitutive 6×6

matrix is defined in the usual 6-dimensional stress rate and strain

rate spaces). It is thus related to a spectral analysis of the symmet-

ric part of the elasto-plastic matrix [23], distinguishing essentially

the second-order work criterion applied to plastic non-associative

materials (like geomaterials) from the classical plastic failure the-

ory related to the singularity of the stiffness matrix.

In geotechnical tests, one often controls linear combinations of

stresses or strains. The active loading to the boundary of a spec-

imen is usually applied by means of static or kinematic control

variables that are linear combinations of the stress or strain com-

ponents. For example, the classical undrained axisymmetric triaxial

test is an isochoric loading with the sum of the incremental strains

maintained equal to zero during the loading.

Since the critical load depends on the scenario of the loading,

a problem arises with the determination of this critical load with

respect to the constraints imposed during the loading process such

as the preservation of the volume. Such linear combinations cor-

respond to what is called in structural mechanics a “kinematic

constraint” [27,28]. According to the experiments and in agree-

ment with the second-order work criterion, for these mixed load-

ing paths failure can appear in the bifurcation domain (thus strictly

inside the plastic limit surface) when the second-order work is

vanishing at least for a given loading direction.

Therefore, the second-order work criterion is related to a criti-

cal kinematic constraint, which can be interpreted as an instability

direction when the material stability analysis is considered or as a

direction inside the isotropic cone of the elasto-plastic matrix. This

indicates existence of close parallels between material and struc-

ture stability analyses [20,21].

In structural mechanics, the stiffness matrix K encompasses

both the constitutive behavior of the materials and the balance

equations

Mẍ + Kx = 0, (1)

where M and K are the n × n mass and stiffness matrices and x is

the n-vector of perturbation around the equilibrium. Note that the

kinematic constraints prescribed to a structure can be regarded as

a notion similar to that of the control (or loading) parameter in

geomechanics [20].

Let us introduce the kinematic constraint by means of the

n × q-matrix α, as αT x = 0. Then, the constrained system is de-

scribed via the q-vector of Lagrange multipliers, Λ, as

Mẍ + Kx + αΛ = 0, αT x = 0. (2)

The two equations form an extended (n + q) × (n + q) circulatory

system [29,30]

M̃ ¨̃x+ K̃ x̃ = 0, (3)

where

M̃ =
(
M 0

0 0

)
, K̃ =

(
K α

αT 0

)
, x̃ =

(
x

Λ

)
. (4)

Assuming x̃ ∼ exp(µt) in Eq. (3), we obtain an eigenvalue prob-

lem for a matrix polynomial M̃µ2 + K̃. The eigenvalues, µ, of this

problem determine stability of the extended system (3).

A circulatory system is marginally stable when all its eigen-

values are pure imaginary and simple. When there exists a real

positive eigenvalue, the system is statically unstable (divergence or

non-oscillatory instability). A complex eigenvalue with the positive

real part yields dynamical instability (flutter or oscillatory instabil-

ity).

Transition between stability and flutter in circulatory systems

with the change of parameters generically happens through the

merging of two pure imaginary eigenvalues into one double pure

imaginary eigenvalue with the Jordan block and its subsequent

splitting into a complex conjugate pair (a non-semisimple 1 : 1 res-

onance or a reversible Hopf bifurcation) [3].

Transition between stability and divergence is accompanied by

the merging of a pair of pure imaginary eigenvalues into a dou-

ble zero eigenvalue with the Jordan block that then splits into two

real eigenvalues of different sign. Thus, the boundary between the

divergence and stability is characterized by the double zero eigen-

values µ.

Since the characteristic equation det(M̃µ2 + K̃) = 0 is given by

a real polynomial with respect to µ2 , the divergence boundary is

determined by the vanishing free term of the characteristic poly-

nomial, which yields µ2 = 0. According to the modified Leverrier’s

algorithm [32], the free term of the characteristic polynomial of a

matrix pencil M̃µ2 + K̃ is exactly det K̃. For detK �= 0 Schur’s de-

terminant identity [31] gives

det K̃ = detKdet
(
−αTK−1α

)
.

Therefore, the divergence instability boundary of the extended sys-

tem (3) is

det
(
αTK−1α

)
= 0. (5)

If the matrix K depends on the loading parameter, say p, by the

implicit function theorem it can be expressed as a function of the

components of the matrix of constraints, α: p = p(α).
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Fig. 1. Ziegler’s pendulum under partial follower load: (a) free system and (b, c) kinematically constrained system. (b) Meaning of the constraint: a sliding support. (c) Equiv-

alent forces: horizontal reaction.

Fig. 2. (a) Imaginary and (b) real parts of the eigenvalues of the non-constrained Ziegler pendulum when γ = 0 and m = 1, l = 1 and k = 1.

Note that the kinematically constrained stability problems were

previously discussed in other areas of mechanics, e.g. in [27,28].

In [20] the effect of additional constraints on the divergence insta-

bility of the Ziegler pendulum with partial follower load (a non-

conservative problem with coexistence of divergence instability

with flutter instability) has been treated. When the divergence

instability controls the problem, it was found that additional con-

straints may both increase and decrease the divergence load of

the free non-conservative system [20]. The constraint related to

the lowest critical buckling load is given exactly by the second-

order work criterion. Excluding flutter instabilities, the second-

order work criterion thus forms an envelope of the divergence

boundaries calculated for every particular kinematic constraint and

therefore provides a sufficient stability condition for a constrained

pendulum [20]. As a consequence, for all kinematic constraints,

there necessarily exists a constraint which destabilizes the free

Ziegler pendulum [20].

3. Kinematically constrained Ziegler’s pendulum

The free pendulum consists of two weightless bars of equal

length l which carry concentrated masses m1 = 2m and m2 = m,

one bar attached via a planar joint to the basement at the point O ,

see Fig. 1(a). Two rotation angles at the joints constitute the state

vector x = (θ1, θ2)
T . The stiffness coefficients at the joints are as-

sumed to be equal k. The force F is applied at the free end of the

upper bar and its direction constitutes an angle γ θ2 with the ver-

tical, Fig. 1(a).

We consider stability of the vertical equilibrium position when

both angles θ1 and θ2 vanish. The linearized equations are given

by Eq. (1) with the matrices of mass and stiffness

M =ml2
(
3 1

1 1

)
, K = k

(
2−p γ p−1

−1 1−(1−γ )p

)
, (6)

where p = F l/k is the loading parameter and γ is the parameter

characterizing the proportion between the follower and the dead

components of the load: γ = 0 corresponds to the conservative

case and γ = 1—to the pure follower loading.

Assuming solutions to Eq. (6) have the form x = uexp(λt), we

arrive at the eigenvalue problem

(
Mλ2 + K

)
u = 0, (7)

where u is an eigenvector at the eigenvalue λ.

When two pure imaginary eigenvalues λ of different signs of

the non-constrained pendulum merge at zero, Fig. 2(a), we have

detK = 0, which yields the critical divergence (buckling) loads

p1 =
3

2
−

1

2

√
5− 9γ

1− γ
, p2 =

3

2
+

1

2

√
5− 9γ

1− γ
. (8)

The pendulum is stable against buckling for the loads in the in-

terval p < p1 . In the interval p1 � p � p2 the pendulum exhibits
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buckling by the first mode. For p > p2 and small γ � 0 the sec-

ond mode becomes unstable by divergence, see Fig. 2. With the

increase of γ , p2 becomes a point on the boundary between di-

vergence and stability domains [20]. At γ = 5/9 the upper and

lower divergence loads coincide: p1 = p2 = 3/2.

Consider a point P on the upper bar of the pendulum and as-

sume that it can move only along the vertical axis, which can be

realized by means of the sliding support as is shown in Fig. 1(b).

This implies the following constraint on the lateral displacement

of the point [20]

l sin θ1 + a sin θ2 = 0. (9)

Linearizing Eq. (9) and denoting α1 = l and α2 = a we arrive at

the linear relation between the rotation angles θ1 and θ2

α1θ1 + α2θ2 = αT x = 0 (10)

with α2/α1 = a/l and α = (α1,α2)
T . Fig. 1(c) illustrates the action

of this kinematic constraint when the distance a of the point P

from the second joint, is positive.

Taking into account the holonomic constraint (10) by introduc-

ing the Lagrange multiplier Λ, we extend the equations of motion

to the auxiliary system of the form (3) with x̃ = (θ1, θ2,Λ)T and

M̃ =ml2

⎛
⎝

3 1 0

1 1 0

0 0 0

⎞
⎠ ,

K̃ =

⎛
⎝

k(2− p) k(γ p − 1) α1

−k k(1− (1− γ )p) α2

α1 α2 0

⎞
⎠ .

Calculating the determinant of the extended stiffness matrix we

find the critical divergence load of the constrained pendulum [20]

pd(α1,α2,γ ) =
α2
1 + 2α1α2 + 2α2

2

α2
1(1 − γ ) + γ α1α2 + α2

2

. (11)

Kinematic constraints reduce the number of degrees of free-

dom. While the free Ziegler’s pendulum is a two-degrees-of-

freedom system, the constrained system is effectively a single-

degree-of-freedom one. Assuming that we have θ1 ∼ exp(µt), θ2 ∼
exp(µt), and Λ ∼ exp(µt), we find that the eigenvalues of the con-

strained system are

µ = ±
√

k

ml2

√
α2
1(1− γ ) + γ α1α2 + α2

2

(α1 − α2)2 + 2α2
2

(p − pd). (12)

Curiously enough, in a recent study of optimal mass distribution

in the classical Ziegler’s pendulum [33], the optimal solutions cor-

respond to vanishing of one of the point masses which yields

equations similar to (3). By this reason the optimal solutions ob-

tained in [33] have in fact only one degree of freedom and thus

can lose stability only by divergence despite the initial design of

the pendulum is susceptible only to the flutter instability.

Therefore, when γ is within the interval 0 � γ � 1, the con-

strained pendulum is stable for p < pd and buckles when p � pd .

Naturally, there exists only one buckling load pd for a given γ
and a given pair (α1 > 0,α2 > 0). However, varying the coefficients

α1 and α2 , we can switch between the critical loads of the non-

constrained system. As we will see in the following, the switching

surface (11) is not smooth.

4. Singularities at the threshold of divergence of the constrained

pendulum

We first consider the Ziegler pendulum under a pure conser-

vative load (γ = 0). According to Eq. (8), the first and second

divergence loads of the free pendulum are

Fig. 3. (a) The surface of the critical divergence load (14) in case of pure conservative

loading corresponding to γ = 0 and (b) its top view. The minimum of the surface

corresponds to the second-order work criterion [20].

p1 =
3−

√
5

2
, p2 =

3+
√
5

2
, (13)

so that the non-constrained conservative system is stable for 0 <

p < p1 , otherwise being statically unstable (divergence).

In the presence of constraints the threshold of divergence given

by Eq. (11) with γ = 0 reduces to

pd(α1,α2) = p1 +
√
5+ 1

2

(
α2 − 1−

√
5

2
α1

)2

α2
1 + α2

2

� p1. (14)

The equality in (14) is achieved only on the line

α2 =
1−

√
5

2
α1 (15)

in the (α1,α2) plane. Equivalently,

pd(α1,α2) = p2 −
√
5− 1

2

(
α2 − 1+

√
5

2
α1

)2

α2
1 + α2

2

� p2 (16)

with the equality on the line

α2 =
1+

√
5

2
α1. (17)

Let us assume that α1 = ρ cos(φ) and α2 = ρ sin(φ) and intro-

duce the azimuthal angle φ1 with tan(φ1) = (1 +
√
5)/2 and the

angle φ2 = φ1 +π/2 with tan(φ2) = (1−
√
5)/2 that correspond to

the directions specified by Eqs. (15) and (17), respectively.

In this notation, the expression for the critical load (16) has the

form

pd = p2 −
√
5[1− cos(2(φ − φ1))]

2
. (18)

Therefore, in the (α1,α2, p) space the threshold surface sepa-

rating the domains of stability and divergence possesses the fol-

lowing parametric representation

(ρ, φ) �→
(
ρ cos(φ),ρ sin(φ),

3

2
+

√
5

2
cos

(
2(φ−φ1)

))
, (19)

which is a canonical form for the ruled surface known as the Plücker

conoid of degree 2 [19].

Resolving Eq. (14) with respect to α2 , we find the expressions

for the generators

α2 =
1±

√
−(p − p1)(p − p2)

p − 2
α1. (20)

The generators (20) are two straight lines that constitute the

boundary between the domains of divergence and stability in the

(α1,α2) plane for a given p from the interval p1 � p � p2 , see
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Fig. 3. Therefore, the divergence domain in the (α1,α2) plane is an

angle-shaped region. The angle between the generators is not zero

when the load is within the interval p1 < p < p2 . However, at the

end points of the stability interval the generators merge into one

and the angle between them vanishes, see Fig. 3(b).

In the (α1,α2, p) space the generators that are always perpen-

dicular to the p axis sweep out the Plücker conoid surface that has

a self-intersection along the interval p1 < p < p2 with the Whit-

ney umbrella singularities [6,3] at the buckling loads p1 and p2 of

the free pendulum, as shown in Fig. 3(a).

We see that introducing kinematic constraints we can switch

between the first and second buckling loads of the free system

through the continuum of intermediate critical buckling loads pa-

rameterized by the angle φ or, equivalently, by the ratio α2/α1 .

Remarkably, the minimal and maximal buckling loads of the con-

strained pendulum can be attained for non-trivial choices of the

α2/α1-ratios that correspond to the two orthogonal directions in

the (α1,α2) plane. Therefore, we demonstrate that the problem

of the optimal choice of the kinematic constraint inevitably leads

to the non-smooth and non-convex merit functional, pd(α1,α2),

represented by the ruled surface (19). In general case such opti-

mization problems can be solved numerically by the algorithms of

optimization on Stiefel manifolds [34].

We note that the same ruled surface appears as the divergence

threshold in the problem of destabilization of a hydrodynamically

stable Couette–Taylor (CT) flow by an external magnetic field that

is directed along the axis of rotation of the cylinders of the CT-

cell [16]. This indicates that the singular shape of the divergence

threshold that we observe also in the case of the constrained

Ziegler pendulum under the dead load, may be characteristic for a

rather broad class of divergence instability problems both in solid

and fluid mechanics.

5. Singular divergence instability threshold in the

non-conservative case

Similarly, we can treat the case of a partial follower force in

the situation when 0 < γ < 1. Denoting A =
√
10γ 2 − 14γ + 5, we

find that the critical divergence load (11) varies between the two

extrema pb � p � pu , where the minimum

pb = 2
3(1 − γ ) − A

4− 4γ − γ 2
(21)

corresponds in the (α1,α2) plane to the direction

α2 =
(
1+

1 + A

2(γ − 1)

)
α1, (22)

while the maximum

pu = 2
3(1− γ ) + A

4− 4γ − γ 2
(23)

is attained when

α2 =
(
1+

1 − A

2(γ − 1)

)
α1. (24)

The critical divergence load (11) as a function of α1 and α2 is

a ruled surface with the generators

α2 =
2− pγ ±

√
−(p − pb)(p − pu)(4− 4γ − γ 2)

2(p − 2)
α1. (25)

When γ = 0, the generators (25) coincide with those given by

Eq. (20).

The divergence domain in the (α1,α2) plane is an angle-shaped

region. The angle between the generators is not zero when the

Fig. 4. (a) The surface of the critical load p(α1,α2) causing divergence in case of

partial follower force corresponding to γ = 0.5 with the horizontal discs showing

the levels of the critical divergence load of the free pendulum and (b) its top view.

The minimum of the surface corresponds to the second-order criterion [20].

load is within the interval pb < p < pu . At the end points of the

stability interval the generators merge into one and the angle be-

tween them vanishes, see Fig. 4(b).

In Fig. 4(a) we see the divergence threshold (11) plotted in the

(α1,α2, p) space at γ = 0.5. The surface has a self-intersection

along the interval pb � p � pu of the p-axis. The instability thresh-

old has Whitney umbrella singularities at the end points of the

interval as in the case γ = 0. However, contrary to the pure con-

servative case with γ = 0, this interval exceeds the divergence

domain of the free system with the critical loads p1 and p2 given

by Eq. (8)!

This property yields existence of the areas in the (α1,α2)

plane where the critical divergence load of the constrained non-

conservative system either exceeds the upper divergence load p2

of the non-constrained one (stabilization by constraints) or is

smaller than the lower divergence load p1 of the non-constrained

pendulum (destabilization by constraints), see Fig. 4(a).

It is worth noting that Liu et al. [35], following the results of

Rozvany and Mroz [37] and Olhoff and Akesson [36] had found

that the optimal locations of internal supports for maximizing the

buckling load of a column are at the nodal points of an appropriate

higher-order buckling mode. Our study confirms this observation,

because the maximal buckling load of the Ziegler pendulum with

respect to the kinematic constraints corresponds to the higher-

order (second) buckling mode of the non-constrained system while

the minimal load is attained at the lower-order (first) one. This ef-

fect holds also in case of the non-conservative systems, which were

not considered, however, in [35–37]. The possible destabilizing ef-

fect of additional constraints was not anticipated in these works,

neither the fact that the optimal constraints in non-conservative

systems are chosen by the second-order work criterion.

6. Conclusions

In various multiparameter stability problems of solid and fluid

mechanics one frequently encounters with the effect of non-

commuting limits of the instability threshold for a selected param-

eter when other parameters (that can correspond to both conserva-

tive and non-conservative forces) tend to zero. One of the compli-

cated problems possessing the non-commuting limits of the diver-

gence instability threshold is the Velikhov–Chandrasekhar paradox

in the theory of magnetorotational instability. In order to under-

stand this effect better it would be desirable to have a simple

mechanical model that would demonstrate such a discontinuous

switching between the critical buckling loads. In this work we have

presented such a system, which is the Ziegler pendulum with kine-

matic constraints. The very idea to impose the constraints to this

non-conservative mechanical system came, however, from the ma-
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terial instability problems of geomechanics. We have established

that the divergence critical load as a function of the two parame-

ters of a constraint is represented by a singular surface with the

interval of self-intersection and two Whitney umbrella singular

points at its ends. There exist directions in the plane of the con-

straint coefficients such that approaching the origin along them

results in higher or lower values of the divergence threshold than

in the case of the free pendulum. The extrema of the singular sur-

face correspond to the values of the divergence load given by the

second-order work criterion. The singular surface clearly illustrates

how a switching between the first and second buckling loads of

the free system happens when the constraints are varying. The

simple but paradigmatic toy model studied in the Letter provides a

link between the structural instability effects arising in seemingly

disconnected applications.
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