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Abstract

We explore the X-ray second harmonic generation process induced by resonant two-photon ab-

sorption in systems with inversion symmetry. We show that this process becomes allowed in the

X-ray region due to non-dipole contributions. It is found that while a plane wave pump field

generates only a longitudinal second harmonic field, a Gaussian pump beam creates also a radially

polarized transverse second harmonic field which is stronger than the longitudinal one. Contrary

to the longitudinal component, the transverse second harmonic field with zero intensity on the axis

of the pump beam can run in free space. Our theory is applied to Ar and Ne atomic vapours and

predicts an energy conversion efficiency of X-ray SH generation of 3.2 × 10−11 and 1.3 × 10−12,

respectively.
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I. INTRODUCTION

Modern X-ray Free Electron Laser (XFEL) facilities can deliver high intensities 1015−1019

W/cm2 making it possible to significantly populate a core-excited state and even create

population inversion and X-ray lasing [1–7]. At these intensities, X-ray matter interaction

becomes nonlinear creating room for studies of nonlinear effects like stimulated X-ray Raman

scattering [3–5, 8–10], pulse compression [3–5], X-ray four-wave mixing [3–5, 11, 12], and

nonlinear wave mixing of X-ray and near-infrared beams [13]. Special attention was paid

to the competition between stimulated X-ray emission and Auger decay [14–16]. Second

harmonic generation (SHG) is a nonlinear optical process of sum frequency generation which

produces new photons with twice the frequency. SHG has traditionally been studied as an

even-order nonlinear optical effect allowed in media without inversion symmetry[17] and is

one of the best-understood nonlinear effects in optics[18]. In light of the XFEL development

its study in the Angstrom regime, e.g., on the natural scale of atomic and molecular structure

of matter, has become of great interest both from a fundamental and practical viewpoint.

A pioneering study by Shwartz, Yudovich et al[19, 20] gave recently experimental evidence

for ”off-resonant” SHG in diamond in the hard X-ray region with a pump frequency of 7.3

keV.

In the present work we show that due to the large momentum of the photon k the

nonlinearity in the X-ray region is different from conventional nonlinearities in the visible

regime and that SHG is generally possible to observe for centro-symmetric systems even

when phase matching conditions do not prevail. We present a theoretical study of X-ray

SHG in atomic gases induced by resonant two-photon absorption (TPA). We show that the

plane wave pump field can create only longitudinally polarised X-ray second harmonic (SH)

fields which can not propagate in free space (see however ref.[21]), but also that a Gaussian

pump pulse induces in addition transverse second harmonic fields which contrary to the

longitudinal component can run in free space. Our idea is, in a certain sense, inverse to the

use of the longitudinal component of focused light beams in laser particle accelerators[22].

Another important feature of the SHG problem studied here is that the transverse field,

being strictly equal to zero on the beam axis, has an unusual radial polarization.

Our work is organized as follows. We outline in Sec. II A the basic theory of SHG

using plane-wave pump radiation which generates only the longitudinal field. Then, in
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the following Sec. II B we show that a Gaussian pump field creates also the transversely

polarized SH field. Sec. II C is devoted to the analysis of the longitudinally and radially

polarized SH fields. We shed light on the role of the absorption of an SH field in Sec. II D.

Some theoretical details can be found in Appendixes A, B and C. We discuss our results

further in Sec. III where we numerically analyze the efficiency of SHG in Ne and Ar vapours.

Finally, in Sec. IV, we come to the conclusions.

II. THEORY

Quantum mechanically, the second order nonlinearity in the optical susceptibility origi-

nates from a perturbational solution of the Schrödinger’s equation. To get insight into the

physics of the SHG process in the X-ray region, we consider the propagation of an X-ray

pump field Ep in an atomic gas far away from the absorption edge. To induce the SHG

we choose twice the frequency of the pump field to be resonant with the frequency of a

two-photon transition 2ω ≈ ω10. The scheme of SHG is shown in Fig.1 where the pump

field resonantly promotes the 1s electron of atom to the np unoccupied level. The resonant

population of the state |1〉 in the course of TPA is followed by the emission of the SH field

E. Let us start from the atom-field interaction which reads as (we use SI units)

V = V (1) + V (2) = − e

2mc
(p ·Ap + Ap · p) +

e2

2mc2
A2
p, (1)

where m and e are the mass and charge of the electron, respectively. c is the speed of light

and p is the operator of electronic momentum. Below we will use more frequently the electric

field instead of the vector potential, E = −∂A/∂t. The square of the vector potential of the

pump field A2
p describes the TPA process in the first order of perturbation theory while the

scalar product p ·Ap contributes to the TPA in second order of perturbation theory.

A. Plane wave pump field

It is instructive to consider first the interaction with the simplest and most fundamental

electromagnetic wave, the transverse plane wave Ap = (Ap/2) exp(−ı(ωt−k·r−k·r(e)))+c.c

Ep =
1

2
Epe

−ı(ωt−k·r−k·r(e)) + c.c.,

Ep = eE(0)
p = −∂Ap

∂t
= ıωAp (2)
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with the polarization e being orthogonal to the photon momentum k. Here r(e) is the

coordinate of the electron with respect to the atom and r is the radius vector of atom in the

laboratory frame. To avoid unnecessary complexity (see also below) we will focus only on

the A2
p term assuming that the wave length of the photon is longer than the size of the core

orbital ka� 1

V (2) =
e2

8mc2
A2e−ı2(ωt−k·r(e)−k·r) + c.c.+ const (3)

≈ e2

8mc2
A(0)2
p e−ı2(ωt−k·r)(1 + ı2k · r(e)) + c.c.+ const.

The term A
(0)2
p being independent on the electron radius vector r(e) can not induce transitions

between electronic states. Thus the transition between the ground (s) and core-excited (p)

states is induced solely by the the matrix element

V
(2)

10 ≈ −ı
eE

(0)2
p

4mc2ω2
(k · d10)e−ı[(2ω−ω10)t−2k·r] (4)

of the second term k ·r(e) on the right-hand side of eq.(3). The rotating-wave approximation

is used here by keeping only the near resonant term. This pure non-dipole process opens

the s→ p TPA channel with the transition dipole moment d01 = er01 = e〈0|r(e)|1〉 (Fig.1).

We chose the axis z of quantization to lie along the photon momentum k. In this frame

the pump field populates only the npz level (see Fig.1) and the problem is reduced to the

interaction with a two-level atom with the transition dipole moment parallel to the photon

momentum

d01 ‖ k. (5)

The resonant TPA population of the core-excited state of p-symmetry is followed by the

dipole allowed one-photon transition p → s which creates the SHG field with the double

frequency 2ω. This explains why the SHG is possible in systems with inversion symmetry

in the X-ray region.

To quantify the studied process one should compute the polarization P . The induced

macroscopic polarisation of the medium being the expectation value of the dipole moment

d is specified in terms of the density matrix ρ(t)

P = NTr(dρ) = N (d01(t)ρ10(t) + d10(t)ρ01(t)) , (6)

where N is the concentration of atoms and d01(t) = d01 exp(ıω10t) is the dipole moment

in the interaction representation[22, 23]. The off-diagonal element of the density matrix
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ρ10(t) = %10 exp(−ı(νt − 2k · r)) satisfies the following kinetic equation in the interaction

picture[23] (
∂

∂t
+ Γ− ıν

)
%10 =

1

~m

(eE(0)
p

2ω

)2

(k · r10) (ρ11 − ρ00) , (7)

where ν = 2ω − ω10 is the detuning from the two-photon resonance and Γ is the lifetime

broadening of core-excietd state |1〉. We neglect the very weak depopulation of the ground

state in the course of the two-photon absorption, (ρ00 ≈ 1, ρ11 � 1) and assume that the

duration τ of the pump pulse is longer than the lifetime of the core excited state 1/Γ. In

this case one can use the stationary solution of eq.(7)

%10 = %∗01 = − 1

~m

(
eE

(0)
p

2ω

)2
(k · r10)

Γ− ıν
(8)

to find the induced macroscopic polarization taking into account eq.(5)

P = P e−ı2(ωt−k·r) + c.c., (9)

P = k̂p, p = −

(
eE

(0)
p

2ω

)2
Nker2

01

m~(Γ− ıν)
.

Here k̂ = k/k is the unit vector along k. One can see that the pump radiation creates a

macroscopic polarization P oriented along the direction of propagation of the pump field

k, and hence the SH field E , which is created in the course of the spontaneous transition

|1〉 → |0〉, is also parallel to k. This longitudinal field exists everywhere where there is pump

field and the medium and this field copies exactly the polarization according to Maxwell’s

equation for the induction, ∇ ·D = ∂(ε0E + P)/∂z = 0:

E = − 2

ε0
P 6= 0, D = 0, H = 0. (10)

This does not contradict the well known fact that the plane wave longitudinal field does not

exist in free space[21]. This statement means that the longitudinal field can not propagate

in free space. The longitudinal field E exists only in the region where the pump field creates

longitudinal polarization P ∝ k. This longitudinal field oscillating in time and space is a

pure electric field, H = 0.

As we have already noticed above the TPA process is a first-order process with respect

to A2
p and a second-order process with respect to p ·Ap. Here we study the two-photon

transition s→ p which is a pure non-dipole effect. Since both A2
p and p ·Ap induced TPA
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result in the same orientation of the TPA induced polarization we consider here only the

A2
p contribution. The taking into account of the p ·Ap TPA process will result only in a

rescaling of the SHG efficiency.

B. Gaussian pump beam and paraxial equation

In this section we will show that a Gaussian pump beam

Ep =
1

2
Epe

−ı(ωt−kz) + c.c., (11)

Ep = x̂E(0)
p g

(
t− z

c

) w0

w(z)
exp

(
− %2

w2(z)

)
exp

(
ı

(
k

%2

2R(z)
− ψ(z)

))
makes it possible to transform the longitudinal SHG X-ray field into a transfer field which

can propagate in free space in contrast to the pure longitudinal field. Eq. (11) for pulsed

Gaussian beam is obtained in Appendix A by convoluting of the fundamental Gaussian mode

with the Gaussian distribution of spectral components. As shown in Appendix A, Ep satisfies

paraxial equation. Eq.(11) identifies R(z) = z (1 + (zR/z)2) as the radius of curvature of the

wavefront of the beam at z, w0 as the beam waist and g(t) = exp(−t2/2τ 2) as the temporal

shape of the pulse with duration τ . Here w(z) = w0

√
1 + (z/zR)2, ψ(z) = arctan(z/zR),

ρ =
√
x2 + y2, w0/zR ∼ 1/kw0 � 1. The Gaussian beam remains well collimated up to the

Rayleigh range zR = kw2
0/2 (Fig.2).

Since the wavefront is not orthogonal to z, as one can see from the phase φ = 2k(z+ρ2/2R)

of E2
p ∝ exp(ıφ), the polarization P is slightly tilted from the z-axis. To find the matrix

element V
(2)

01 of the interaction with the Gaussian pump beam (11) we need the value of this

interaction at the point of the electron r(e) with respect to the atom r = (ρ, z), namely at

r + r(e),

〈0|eı(φ+δφ)|1〉 ≈ eıφ〈0|1 + ıδφ|1〉 = κ · 〈0|r(e)|1〉eıφ ı2k, (12)

where we used the Taylor expansion φ(r+r(e)) = φ(r)+δφ with δφ = ∇φ·r(e). Similar to the

derivation of eq.(9) one obtains a polarisation that is oriented along ∇φ ≡ (∂zφ, ∂ρφ) = 2kκ

P = −κ
(
eEp
2ω

)2
Nker2

01

m~(Γ− ıν)
, κ = ẑ + ρ̂

ρ

R
(13)

instead of the beam axis ẑ ‖ k.

Let us write the optical wave equation for the SHG field E

∇(∇ · E)−∇2E +
1

c2

∂2E
∂t2

= −µ0
∂2P
∂t2

(14)
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in the usual manner[18] starting from the couple of Maxwell’s equations (in SI units) for

nonmagnetic materials (µ=1)

∇× E = −µ0
∂H
∂t

, ∇×H =
∂D
∂t

. (15)

Contrary to conventional theories[18] where ∇ · E ∼ (k · e) = 0 for the transverse electro-

magnetic field (k ⊥ e), we can not ignore ∇ · E here. This is because the polarization P is

essentially a longitudinal one (see eq.(13)): ∇ ·P 6= 0. To resolve this problem we use the

Maxwell’s equation for the induction D = ε0E + P

∇ ·D = 0, ∇ · E = − 1

ε0
∇ ·P , (16)

which makes it possible to rewrite the wave equation (14) as follows

−∇2E +
1

c2

∂2E
∂t2

=
1

ε0

(
− 1

c2

∂2P
∂t2

+ ∇(∇ ·P)

)
, (17)

E =
1

2
Ee−ı2(ωt−kz) + c.c., P = Pe−ı2(ωt−kz) + c.c..

This wave equation differs from the conventional one [18] by the extra term ∇(∇ ·P) 6= 0

which is not equal to zero because of the longitudinal contribution in P . We would like to

point out that when the pump field is a plane wave there is only a longitudinal SH field

E ‖ z (see Sec.II A). In this case the wave equation (14) becomes ∂2(ε0E + P)/∂t2 = 0,

which is very different from eq.(17) because ∇(∇ · E)−∇2E = (∂2/∂z2 − ∂2/∂z2)E ≡ 0.

Now we are at the stage to simplify the wave equation (17). In our case the wave

propagates primarily along the z-axis with a small divergence angle (Fig. 2)

θ0 ≈
1

2kw0

=
w0

zR
∼ λ

w0

� 1. (18)

Here λ is the wavelength of the pump field. We assume also that the pulse duration τ is

much longer than the period of field oscillations 2π/ω. This makes it possible to neglect

∂2E/∂z2 and ∂2E/∂t2 in eq. (17) (see Ref. [24]) and to get the following paraxial equation

for the SHG field (
∂

∂z
+

1

c

∂

∂t
− ı

4k
∆⊥

)
E =

ı

2k
f , kw0 � 1, τω � 1, (19)

where ∆⊥ = ∇2
ρ = ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator over the transverse cartesian

coordinates. The source term on the right-hand side of the paraxial equation has now both
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longitudinal (fz) and transverse components (fρ)

f̃ = ẑf̃z + ρ̂f̃ρ, (20)

f̃ =
1

ε0

(
− 1

c2

∂2P̃

∂t2
+ ∇(∇ · P̃)

)
≈ 1

ε0

(
(2k)2P̃ + ∇(∇ · P̃)

)
,

P̃ = Pe−ı2(ωt−kz), f̃ = fe−ı2(ωt−kz)

Taking into account eqs.(11), (13) and (18) one can get the following expression for the

transverse and longitudinal components of f

fρ = − ı8kρ
ε0w2

P, (21)

fz =
ı2kP

ε0(z2 + z2
R)

[2kρ2zR(ızR + z)

z2 + z2
R

− ı4zR − z
]
.

One should point out that the origin of the fρ is the term ∇(∇ · P̃) = ρ̂∂ρ(∂zP̃ ) + · · · . A

simple estimation shows that the transverse contribution dominates: |fρ/fz| ∼ kw0 � 1.

As one can see from the paraxial equation (19) the transverse and longitudinal components

of f generate, respectively, the transverse and longitudinal components of the SH field E.

C. Spatial distribution of the transverse and longitudinal SH fields. Radial polar-

ization

It is convenient to write the solution of the paraxial equation (19) in terms of the retarded

Green’s function (see Appendix B)

E(z,ρ, t) =
1

2π

∫
G(z − z′,ρ− ρ′, t− t′)f(z′,ρ′, t′)dz′dρ′dt′, (22)(

∂

∂z
+

1

c

∂

∂t
− ı

4k
∆⊥

)
G(z − z′,ρ− ρ′, t− t′) = δ(z − z′)δ(ρ− ρ′)δ(t− t′)Θ(t− t′).

G(z − z′,ρ− ρ′, t− t′) = −ıδ
(
t′ − t− z′ − z

c
)

)
Θ(t− t′) k

π(z − z′)
exp

(
ı
k|ρ− ρ′)2

z − z′

)
,

which guarantees that no contribution at remotely early times, t, before the source

f̃(z′,ρ′, t′) = f(z′,ρ′, t′) exp(−ı2(ωt′ − kz′)) has been activated. Taking into account that

ẑ′ = ẑ, ρ̂′ = ρ̂ cosϕ+ ŷ sinϕ, ŷ ⊥ ρ̂, one can perform an integration over directions of ρ′ in
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the plane (ρ̂, ŷ) orthogonal to the z-axis using eq.(B5)

2π∫
0

dϕ[ρ̂′fρ(z
′, ρ′, t′) + ẑfz(z

′, ρ′, t′)] exp

(
ı
k|ρ− ρ′)2

z − z′

)
(23)

= 2π exp

(
ı
k(ρ2 + ρ′2)

z − z′

)[
− ρ̂ıfρ(z

′, ρ′, t′)J1

(
2kρρ′

z − z′

)
+ ẑfz(z

′, ρ′, t′)J0

(
2kρρ′

z − z′

)]
,

where Jn(x) is a Bessel function. One can obtain the remaining integral over ρ′ using eq.(B5)

and get the following expressions for transverse and longitudinal contributions

E(z,ρ, t) = ρ̂Eρ(z,ρ, t) + ẑEz(z,ρ, t), (24)

Ei(z, ρ, t) = E(0)
p g2

(
t− z

c

)
Ji(z, ρ), i = (ρ, z),

where

Jρ(z, ρ) = −2ρs0

z∫
−∞

dz′
eΦ

w4(z′)α2(z′)
, (25)

Jz(z, ρ) =
ı4πw0s0

(kw0)3

z∫
−∞

dz′
eΦ

w4(z′)α(z′)

[
2(ızR + z′)

w2(z′)α(z′)

(
z − z′ − 2k2ρ2

α(z′)

)
− (ı4zR + z′)

]
,

Φ =
ıkρ2

z − z′
− ı2ψ(z′)− k2ρ2

(z − z′)α(z′)
, α(z′) =

2(z − z′)
w2(z′)

− ık
(
z − z′

R(z′)
+ 1

)
,

s0 = 8π
G

Γ− ıν
NzRr01re

Here re = e2/(4πε0mc
2) = 2.82×10−13 cm is the classical electron radius and G = E

(0)
p d01/~

is the Rabi frequency. It is important to notice that there is no transverse field on the beam

axis

Eρ(z, ρ = 0, t) = 0. (26)

Eq.(24) indicates that the transverse SH field ρ̂Eρ is oriented along the radius ρ perpendic-

ular to the beam axis (Fig. 3). This means that the transverse field has radial polarization

(see also Sec. III).

D. Role of photoabsorption

In the equations above the photoabsorpion of X-rays is ignored. This approximation is

valid for the pump beam whose frequency is far from any resonance. In contrast, the SHG
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field is in strict resonance with the dipole allowed transition |0〉 → |1〉 (1s − 3p for Ne and

1s− 4p for Ar). Therefore, this absorption channel should be taken into account. With the

solution (24) at hand we are almost prepared to include the photoabsorption in the SH field.

As shown in Appendix C the photoabsorption of the SHG field modifies only the integrands

at the right-hand side of equations (25) for Jρ(z, ρ) and Jz(z, ρ). Namely, these integrands

should be multiplied by the factor

exp

(
z′ − z

2`

)
, (27)

where ` = 1/Nσabs is the photoabsorption length while σabs is the resonant photoabsorption

cross section. According to simulations the photoabsorption length should be larger or

comparable with the Rayleigh range

` ∼ zR (28)

to make it possible for the SHG field to reach the optimal value.

III. RESULTS OF SIMULATIONS AND DISCUSSION

We applied the theory outlined above to two atomic systems, Ne and Ar, under the strict

two-photon resonance (2ω = ω10) with 1s → 3p transitions for Ne and 1s → 4p transitions

for Ar. In the simulations, the peak pump intensity used was I
(0)
p = cε0|E(0)

p |2/2 = 1016

W/cm2 (Fig. 2), and the following parameters were adopted for Ne: ~ω1s−3p = 867.4 eV,

σabs(1s− 3p) = 1.5× 10−18 cm2[25], 2~Γ = 0.27 eV [26], and for Ar: ~ω1s−4p = 3203.42 eV,

σabs(1s−4p) = 0.12×10−18 cm2[27], 2~Γ = 0.66 eV[28]. The concentration of the atoms and

the beam waist were equal to N = 1019 cm−3 and w0 = 1.0µm, respectively. The Rayleigh

range was zR ≈ 103µm and zR ≈ 4× 103µm for Ne and Ar, respectively. The corresponding

values of the photoabsorption lengths ` ≈ 0.67× 103µm and 8× 103µm satisfy the condition

(28).

We solved the paraxial equation with homogeneous distribution of the concentration. The

SHG radiation is characterized by the intensity distributions of the transverse (Iρ(z, ρ, t))

and longitudinal (Iz(z, ρ, t)) components of the SH field (24)

Ii(z, ρ, t) =
1

2
cε0|Ei(z, ρ, t)|2, i = (ρ, z) (29)
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and by the energy conversion efficiency

βi =
Wi(z)

Wp

, Wi(z) = 2π

∫ ∞
0

dt

∫ 2π

0

dρIi(z, ρ, t). (30)

First we studied the SH field neglecting the photoabsorption. In Fig. 4 and Fig. 5 we

display the spatial distribution of the SH intensities Iρ(z, ρ, t) and Iz(z, ρ, t) for Ne and Ar,

respectively. One can see that the transverse and longitudinal SH fields show very different

radial structures with Iρ = 0 on the axis of the beam ρ = 0, and the transverse field ρ̂Eρ (24)

has an unusual radial polarization as shown in Fig. 3. The transverse SH field Iρ is much

stronger than the longitudinal one Iz, and the energy conversion efficiency of the transverse

SH field is about four to five orders of magnitude larger than that of the longitudinal SH

field as shown in Fig. 6.

Because of the deeper ionization potential and smaller core-electron transition dipole

moment, the conversion efficiencies of the X-ray SH fields from Ar atomic vapour are much

smaller than those from Ne (Fig. 6). However, when the photoabsorption of the generated

SH fields is considered, the final conversion efficiencies from Ar and Ne become comparable.

Below we investigated the conditions for the experimental observation of the SHG process

with X-rays in atomic Ne and Ar vapours by taking into account the resonant one-photon

absorption of the SH field during propagation. The photoabsorption changes the spatial

distribution of the SH field (Fig. 7) and reduces the energy conversion efficiency in one

order of magnitude for Ne and in four times for Ar, as one can see from Fig. 6 and Fig.8.

As it is expected the SH field is confined in the focal region in the range limited by the

photoabsorption length ` (see Fig. 7). Due to this circumstance the energy conversion

efficiency becomes maximal at z = zmax = 0.7 mm for Ne and zmax = 0.5 cm for Ar. This

range defines the size of the gas cell which should be around zmax.

IV. SUMMARY

In this paper, we investigated the second harmonic generation in systems with inversion

symmetry in the X-ray region. Our theory is applied to SHG in neon and argon pumped

by a strong X-ray field tuned in resonance with the two-photon transition 1s → 3p in Ne

and 1s → 4p in Ar. The non-dipole population of these core-excited states is followed

by the emission of the SH field. We describe the SHG in atoms in terms of a density

12



matrix formalism and paraxial equation taking into account the resonant photoabsorption

of the SH radiation. In contrast to the plane wave pump field, the Gaussian pump beam

generates transverse SH photons with radial polarization. By taking into account the X-

ray photoabsorption effect, the energy conversion efficiencies to the transverse SH fields are

expected to be orders of 10−11 and 10−12 in Ne (867.4 eV) and Ar (3203.4 eV) atomic vapours

for the pump 1016 W/cm2, respectively.
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Appendix A: The pulsed Gaussian beam (11) is eigen function of paraxial operator

To get pulsed Gaussian beam (11) with the carrier frequency ω we need to convolute

fundamental Gaussian mode

E(ω, t) =
1

2
E(ω)e−ı(ωt−kz) + c.c., (A1)

E(ω) = x̂E(0)
p

w0

w(z)
exp

(
− %2

w2(z)

)
exp

(
ı

(
k

%2

2R(z)
− ψ(z)

))
,

with the spectral distribution g(ω′−ω) = exp(−(ω′−ω)2τ 2/2)/τ
√

2π centered at the carrier

frequency ω

Ep(ω, t) =

∞∫
−∞

g(ω′ − ω)E(ω′, t)dω′. (A2)

The mode E(ω) is the eigen function of the stationary paraxial or Helmholtz equation(
∂

∂z
− ı

2k
∆⊥

)
E(ω) = 0. (A3)
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The substitution of the fundamental mode (A1) in the convolution (A2) results in an ex-

pression

Ep(ω, t) =
x̂

2
E(0)
p

∞∫
−∞

dω′g(ω′ − ω)

× exp

(
−ıω′

(
t− z

c
− ρ2

2cR(z)

))
w0

w(z)
exp

(
− %2

w2(z)

)
e−ıψ(z) + c.c. (A4)

We neglect the ω′-dependence of the Rayleigh range zR = k′w2
0/2 ≈ kw2

0/2 because the

variation of the frequency ∆ω = |ω′ − ω| ∼ 1/τ in the Fourier transform (A4) is negligibly

small in comparison with the carrier frequency of X-ray pulse: ∆ω/ω ∼ 1/τω � 1. Thus

Ep(ω, t) ≈
x̂

2
E(0)
p exp

(
−ıω

(
t− z

c
− ρ2

2cR(z)

))
w0

w(z)
exp

(
− %2

w2(z)

)
e−ıψ(z)

×g
(
t− z

c
− ρ2

2cR(z)

)
+ c.c., g(t) = exp

(
− t2

2τ 2

)
(A5)

Within paraxial approximation [24] (kw0 � 1) we can neglect ρ2/2cR(z) in the Gaussian

g (t− z/c− ρ2/2cR(z))) because

z ∼ zR ∼ kw2
0 �

ρ2

2R(z)
∼ w2

0

zR
∼ 1

k
,

ρ2

2cR(z)τ
∼ 1

τω
� 1. (A6)

However, we should keep ρ2/2cR(z) in the oscillatory term exp[−ıω(t − z/c − ρ2/2cR(z))]

because

ω
ρ2

2cR(z)
=

kρ2

2R(z)
≈ kw2

0

2zR
∼ 1. (A7)

Finally we get eq.(11) for Ep(ω, t).

Now we are in stage to show that Ep from eq.(11) satisfies the paraxial equation(
∂

∂z
+

1

c

∂

∂t
− ı

2k
∆⊥

)
Ep = 0. (A8)

Let us apply the operator � = −∇2 + ∂2/c2∂2t to both sides of eq.(A2)

�Ep(ω, t) =

∞∫
−∞

g(ω′ − ω)�E(ω′, t)dω′. (A9)

Using the paraxial approximation, kw0 � 1, τω � 1 and eq.(A3) we get eq.(A8)(
∂

∂z
+

1

c

∂

∂t
− ı

2k
∆⊥

)
Ep = eı(ωt−kz) (A10)

×
∞∫

−∞

dω′g(ω′ − ω)
k′

k
e−ı(ω

′t−k′z)
(
∂

∂z
− ı

2k′
∆⊥

)
E(ω′) = 0. (A11)
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The paraxial approximation is broken when kw0
<∼ 1, τω <∼ 1. In this case one should

restore in eq. (19) the second derivatives over z and time: ∂/∂z → ∂/∂z − (ı/4k)∂2/∂z2,

∆⊥ → ∆⊥ − ∂2/c2∂t2. However, such conditions are difficult to reach in X-ray region.

For example, the condition τω ∼ 1 corresponds to few cycle X-ray pulse, where the pulse

duration is comparable with the period of the field oscillations.

Appendix B: Green’s function for the time-dependent paraxial equation

Let us find the Green’s function of non-stationary paraxial equation(
∂

∂z
+

1

c

∂

∂t
− ı

2K
∆⊥

)
G(z,ρ, t) = Θ(t)δ(t)δ(z)δ(ρ), (B1)

where ∆⊥ = ∂2/∂x2 + ∂2/∂y2, ρ = (x, y), δ(ρ) = δ(x)δ(y) and Θ(t) is the step function

which is equal to zero when t < 0. Taking the Fourier transform of the Green’s function

and of the Dirac δ-functions we get

G(z,ρ, t) =
Θ(t)

(2π)4

∞∫
−∞

dµ

∞∫
−∞

dν

∞∫
−∞

dp

∞∫
−∞

dqGµ,ν,p,qe
ıµt+ıνz+ıpx+ıqy,

Gµ,ν,p,q = − 2ı
µ
c

+ ν + p2+q2

2K

. (B2)

Keeping in mind that t ≥ 0 and taking the integral along half circle in upper half plane

around the pole µ = −c
(
ν + p2+q2

2K

)
∞∫

−∞

eıµt

µ
c

+ ν + p2+q2

2K

dµ = −ıcπ exp

(
−ıct

(
ν +

p2 + q2

2K

))
, (B3)

we obtain the following expression for the Green’s function

G(z,ρ, t) = −ıδ
(
t− z

c

)
Θ(t)

K

2πz
exp

(
ı
Kρ2

2z

)
(B4)

which allows to find the SHG field (22) with help of the following integrals[29]

J0(a) =
1

2π

∫ 2π

0

eıa cos θdθ,

1

2π

∫ 2π

0

cos θe−ıa cos θdθ = ı
d

da
J0(a) = −ıJ1(a), (B5)

∞∫
0

e−a
2ρ2ρn+1Jn(bρ)dρ =

bn

(2a2)n+1
e−

b2

4a2 , Re(a2) > 0.
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Appendix C: Photoabsorption of SHG field

The strongest absorption channel is the absorption of SH field which is in resonance with

|0〉 → |1〉 transition. To take into account this photoabsorption we need to add −E/2` at

the right-hand side of paraxial equation (19)(
∂

∂z
+

1

c

∂

∂t
− ı

4k
∆⊥

)
E = − 1

2`
E +

ı

2k
f , (C1)

where ` = 1/σN is the length of resonant absorption of the SHG field with the photoabsorp-

tion cross section σ. Using the substitution E = Ẽ exp(−z/2`) one can see that Ẽ satisfies

paraxial equation (19) (
∂

∂z
+

1

c

∂

∂t
− ı

4k
∆⊥

)
Ẽ =

ı

2k
fez/2` (C2)

with modified source term. This equation has the solution given by eq.(22) with f replaced by

f exp(z′/2`). Taking into account this we get immediately the solution of paraxial equation

with photoabsorption (C1)

E(z,ρ, t) = Ẽe−z/2` =
e−z/2`

2π

∫
G(z − z′,ρ− ρ′, t− t′)f(z′,ρ′, t′)ez′/2`dz′dρ′dt′. (C3)

This means that to include the photoabsorption we should multiply by exp((z′− z)/2`) the

integrand at the right-hand side of equations (25) for Jρ(z, ρ) and Jz(z, ρ).
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m=-1	 0	 1	1 = np

0 = 1s

!r10  ↑↑ z ↑↑ 
!
k

FIG. 1: The dipole moment r10 of the 1s → np transition in atom is parallel to k. The axis of

quantization z is along the photon momentum k.
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FIG. 2: 2D map of the pump intensity at t = z/c for Ne and Ar atomic vapours. The legend shows

the intensity in W/cm2.
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FIG. 3: Radial distribution of Iρ for Ne atomic vapour at z = 0.02 m. Black arrows show schemat-

ically the radially polarized SHG field.
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FIG. 4: 2D map of the SHG intensity at t = z/c of Ne atomic vapour. The photoabsorption is

negleted. The legend shows the intensity in W/cm2.
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FIG. 5: 2D map of the SHG intensity at t = z/c of Ar atomic vapour. The photoabsorption is

neglected. The legend shows the intensity in W/cm2.
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FIG. 6: Energy conversion efficiencies of the transverse SH fields βρ(z) and the longitudinal SH

fields βz(z) in Ne and Ar atomic vapours. The photoabsorption is neglected. The vertical axises

show the energy conversion efficiencies multiplied by the factor 10n: For example, 1010βρ and

1014βz for Ne.
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FIG. 7: Distribution of the transverse SH field Iρ for Ne and Ar by taking into account the

photoabsorption. The legend shows the intensity in W/cm2.
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FIG. 8: Energy conversion efficiency βρ(z) for Ne and Ar by taking into account the photoabsorp-

tion. The red dashed lines display βρ(z) calculated by neglecting the photoabsorption (see Fig. 6).

Ne: βmax
ρ = 3.2× 10−11 at zmax = 0.7 mm. Ar: βmax

ρ = 1.3× 10−12 at zmax = 0.5 cm.
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