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ENSEM, 2 Avenue de la Forêt de Haye,

TSA 60604 - 54516 Vandoeuvre lès Nancy cedex, France

(Dated: October 12, 2017)

Abstract

Rayleigh-Bénard convection in a horizontal layer of a non-Newtonian fluid between slabs of arbi-

trary thickness and finite thermal conductivity is considered. The first part of the paper deals with

the primary bifurcation and the relative stability of convective patterns at threshold. Weakly non-

linear analysis combined with Stuart-Landau equation is used. The competition between squares

and rolls, as a function of the shear-thinning degree of the fluid, the slabs’ thickness and the ratio

of the thermal conductivity of the slabs to that of the fluid, is investigated. Computations of heat

transfer coefficients are in agreement with the maximum heat transfer principle. The second part

of the paper concerns the stability of the convective patterns towards spatial perturbations and

the determination of the band width of the stable wavenumber in the neighborhood of the critical

Rayleigh number. The approach used is based on the Ginzburg-Landau equations. The study

of rolls stability shows that: (i) for low shear-thinning effects, the band of stable wavenumbers is

bounded by zigzag instability and cross-roll instability. Furthermore, the marginal cross-roll stabil-

ity boundary enlarges with increasing shear-thinning properties; (ii) for high shear-thinning effects,

Eckhaus instability becomes more dangerous than cross-roll instability. For square patterns, the

wavenumber selection is always restricted by zigzag instability and by ‘rectangular Eckhaus’ insta-

bility. In addition, the width of the stable wavenumber decreases with increasing shear-thinning

effects. Numerical simulations of the planform evolution are also presented to illustrate the different

instabilities considered in the paper.

Keywords: Rayleigh-Bénard convection, shear-thinning fluid, secondary instability
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I. INTRODUCTION

Studies on patterns formation and their stability in Rayleigh-Bénard convection for New-

tonian fluids have been considered in several papers. A review can be found in books of

Getling [1] and Koschmieder [2] and more recently in Bodenschatz et al. [3] where the most

significant progress in the field is identified. Comparatively to the Newtonian case, only a

limited number of studies were devoted to non-Newtonian fluids and still fewer to nonlinear

developments. Yet, non-Newtonian fluids intervene in a very broad range of industrial pro-

cesses such as polymer and foodstuffs processing and in complex physical phenomena such

as the convective movements in the earth’s mantle. Here, we focus on the shear-thinning

behavior, i.e. non linear decrease of the effective viscosity with the shear-rate, which is

the most common property of non-Newtonian fluids. In recent articles ([4],[5] and [6]),

the nature and the stability of patterns which emerge in Rayleigh-Bénard convection for

shear-thinning fluids have been studied using a weakly non linear analysis. Boussinesq ap-

proximations have been adopted and the slabs have been considered as perfectly conducting.

Using Carreau model to describe the shear-thinning behavior of the fluid, it has been shown

in [6] that: (i) rolls are the only stable convective patterns at threshold and (ii) there is a

critical value of the shear-thinning degree α defined by Eq.(12) above which the bifurcation

becomes subcritical.

Most analyzes consider ideal situations where the bounding horizontal surfaces are per-

fect conductors of heat. However in many laboratory experiments and in engineering and

geophysical problems, the slabs have a finite conductivity and they are not better con-

ductor than the fluid itself. In this case, the temperature disturbances do not vanish on

the boundaries. The thermal boundary conditions that have to be satisfied are the con-

tinuity of temperature and heat flux. According to Cerisier et al. [7], the temperature

fluctuation occurring in the liquid close to a nearly insulating slab distorts the temperature

distribution. This temperature distortion can lead to an instability of the fluid layer. As

a consequence, at threshold, the temperature gradient is small and the fluid organizes in a

pattern with a small wavenumber. Furthermore, theoretical and experimental studies show

that squares may be the convection patterns at the onset instead of rolls. Experimental

evidence of square patterns was reported by Legal Pocheau and Croquette [8] and Legal and
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Croquette [9]. The competition between roll and square patterns for a Newtonian fluid has

been examined in weakly supercritical Rayleigh-Bénard convection by Busse and Riahi [10],

Proctor [11] and Jenkins and Proctor [12]. The results are presented in terms of the Prandtl

number Pr, and the ratio χ of the thermal conductivities of slabs and fluid. It has been

shown for instance that for Pr ≥ 10 and for slabs with thickness equal to the width of the

fluid layer, that the convective pattern at threshold is in form of squares when χ < χc = 1.

These studies were extended recently to shear-thinning fluids by Bouteraa and Nouar [13].

It has been found that the critical value χc, below which squares are stable, decreases with

increasing shear-thinning effects. Recently, experiments were done by Kebiche [14], using

carboxymethylcellulose (CMC) solutions as shear-thinning fluid. In the Rayleigh-Bénard

setup, the slabs are made of polycarbonate with a ratio of thermal conductivities χ ≈ 0.25.

PIV measurements done in one vertical section do not allow the determination of convection

pattern type.

These studies are valid only in the immediate vicinity of the threshold with perfectly

periodic pattern. However, as the Rayleigh number Ra is increased above the onset Rac,

the growth-rate of the perturbation is positive for any wavenumber within a band
√
ǫ with

ǫ = (Ra − Rac)/Rac, around the critical wavenumber kc. A wavepacket centered on kc can

be constructed with the unstable modes. The corresponding convective pattern is modu-

lated spatially on a scale of O (1/
√
ǫ). The stability analysis of these convective patterns

with respect to long wavelength perturbations is of great interest. It allows in particular,

the determination of the range of stable wavenumbers. Typical instability mechanisms are

Eckhaus (E), zigzag (ZZ) and cross-roll (CR) instabilities [15]. Eckhaus instability is a

phase instability which acts on the roll phase to change the wavelength, compressing or

dilating the pattern. Zigzag is also a phase instability which arises from perturbations

parallel to the roll axes: it creates undulations along the roll axes when the wavelength

is too large. Cross-roll instability is an amplitude instability which consists of a set of

rolls growing perpendicularly to the original pattern. For a Newtonian fluid with perfectly

heat conductive slabs, the instability mechanisms which tend to limit the stability region

of rolls depend on the Prandtl number and on the boundary conditions, rigid or stress-free

boundary conditions, as shown by Busse [15] and Bolton and Busse [16]. At large Prandtl

number, say Pr > 10, with no-slip conditions the region of stable convection rolls is bounded
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by the zigzag instability and the cross-roll instability, which is followed by the bimodal con-

vection when Ra is increased. At low Prandtl number, say Pr < 1, Eckhaus instability

becomes more dangerous than cross-roll instability and the domain of stable zigzag enlarges

as Pr decreases. Furthermore, other specific secondary instabilities like “skewed-varicose

instability” and oscillatory instability [17] participate in bounding the stability domain of

rolls. Generally, non-Newtonian fluids are highly viscous and so the corresponding Prandtl

number is large. Therefore, only universal secondary instabilities, Eckhaus, zigzag and

cross-roll, are considered in this paper.

Square patterns are also subject to long wavelength instabilities. In the case of poorly

conducting slabs and for Newtonian fluids, Hoyle [18] has shown that the range of sta-

ble wavenumbers is restricted by zigzag instability and by Eckhaus rectangular instability.

According to Hoyle [18], this latter instability has a three-dimensional character since the

system responds differently in each of the two horizontal directions. It behaves like, one of

two rolls, that constitute square pattern, grows locally at the expense of the other. This

is why, Holmedal et al. [19] called this instability “Long wavelength cross-roll instability”.

This study was extended extended by Holmedal [19] to the general case of slabs with differ-

ent finite conductivities and thicknesses of the slabs.

The objective of this paper is to investigate the influence of shear-thinning effects on

the stability of the convective patterns and the width of the stable band of wavenumbers in

Rayleigh-Bénard convection with slabs of finite conductivity and arbitrary thickness. The

rheological law introduces additional nonlinearity and coupling between flow variables. This

additional nonlinearity will induce stronger interactions between the two sets of rolls that

constitute square patterns, than in the Newtonian case. Therefore, shear-thinning effects

will modify not only the range of stable wavenumber but also the more restrictive instability

mechanism. A weakly nonlinear analysis based on the amplitude equations formalism ([18],

[20]) is adopted as a first approach to examine nonlinear effects arising from the rheology.

To our knowledge, the present study is the first one which considers the influence of the

rheology on secondary instabilities. The structure of the paper is as follows. In §2 the

problem is formulated. Linear stability analysis is briefly considered in §3. The nature

of the primary bifurcation and pattern selection are discussed in §4. It is observed that
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shear-thinning effects favor formation of rolls. The stability of the convective patterns with

respect to inhomogeneous spatial perturbations is investigated in §5, using the amplitude

equations formalism. Influence of shear-thinning effects is highlighted. In §6, time evolution

of the convective pattern is illustrated from the numerical simulation of amplitude equations.

The paper ends with a conclusion where the relevant results are summarized.

II. PROBLEM FORMULATION

We consider a shear-thinning fluid layer of infinite horizontal extent which is heated from

below and cooled from above. We assume that the rigid slabs which enclose the fluid have

arbitrary conductivities and thicknesses. The thermal conductivity and diffusivity are noted

K̂ and κ̂ for the fluid and K̂p and κ̂p for the slabs. We define χ as the ratio of K̂p and

K̂ and we assume as in [11] and [21] that χ =
K̂p

K̂
=
κ̂p
κ̂
. This assumption is reasonable

for several couples (fluid, slab) where the ratio of the thermal capacities of the fluid and

the slabs r =
(ρ̂Ĉp)fluid

(ρ̂Ĉp)slabs
remains of order 1: for instance, r(water, copper) = 1.22 and

r(glycerin, glass) = 1.67 .

Dimensional quantities are denoted with the symbol hat (ˆ ). In the following, we note d̂

the depth of the fluid layer, ∆T̂ = T̂1 − T̂2, the temperature difference between the outer

surfaces of the upper and lower slabs. Because of the thermal expansion, the temperature

difference between the two plates induces a vertical density stratification. Heavy cold fluid

is above a warm light fluid. For small ∆T̂ , the fluid remains motionless and the heat is

transferred by conduction with a linear temperature profile across the fluid layer. In the

fluid, −d̂/2 < ẑ < d̂/2, the hydrostatic solution and the temperature profile are:

dP̂

dẑ
= −ρ̂0ĝ

[
1− β̂

(
T̂ − T̂0

)]
and T̂cond = T̂0 −

∆T̂

1 + 2Λ/χ

ẑ

d̂
, (1)

where ĝ is the acceleration due to gravity and Λ the dimensionless thickness of slabs. The

z−axis is directed upwards with the origin located at the middle of the fluid layer. The

reference temperature T̂0 is the temperature at the middle of the fluid layer, ρ̂0 the fluid

density at T̂0 and µ̂0 is the zero-shear rate viscosity at T̂0. The temperature difference

between the top and the bottom of the fluid layer is ∆T̂f = ∆T̂ [1 + 2Λ/χ]. The temperature
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profiles in top and bottom plates are

T̂cond = T̂0 +
∆T̂

2Λ + χ

[
1

2
− 1

2
χ− ẑ

d̂

]
;

d̂

2
≤ ẑ ≤

(
1

2
+ Λ

)
d̂ (2)

and

T̂cond = T̂0 +
∆T̂

2Λ + χ

[
1

2
χ− 1

2
− ẑ

d̂

]
; −

(
Λ+

1

2

)
d̂ ≤ ẑ ≤ − d̂

2
. (3)

When the top and bottom plates are poor thermal conductors, a large part of ∆T̂ occurs

across the plates, and remains only a small part ∆T̂f of ∆T̂ , acting as a driving force for

the convection. When ∆T̂f exceeds a critical value, the convection sets in and convective

patterns emerge. The stability of the hydrostatic solution is considered by introducing tem-

perature and pressure perturbations as well as a fluid motion. The fluid is incompressible

and Boussinesq approximations are adopted. We use d̂, µ̂0,
d̂2

κ̂
,
κ̂

d̂
,
ρ̂0κ̂

2

d̂2
and

∆T̂

Ra
as char-

acteristic scales of length, viscosity, time, velocity, pressure and temperature. Using these

scales, the perturbation equations read

∇.v = 0, (4)

1

Pr

(
∂v

∂t
+ (v.∇)v

)
= −∇p+ θe

z
+∇.τ , (5)

∂θ

∂t
+ (v.∇) θ = Ra w +∆θ, (6)

∂θp
∂t

= χ∆θp, (7)

where v = uex+vey+wez, p are respectively the velocity and pressure perturbations, θ and

θp are temperature perturbations in the fluid and the slabs respectively and τ the deviatoric

of the stress tensor. The Prandtl Pr and Rayleigh Ra numbers are defined by:

Pr =
µ̂0

ρ̂0κ̂
Ra =

ρ̂0ĝβ̂∆T̂ d̂
3

κ̂µ̂0
.

We consider a purely viscous shear-thinning fluid,

τ = µ(Γ)γ̇, (8)

where Γ is the second invariant of the strain-rate tensor:

Γ =
1

2
γ̇ijγ̇ij ; γ̇ij =

∂vi
∂xj

+
∂vj
∂xi

(9)
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where vi are the components of the velocity and xi are the spatial coordinates.

Concerning the nonlinear rheological law µ(Γ), we have used a Carreau model [22]. In

dimensional form, it is given by:

µ̂− µ̂∞

µ̂0 − µ̂∞

= (1 + λ̂2Γ̂)
nc−1

2 , (10)

where µ̂∞ is the infinite-shear viscosity, µ̂0 the zero-shear viscosity, λ̂ a characteristic time of

the fluid, nc the shear-thinning index. For several polymer solutions, µ̂∞ << µ̂0 [23]. Hence

neglecting µ̂∞ with respect to µ̂0, we have in dimensionless form:

µ = (1 + λ2Γ)
nc−1

2 , (11)

A Taylor series expansion of µ around the base state (where the fluid is at rest) allows to

define the degree of shear-thinning of the fluid as:

α =

∣∣∣∣∣∣
dµ

dΓ

∣∣∣∣∣∣
Γ=0

=
1− nc

2
λ2. (12)

No-slip and non penetration boundary conditions as well as continuity of temperature and

heat flux at the interface slabs-fluid read:

v

(
z = ±1

2

)
= 0, (13)

θ

(
z = ±1

2

)
= θp

(
z = ±1

2

)
, (14)

∂θ

∂z

(
z = ±1

2

)
= χ

∂θp
∂z

(
z = ±1

2

)
. (15)

Temperatures of the outer surfaces of the upper and lower slabs are fixed, thus:

θp

(
z =

1

2
+ Λ

)
= θp

(
z = −1

2
− Λ

)
= 0 (16)

In the momentum equations, the pressure field can be eliminated using the curl of Eq.

(5). We then take the curl of Eq. (5) one more time. Using the continuity equation, and

projecting onto ez, we get the following evolution equations for the vertical vorticity ζ and
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the vertical velocity w:

1

Pr

[
∂ζ

∂t
+ ez ·∇× [(v ·∇) v]

]
= ∆ζ + ez ·∇× [∇ · (µ− 1)γ̇] , (17)

1

Pr

[
∂∇2w

∂t
− ez · [∇×∇× [(v.∇) v]]

]
= ∆2w +∇

2
Hθ − (18)

[∇×∇× [∇ · (µ− 1)γ̇]] · ez ,

∂θ

∂t
+ (v ·∇) θ = Raw +∇

2θ , (19)

∂θp
∂t

= χ∇2θp , (20)

where

ζ =
∂v

∂x
− ∂u

∂y
and ∇

2
H =

∂2

∂x2
+

∂2

∂y2
.

From the continuity equation and the vertical vorticity definition, one can deduce the hori-

zontal velocity components (u , v):

∇
2
Hu = − ∂2w

∂x∂z
− ∂ζ

∂y
; ∇

2
Hv = − ∂2w

∂y∂z
+
∂ζ

∂x
. (21)

The boundary conditions for w are:

w = Dw = 0 at z = ±1/2, (22)

For the temperature, the boundary conditions are :

θp = 0 at z = ± (1/2 + Λ) , (23)

θ = θp at z = ±1/2, (24)

Dθ = χDθp at z = ±1/2. (25)

Five dimensionless parameters appear in the governing equations: the Rayleigh number

Ra, the Prandtl number Pr, the thermal conductivities ratio χ, the dimensionless thickness

of the slab Λ, and the shear-thinning degree α. In the present study, Pr = 10. Actually, our

results do not vary significantly with Pr when Pr ≥ 10.
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III. LINEAR STABILITY ANALYSIS

A. Critical conditions

For infinitesimal perturbations, the Boussinesq equations (17)-(20) are linearized, and

one obtains

1

Pr

∂ζ

∂t
= ∆ζ , (26)

1

Pr

∂∆w

∂t
= ∆2w + Ra∆Hθ , (27)

∂θ

∂t
= w +∆θ , (28)

∂θp
∂t

= χ∇2θp. (29)

At the linear level, the rheology of the fluid does not play any role. Furthermore, the

vertical vorticity decouples and obeys a diffusion equation (26) and thus can be neglected in

the linear theory. Assuming a spatial periodicity in the horizontal plane, we seek a normal

mode solution under the form



w(x, y, z, t)

θ(x, y, z, t)

θp(x, y, z, t)


 =




F11(z)

G11(z)

Gp11(z)


 exp (ik · r + s t) , (30)

where r = (x, y) is the vector position in the horizontal plane, and k is the wave-vector.

Substituting (30) into (27)-(29) leads to the differential equations

sPr−1
(
D2 − k2

)
F11 = −k2RaG11 +

(
D2 − k2

)2
F11 , (31)

sG11 = F11 + (D2 − k2)G11 , (32)

sGp11 = χ(D2 − k2)Gp11 , (33)

with k = |k|. The boundary conditions are:

F11 = DF11 = 0 at z = 0, 1 (34)

Gp11 = 0 at z = −Λ, 1 + Λ, (35)

G11 = Gp11 at z = 0, 1 (36)

DG11 = χDGp11 at z = 0, 1 . (37)
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FIG. 1. Evolution of the critical wave number kc (a) and the critical Rayleigh number Rac (b) as

a function of ratio of the thermal conductivities χ for different values of the slab thickness Λ: (1)

Λ = 0.01, (2) Λ = 0.1, (3) Λ = 1, (4) Λ = 10.

The eigenvalue problem (31)-(33) with the boundary conditions (34)-(37) is solved using a

Chebyshev collocation method. The marginal stability curve Ra(k) is determined by the

condition s = 0. The minimum of the marginal stability curve gives the critical Rayleigh

number Rac and critical wavenuember kc. We recover the results of [13] for Λ = 1 and we

extend them to other thicknesses Λ on Fig.1. We observe that kc and Rac decrease with

decreasing the ratio χ of conductivities. Actually, kc and Rac vary from respectively, 3.11

and 1708 to 0 and 720 ([24], [11]). An explanation of this evolution can be found in [25]
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in the limit of perfectly insulating slabs. From a physical point of view, such configuration

means that the temperature field is fixed in the solid (or evolves on a very long time scale

compared to that of the fluid). As a consequence, the temperature gradient, and therefore

the energy flux, is fixed in the solid. Hence, the temperature fluctuations at the interface

do not propagate inside the solid and primary bifurcation needs less energy to occur which

explains the decrease of Rac with decreasing χ.

Remark

Linear stability analysis gives the critical Rayleigh number Rac for instability onset and

determines the modulus kc of the critical wave-vector k of the unstable modes. The direction

of k is arbitrary. This orientation degeneracy is related to the isotropy of the horizontal

plane [26]. There is also a pattern degeneracy that results from the linear theory itself;

indeed, any superposition of normal modes

[w(r, z), θ(r, z), θp(r, z)] =
∑

ℓ

cℓ exp (ikℓ · r) [F11(z), G11(z), G11p(z)] (38)

with |kℓ| = kc and where the cℓ’s are constant coefficients, is also a solution of the linear

problem with a zero growth rate at criticality.

B. Characteristic time of the instability

Near the onset of convection, the growth rate s of the perturbation may be approximated

using Taylor expansion

s =
ǫ

τ0
+O(ǫ2) with ǫ =

Ra− Rac
Rac

, (39)

where τ0 is the characteristic time for the instability to grow. It is given by τ0 = Rac

(
∂s

∂Ra

)

kc,Rac

.

It is obtained from the curve, temporal amplification rate s versus Rayleigh number Ra, at

the critical conditions. Its evolution is represented in Fig.2. The increase of τ0 with decreas-

ing χ is related to the increase of the thermal diffusion time in the slab as k̂p diminishes.

For χ > 10, we recover the value corresponding to a perfect heat conductor, τ0 = 0.053.

Note that τ0 does not depend on the rheological parameters.

11



10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

χ

τ
0

 

 

(1)

(2)

(3)

(4)

FIG. 2. Evolution of τ0 versus χ for Pr = 10 and different values of Λ. (1) Λ = 0.01, (2) Λ = 0.1,

(3) Λ = 1, (4) Λ = 10.

IV. PATTERN SELECTION AT THE ONSET OF CONVECTION

The selection of the convective pattern is determined by the non linearities of the problem,

i.e. nonlinear inertial and nonlinear viscous terms. A weakly nonlinear analysis based on

amplitude expansion method similar to that considered in [27], [28], [29], [30], [6] is used

as a first approach to investigate nonlinear effects on the competition between convective

patterns. Actually, the pattern that emerges near the onset of convection are either rolls or

squares. Further calculations show that hexagons are unstable ([6], [12]).

A. Principles of the amplitude expansion method: case of square

For a square pattern, the fundamental solution in the linear regime is
(
Aeik1·r +B eik2·r

)
ψ11,

with k2 orthogonal to k1 (the two vectors k1 and k2 have the same modulus), A and B are

the complex amplitudes of the perturbation along the two wavevectors and ψ11(z) stands for

F11(z), G11(z) or Gp11(z). The interaction of the fundamental solution with itself, through

the quadratic nonlinear inertial terms produces the first harmonic
(
A2 e2ik1·r +B2 e2ik2·r

)
ψ22

and a coupling between modes k1 and k2, ABe
i(k1+k2)·rψAB. The interaction of the fun-

damental with its complex conjugate leads to an other coupling between modes k1 and

k2, AB
∗ei(k1−k2)·rψAB∗ , where (.)∗ denotes the complex conjugate and a correction of the

base state, (| A2 | + | B2 |)ψ02. The feedback at the cubic order on the fundamental solu-
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tion through nonlinear inertial and viscous terms is
(
| A2 | + | B2 |

) (
Aeik1·r +B eik2·r

)
ψ13.

From this cascade of nonlinear interactions, the nonlinear solution can be written as

ψ (r, z, t) =
(
A(t) eik1·r +B(t) eik2·r

)
ψ11(z) + c.c. + (40)

(
A2(t) e2ik1·r +B2(t) e2ik2·r

)
ψ22(z) + A(t)B(t)ei(k1+k2)·rψAB(z) + c.c. +

(
| A2(t) | + | B2(t) |

)
ψ02(z) + A(t)B∗(t)ei(k1−k2)·rψAB∗(z) + c.c.+

(
| A2(t) | + | B2(t) |

) (
A(t) eik1·r +B(t) eik2·r

)
ψ13(z) + c.c.+ ...

In Eq. (40), ψ (r, z, t) stands for the vertical velocity perturbation, w, or the temperature

perturbation θ or θp. For the vertical velocity perturbation, ψij is denoted Fij, and for the

temperature perturbation, ψij . is denoted Gij .

In the square lattice, time evolution of the amplitude perturbations is governed by Stuart-

Landau amplitude equations,

dA

dt
=

ǫ

τ0
A− (g1|A|2 + β|B|2)A, (41)

dB

dt
=

ǫ

τ0
B − (g1|B|2 + β|A|2)B, (42)

where g1 and β are respectively self-saturation and crossed-saturation coefficients. The form

of the amplitude equations (41) and (42) is completely determined by the rules of invariance

via symmetry by rotation of an angle π/2 and by translation [31], [32]. Substituting (40)-(42)

into (18)-(20) yields after some algebra to a set of differential equations for each mode that

are solved sequentially. To avoid secular terms at the cubic order, compatibility conditions

have to be enforced using the Fredholm alternative. The latter states that the resonating

forcing terms have to be orthogonal to the kernel of the adjoint of the linear operator. This

allows the determination of landau saturation coefficients g1 and β.

B. Nature of the primary bifurcation

As shown in [6], the self-saturation g1 and crossed saturation β coefficients can be written

as the sum of Newtonian (N superscript) and non-Newtonian contributions (nN superscript):

g1 = gN1 − αgnN1 , (43)

β = βN − αβnN . (44)
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It is therefore possible to define a critical value αc of the shear-thinning degree above

which the bifurcation becomes subcritical.

In the case of rolls, β = 0 and

αc =
gN1
gnN1

. (45)

In the case of squares, β 6= 0 and

αc =
gN1 + βN

gnN1 + βnN
. (46)

Variations of αc with χ for different Λ are depicted in Fig.3 (a) and (b) for rolls and squares

respectively. For large χ, the asymptotic limit of α is αc = 2.15×10−4 in agreement with [6]

and [4]. With decreasing K̂p (decreasing χ), the intensity of convection decreases, therefore,

it is not surprising that stronger shear-thinning effects are needed to obtain a subcritical

bifurcation.

C. Convective patterns at threshold

A linear stability analysis of stationary roll and square solutions of Eqs. (41) and (42)

allows to show that squares are stable when β < g1, i.e. when the coupling between the two

orthogonal modes that describe the square pattern is weak enough. By contrast, when β >

g1, the coupling is too strong, the squares lose their stability and rolls are the stable nonlinear

state. A similar phenomenological description can be found in [26]. Figure 4 shows that with

increasing α,
β

g1
increases and thus the interaction between the two orthogonal modes k1 and

k2 becomes stronger. A possible interpretation may be related to the reduction of viscosity

with increasing shear-thinning effects, which leads to an increase of the convection intensity.

Nonlinearities and coupling between modes become stronger which favor roll patterns.

Using shear-thinning decomposition of g1 and β (Eqs. (43) and (44)), it is found that rolls

are stable when α > αS−R, with :

αS−R =
βN − gN1
βnN − gnN1

. (47)

Stability domains of squares and rolls are represented in the plane (χ, α) for different Λ in

Fig.5. The curves represent the boundaries between squares and rolls: below the boundary,

squares are stable, and above the boundary, rolls are the stable convective patterns. For

the limit of Newtonian fluids i.e. α = 0, we recover the results of the literature [12]: for

14
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FIG. 3. Critical degree of shear-thinning, above which the primary bifurcation becomes subcritical,

versus χ for rolls (a) and squares (b). (1) Λ = 0.01, (2) Λ = 0.1, (3) Λ = 1, (4) Λ = 10.

Pr ≥ 10 and Λ = 1, rolls are stable patterns provided that χ > χc = 1 . We notice that the

domain of stability of squares shrinks when Λ decreases which is understandable. Indeed,

the thinner the slabs are, the weaker the thermal resistance is. Then the problem is closer

to the case of perfectly conducting slabs where rolls are the preferred patterns. For Λ > 1,

the dependence of αS−R with respect to Λ is weak.

Finally, we observe that αS−R increases as χ decreases. Poorly conducting slabs favor square

patterns as shown in [10], [11] and [12], so stronger shear-thinning effects are necessary so

that rolls become the preferred planform. This last result is in agreement with [13].
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β
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as a function of α for χ = 10−2 and different values of Λ: (1) Λ = 0.01, (2)

Λ = 0.1, (3) Λ = 1, (4) Λ = 10. The thin curve corresponds to the case of prefect heat conductor

plates. It is represented as a reference curve.

D. Flow structure, viscosity and temperature fields

In this section, features of the flow, temperature distribution and shear-thinning effects

on the viscosity field in a roll and a square solutions are studied for highly and poorly

conducting slabs.

1. Case of highly conducting walls: χ = 100,Λ = 1

The flow structure and the viscosity field for a roll solution are illustrated by Fig.6. The

interior of the roll is practically isoviscous with µ ≈ 1. The viscosity is minimal at the walls

where the shear-rate γ̇xz is maximal. It is also weakly reduced at the four corners for a roll

because of the elongational rate γ̇zz = −γ̇xx.
The distribution of the temperature perturbation over a roll with hod ascending flow and

cold descending flow is illustrated by Fig. 7. It vanishes at the walls, because of the high

value of the thermal conductivities ratio, χ.
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FIG. 5. Stability domains of rolls and squares as a function of χ and α for different values of Λ:

(1) Λ = 0.01, (2) Λ = 0.1, (3) Λ = 1, (4) Λ = 10.
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FIG. 6. Rolls. (a) Velocity vectors and viscosity field over a roll for a Carreau fluid with α = 10−4

at ǫ = 0.1. (b) Distribution of γ̇2xz. In the white zone, γ̇2xz < 200.

2. Case of poorly conducting walls: χ = 0.01,Λ = 1

Because of the symmetries of the square solution, no fluid passes through the vertical

diagonal planes and the vertical cell boundaries. The sides of the square have a length equal

to 2π/kc. The viscosity distribution and the velocity field in a horizontal plane close to the

upper wall (z = 0.49) and in a vertical diagonal planes are illustrated by Fig. 8 for Carreau

fluid with α = 10−4 at ǫ = 0.1. The viscosity is minimal at location where the shear rate γ̇xz
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FIG. 7. Rolls. Contours of temperature perturbation over a roll with hot ascending flow and cold

descending flow. Case of Carreau fluid with α = 10−4 at ǫ = 0.1.

and γ̇yz (dark regions in Fig. 8(a). Contours of the temperature perturbation in a diagonal

square cell section and in a lateral section which delimits the square cell are shown in Fig.

9. It is worthy to note that the temperature perturbation does not vanish at the walls and

the vertical thermal gradient is weak.

E. Comparison between roll and square solutions for fixed χ and λ

For fixed values χ and λ, velocity and viscosity fields are determined for roll and square

solutions. It is observed that the maximum of shear rate and therefore the minimum of

viscosity occurs for the stable pattern.

F. Heat transfer

The heat transfer through the horizontal fluid layer is described by the Nusselt number,

Nu, the ratio of the total heat to the purely conductive heat flux, i.e. when the fluid is at

rest.

Nu = 1−
(
∂θ̄

∂z

)

z=−1/2

= 1−
(
| A |2 + | B |2

)
(DG02)z=−1/2 . (48)

where
(
|A|2 + |B|2

)
G02 is the modification at the second order of the conductive temperature

profile due to the interaction of the fundamental mode with its complex conjugate. The

overbar denotes the average over one wavelength. Using the stationary solutions of the
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FIG. 8. Squares, χ = 0.01,Λ = 1. Velocity vectors and viscosity field in (a) a horizontal plane

close to the upper wall and (b) in a vertical diagonal plane. Case of Carreau fluid with α = 10−4

at ǫ = 0.1.
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FIG. 9. Squares, χ = 0.01,Λ = 1. Temperature distribution and velocity vectors in (a) a lateral

section which delimits the square cell, y = π/kc and (b) in a vertical diagonal section. Case of

Carreau fluid with α = 10−4 at ǫ = 0.1.

amplitude equations, one obtains:

Nur = 1− ǫ

τ0g1
(DG02)z=−1/2 for rolls, (49)

Nus = 1− 2ǫ

τ0 (g1 + β)
(DG02)z=−1/2 for squares. (50)
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FIG. 10. The Nusselt number as a function of the shear-thinning degree α at ǫ = 0.1, χ =

0.01, Pr = 10 and different values of Λ: (1) Λ = 0.01, (2) Λ = 0.1, (3) Λ = 1 and (4)Λ = 10. (thick

lines) Rolls, (thin lines) Squares.

The Figure 10 shows the variation of the Nusselt number as a function of the shear-thinning

degree at ǫ = 0.1, χ = 0.01 and four different values of Λ. The Nusselt number increases with

increasing shear-thinning effects in agreement with [33], [34], [6]. This is a consequence of

the increase of the rolls amplitude. As expected, the Nusselt number decreases significantly

with increasing the slab thickness. The difference between Nu rolls and Nu squares is small.

Nevertheless, Nu is larger for the stable convective pattern in agreement with the maximum

heat transfer principle: “the only stable solution is the one of maximum heat transport [35],

[36]”. This is also illustrated by Fig. 11 where Nu is represented as a function of ǫ for given

α = 4×10−4 and χ = 10−2. At Λ = 1 and Λ = 0.1 squares are stable and rolls are unstable,

whereas at Λ = 0.01, rolls are stable. Other principles can be considered to predict the

stable pattern such the maximum entropy production or the maximum viscous dissipation

[37], [38]. Indeed, it can be shown that for a steady solution, Ra (Nu− 1) =
∫
Ω
τij γ̇ijdΩ

[39], where Ω is a domain delimited by the top and bottom walls and one wavelength in the

x- and y- directions. For shear-thinning fluids one can consider the principle of maximum

viscosity reduction, as indicated in the previous section.
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FIG. 11. Nusselt number vs ǫ at α = 4 × 10−4, χ = 10−2 and four different values of Λ. (thick

lines) Rolls, (thin lines) Squares.

V. SECONDARY INSTABILITIES

Departing from the critical conditions, a band of wavenumbers of width O(
√
ǫ), centered

on k = kc will now have a positive growth-rate. The wavepacket centered on the most

unstable wavenumber can be considered as a monochromatic wave, with complex amplitude

modulated in space and time.

In a square lattice, and up to third order in the perturbations, the spatio-temporal evo-

lution of the amplitudes is described by a set of two coupled Ginzburg-Landau equations

derived by Newell & Whitehead [20] and Segel [40]:

∂A

∂t
=

ǫ

τ0
A+

ξ20
τ0

(
∂

∂x
− i

2kc

∂2

∂y2

)2

A− (g1|A|2 + β|B|2)A, (51)

∂B

∂t
=

ǫ

τ0
B +

ξ20
τ0

(
∂

∂y
− i

2kc

∂2

∂x2

)2

B − (g1|B|2 + β|A|2)B, (52)

where the coherence length ξ0 is defined by ξ20 =
1

2Rac

(
∂2Ra

∂k2

)

Rac,kc

. It does not depend

on rheological properties and can be calculated from the curve of the growth-rate σ versus

(k − kc). For χ ≤ 10, the coherence length ξ0 varies between 0.375 and 0.415 . For χ > 10,
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we obtain ξ0 = 0.386 which is in agreement with the literature [41].

A. Stability of a roll modulated solution

In the following, we consider first the case where rolls emerge at primary bifurcation

(α > αS−R). We look for a stationary solution of the system (51)-(52), of the form:

A0 = R0 exp(iqx) where q = k − kc , (53)

B0 = 0 . (54)

Substituting the above expressions into (51) leads to:

R0 =

√
ǫ− ξ20q

2

g1τ0
. (55)

Thereafter, we examine the stability of the stationary solution (53), (54) with respect to

infinitesimal perturbations, in terms of amplitudes rA and rB and phases ΦA and ΦB. The

perturbed solution can be written as:

A(x, y, t) = (R0 + rA(x, y, t)) exp( i (ΦA(x, y, t) + qx)) (56)

B(x, y, t) = rB(x, y, t) exp( iΦB(x, y, t)) (57)

Substituting expressions (56) and (57) into (51) and (52), we obtain after linearization

and separating the real and imaginary parts of the equations:

∂rA
∂t

= −2g1R
2
0 rA +

ξ20
τ0

(
∂2rA
∂x2

− 2qR0
∂ΦA

∂x
+

q

kc

∂2rA
∂y2

+
R0

kc

∂3ΦA

∂x∂y2
− 1

4k2c

∂4rA
∂y4

)
,

(58)

∂ΦA

∂t
=
ξ20
τ0

(
∂2ΦA

∂x2
+

2q

R0

∂rA
∂x

+
q

kc

∂2ΦA

∂y2
− 1

kcR0

∂3rA
∂x∂y2

− 1

4k2c

∂4ΦA

∂y4

)
, (59)

∂rB
∂t

= (g1 − β)R2
0 rB + q2

ξ20
τ0
rB +

ξ20
τ0

(
∂2rB
∂y2

− 1

4kc2
∂4rB
∂x4

)
. (60)

Equation associated with ∂ΦB/∂t does not contain linear terms so ΦB does not intervene

at the first order. Using normal mode decomposition i.e. Ψ(x, y, t) = Ψ̃ exp(σt + i(Q1x +

Q2y)) where Ψ stands for rA, ΦA and rB, an eigenvalue problem is derived:

LX = σX (61)
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where X =
(
r̃A, Φ̃A, r̃B

)T
is the eigenvector, σ the eigenvalue and L a 3× 3 square matrix

arising from equations (58), (59) and (60). Note that the eigenvalue problem corresponding

to (60) can be solved independently from the whole system.

We consider the long wavelength limit where Q1 → 0 and Q2 → 0. In that case, the

relevant eigenvalues of the former system are given by:

σ1 = −2g1R
2
0 +O (Q1) , (62)

σ2 = −ξ
2
0

τ0
Q2

1

[
1− 2ξ20

τ0

q2

g1R2
0

]
− ξ20
τ0

qQ2
2

kc
+O

(
Q2

1Q
2
2

)
, (63)

σ3 =
ξ20
τ0
q2 + (g1 − β)R2

0 +O(Q4
1, Q

2
2). (64)

The eigenvector (r̃A, Φ̃A) associated with the first eigenvalue σ1 = −2g1R
2
0 < 0 is

(O(1/Q1), 1)). Therefore, σ1 describes the relatively rapid relaxation of the amplitude

perturbation rA to its equilibrium value. The eigenvector (r̃A, Φ̃A) associated with σ2 is

(O(Q1), 1). The second eigenvalue describes the evolution of the phase perturbation ΦA.

The third root σ3 describes the evolution of rolls growing perpendicularly to the original ones.

The eigenvalue σ2 can also be derived using the phase approximation. This approach

described in [32] and [42] relies on the fact that the amplitude rA relaxes quickly with time,

it can be considered to be adiabatically slaved to the phase ΦA. This comes down to writing

∂rA/∂t = 0. Furthermore, in the long wavelength limit, spatial derivatives are very small

compared to the variables themselves. Therefore, the amplitude rA is approximately given

by its adiabatic value

rA = − qξ20
g1R0τ0

∂ΦA

∂x
. (65)

This expression is substituted in (59) to determine the evolution of φA. A phase-diffusion

equation is then derived:

∂ΦA

∂t
= D‖

∂2ΦA

∂x2
+D⊥

∂2ΦA

∂y2
. (66)

The longitudinal D‖ and transverse D⊥ phase diffusion coefficients are given by

D‖ =
ξ20
τ0

(
1− 2q2

g1R2
0

ξ20
τ0

)
and D⊥ =

ξ20
τ0

q

kc
. (67)
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Equation (66) shows that a perturbation of the wavenumber leads to a readjustment of the

system through a phase diffusion process. The eigenvalue which stems from (66) is the same

as σ2.

1. Eckhaus instability

For perturbations that vary only in the x-direction (Q2 = 0), the eigenvalue σ2 (63)

reduces to

σ2 = −Q2
1D‖ +O

(
Q4

1

)
. (68)

For positive longitudinal phase-diffusion coefficient D‖, σ2 is negative, the perturbation is

damped and the roll solution (53) is stable. Using (55), the stability is satisfied if

ǫ > ǫE = 3q2ξ20 , (69)

where the subscript E means “Eckhaus”. Note that, this instability does not depend on the

rheological parameters.

2. Zigzag instability

For perturbations that vary only in the y-direction (Q1 = 0), the eigenvalue σ2 (63)

reduces to

σ2 = −Q2
2D⊥ +O

(
Q4

2

)
(70)

For negative D⊥, i.e. when q is negative (k < kc), rolls at wavelength greater than the

critical one, the eigenvalue σ2 is positive, the perturbation is amplified and the roll solution

(53) is unstable. In this case, the rolls will saturate into bends that decrease the wavelength.

3. Cross-Roll instability

The eigenvalue σ3 (64) corresponds to the cross-roll (CR) instability. The system is CR

stable if σ3 < 0. Using (55), the system is CR stable if

ǫ > ǫCR =
β

β − g1
q2ξ20 , (71)
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where the subscript CR means ” cross-roll ”. When ǫ < ǫCR, the stationary roll solution

(53) becomes unstable: new rolls expand perpendicularly. It can be shown straightforwardly

that the cross-roll is a more restrictive instability than the Eckhaus instability, when

β <
3

2
g1 . (72)

- For a Newtonian fluid at Pr = 10 and in the case of perfectly conducting walls,

β/g1 = 1.242. Decreasing the conductivity of the wall, χ, will decrease (β/g1) and will give

a narrow band of stable rolls. The width of this band vanishes as the singularity β/g1 → 1+

is approached.

- For a shear-thinning fluid, β/g1 increases with increasing shear-thinning effects. Com-

bining (72) with (43) and (44), we can define a shear-thinning degree αCR−E , below which

cross-roll is the more restrictive instability:

αCR−E =
3gN1 − 2βN

3gnN1 − 2βnN
. (73)

For α > αCR−E , the Eckhaus instability takes over as the most restrictive of the two.

The Figure 12 shows the variation of αCR−E as a function of the conductivity of the walls

and for different values of the thickness Λ. We have also represented the boundaries αS−R

and αc (limit of subcritical bifurcation). As expected, αCR−E increasing with decreasing

χ. In the Figure 13, we have represented in the plane (k,Ra) the curves which delimit

the stability domain of rolls with respect to (i) cross-roll instability for different α and (ii)

Eckhaus instability (which is independent of α). With increasing shear-thinning effects (β/g1

increases), the CR stability boundary enlarges and becomes less restrictive than Eckhaus

instability for α > αCR−E .

B. Stability of a square modulated solution

In the case where the convection starts with perfect square patterns, a stationary solution

is given by:

A0(x) = R0 exp(iqx) where q = k − kc , (74)

B0(y) = R0 exp(iqy) . (75)
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FIG. 12. Boundary between Eckhaus and cross-roll instabilities for different slabs’ thicknesses Λ:

(a) Λ = 1 and (b) Λ = 0.1, (c) Λ = 0.01
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The conductive state labeled Cond., is stable below curve (1).

Replacing these expressions in (51) and (52) leads to :

R0 =

√
ǫ− ξ20q

2

(g1 + β)τ0
. (76)

As in the case of rolls, we carry out a linear stability analysis of the stationary square

solution (74)-(76). A perturbation of the form

A(x, y, t) = (R0 + rA(x, y, t)) exp( i (ΦA(x, y, t) + qx)) , (77)

B(x, y, t) = (R0 + rB(x, y, t)) exp( i (ΦB(x, y, t) + qy)) , (78)
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is introduced. Substituting, the amplitudes A and B by their expressions (77), (78) into (51) and

(52) leads after linearization:

∂rA
∂t

= −2g1R
2

0 rA − 2βR2

0rB +

ξ2
0

τ0

(
∂2rA
∂x2

− 2qR0

∂ΦA

∂x
+

q

kc

∂2rA
∂y2

+
R0

kc

∂3ΦA

∂x∂y2
− 1

4k2c

∂4rA
∂y4

)
, (79)

∂ΦA

∂t
=

ξ2
0

τ0

(
∂2ΦA

∂x2
+

2q

R0

∂rA
∂x

− 1

kcR0

∂3rA
∂x∂y2

+
q

kc

∂2ΦA

∂y2
− 1

4k2c

∂4ΦA

∂y4

)
, (80)

∂rB
∂t

= −2g1R
2

0
rB − 2βR2

0
rA +

ξ2
0

τ0

(
∂2rB
∂y2

− 2qR0

∂ΦB

∂y
+

q

kc

∂2rB
∂x2

+
R0

kc

∂3ΦB

∂x2∂y
− 1

4k2c

∂4rB
∂x4

)
, (81)

∂ΦB

∂t
=

ξ2
0

τ0

(
∂2ΦB

∂y2
+

2q

R0

∂rB
∂y

− 1

kcR0

∂3rB
∂x2∂y

+
q

kc

∂2ΦB

∂x2
− 1

4k2c

∂4ΦB

∂x4

)
. (82)

Using a normal modes decomposition, i.e. Ψ(x, y, t) = Ψ̃ exp (σt+ i (Q1x+Q2y)), where Ψ stands

for rA, ΦA, rB , ΦB, the following eigenvalue problem is derived:

MX = σX . (83)

In Equation (83), X =
(
r̃A, Φ̃A, r̃B , Φ̃B

)T
is the eigenvector, σ the eigenvalue and M the 4 × 4

square matrix arising from equations (79)-(82). The eigenvalues and eigenvectors can be deter-

mined numerically using Matlab. Examples of results are shown in Appendix A.

Actually, we are particularly interested by the long wavelength limit approach, i.e. Q1 → 0 and

Q2 → 0. In this approach, the eigenvalues σ1 and σ2 associated with the amplitudes rA and rB

respectively, are given by

σ1 = −2R2
0 (g1 + β) +O

(
Q2

1, Q
2
2

)
; σ2 = −2R2

0 (g1 − β) +O
(
Q2

1, Q
2
2

)
(84)

Since, in this case β and g1 are positive and β < g1, the amplitude modes rA and rB decrease

quickly with time and can be considered adiabatically slaved to the phase modes ΦA and ΦB. They

can be approximated by their adiabatic values:

rA =
q

R0(g
2
1 − β2)

ξ20
τ0

(
β
∂ΦB

∂y
− g1

∂ΦA

∂x

)
, (85)

rB =
q

R0(g21 − β2)

ξ20
τ0

(
β
∂ΦA

∂x
− g1

∂ΦB

∂y

)
. (86)

Substituting these expressions in (80) and in (82) leads to the following diffusion equations of
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phases ΦA and ΦB:

∂ΦA

∂t
= D‖

∂2ΦA

∂x2
+D⊥

∂2ΦA

∂y2
+Dxy

∂2ΦB

∂x∂y
, (87)

∂ΦB

∂t
= D‖

∂2ΦB

∂y2
+D⊥

∂2ΦB

∂x2
+Dxy

∂2ΦA

∂y∂x
, (88)

where the coefficients phase-diffusion have the following expressions

D‖ =
ξ20
τ0

(
1− 2q2g1

R2
0

(
g21 − β2

) ξ
2
0

τ0

)
; D⊥ =

ξ20
τ0

q

kc
; Dxy =

2q2β

R2
0

(
g21 − β2

)
(
ξ20
τ0

)2

. (89)

Using normal mode decomposition, an eigenvalue problem is derived. The eigenvalues are

σ3 = −
(
Q2

1D‖ +Q2
2D⊥

)
−Q1Q2Dxy ; σ4 = −

(
Q2

1D‖ +Q2
2D⊥

)
+Q1Q2Dxy (90)

1. Phase instabilities: case where Q1 = Q2

Considering the case where Q1 = Q2 = Q and a long wavelength limit, i.e. Q → 0, the

eigenvalues (90) reduce to

σ3 = −Q2
[
D‖ +D⊥ +Dxy

]
=

ξ20
τ0

Q2

[
2
ξ20
τ0

q2

R2
0 (g1 + β)

− kc + q

kc

]
, (91)

σ4 = −Q2
[
D‖ +D⊥ −Dxy

]
=

ξ20
τ0

Q2

[
2
ξ20
τ0

q2

R2
0 (g1 − β)

− kc + q

kc

]
. (92)

Square Eckhaus instability .

The eigenvalue σ3 (91) states that the system is stable provided that:

ǫ > ǫSE =

(
3kc + q

kc + q

)
ξ20q

2, (93)

where ǫSE is the boundary of the square Eckhaus instability. When q << kc, the universal

expression ǫ = 3ξ20q
2 is recovered. In the phase approximation, the eigenvector correspond-

ing to σ3 is (1, 1). The wavenumbers in the x- and y- directions evolve in the same way.

Note that like for two-dimensional rolls, ǫSE does not depend on the rheological parameters.

Rectangular Eckhaus instability .

The eigenvalue σ4 (92) states that the system is stable provided that:

ǫ > ǫRI = ξ20q
2

[
1 + 2

g1 + β

g1 − β

kc
kc + q

]
. (94)
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When q << kc, we recover the expression given by Holmedal [19] and Hoyle [18], i.e.

ǫRI = (3g1 + β)/(g1 − β). An eigenvector associated with σ4 (92) is (1,−1), therefore the

wavenumbers in the x− and y− directions don’t have the same time evolution. Hoyle [18]

denoted ǫRI (94) as rectangular Eckhaus instability. An other point of view was given by

Holmedal [19]. According to this author, since the eigenvector is (−1, 1) one of the two

rolls will grow at the expense of the other at a particular horizontal location. The decreasing

mode will be the growing one at another location. This instability is denoted by Holmedal

[19] as “long wavelength cross-roll instability”. Concerning the influence of the rheological

parameters, it can be shown straightforwardly that ǫRI boundary shrinks with increasing

shear-thinning effects.

2. Phase instabilities: case where either Q1 or Q2 is zero

In the case where either Q1 or Q2 is zero, the phase equations (87) and (88) reduce to

∂ΦA

∂t
= D‖

∂2ΦA

∂x2
and

∂ΦB

∂t
= D⊥

∂2ΦB

∂x2
. (95)

The eigenvalues σ3 and σ4 of phase-diffusion equations (95) are then

σ3 = −Q2
1D‖ and σ4 = −Q2

1D⊥. (96)

(97)

Zigzag instability .

The eigenvalue σ4 (96) which is independent of the rheological parameters causes an insta-

bility of the squares if q < 0, i.e. k < kc. This is similar to the condition for zigzag instability

of the rolls.

2D Eckhaus instability .

The eigenvalue σ3 (96) leads to another phase instability boundary given by

ǫ2DE = ξ20q
2

(
3g1 − β

g1 − β

)
, (98)

which can be considered as a 2D Eckhaus instability [18].
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Finally, it can be shown straightforwardly that ǫRI > ǫ2DE > ǫSE when β < g1. There-

fore, the stability boundaries of the square pattern are given by the condition k > kc (zigzag

instability) and (94), i.e. Eckhaus rectangular instability. Figure 14 depicts the domain of

stability of the square stationary solution for different values of the shear thinning degree

α. The range of stable wavenumber for square patterns decreases with increasing shear-

thinning effects, in contrast with the case of roll patterns.

0.44 0.46 0.48 0.5 0.52

733

734

735

736

737

k

R
a

 

 

(6)

(1)
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(3)
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increasing α

carré−rouleau

ZZ

FIG. 14. Influence of shear thinning effects on stability boundaries of squares as a function of the

Rayleigh number Ra and the wavenumber k for Λ = 1, Pr = 10 and χ = 10−3. (1) Marginal stability

curve, (2) Square Eckhaus boundary, (3) RI boundary for a Newtonian fluid, (4) RI boundary for

Carreau fluid with α = 0.5 × αS−R = 4.25 × 10−4, (5) = α = 0.75 × αS−R = 6.37 × 10−4 and (6)

α = 0.5× αS−R = 7.65× 10−4. (ZZ) is the zigzag boundary.

VI. NUMERICAL SOLUTIONS OF AMPLITUDE EQUATIONS

A. Numerical simulation

The secondary instabilities described in the previous section are studied here by solving

numerically the Ginzburg-Landau equations. For the numerical integration of Eqs. (51)

and (52), we employed a Fourier pseudo-spectral method on a square mesh with periodic

boundary conditions. The square domain [−L/2, L/2] × [−L/2, L/2] is discretized into
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N × N uniformly spaced grid points Mℓp = (xℓ, yp) with xℓ = −L/2 + ℓ∆x, (similarly fot

yp), ∆x = ∆y = L/N and N even. Given AMℓp
= Aℓp, ℓ, p = 1, 2, ...N (similarly for Bℓp),

the 2D Discrete Fourier Transform (2DFT) is defined as

Âkxky = ∆x∆y
N∑

ℓ=1

N∑

p=1

Aℓp e
−i(kxxℓ+kyyp) , kx, ky =

2π

L

(−N
2
, ...,

N

2
− 1

)
(99)

Leaving the time stepping in Fourier space, gives the following system of ODEs

d

dt
Âkxky =

[
ǫ

τ0
− ξ20
τ0

(
k2x +

kxk
2
y

kc
+

k4y
4k2c

)]
Âkxky −N1,kxky (A,B) , (100)

d

dt
B̂kxky =

[
ǫ

τ0
− ξ20
τ0

(
k2y +

kyk
2
x

kc
+

k4x
4k2c

)]
B̂kxky −N2,kxky (A,B) , (101)

with Fourier transformed initial conditions. The nonlinear terms N1,kxky and N2,kxky are

evaluated in physical space and then transformed to Fourier space:

N1,kxky (A,B) = −g1F
(
|A(x, y, t)|2A(x, y, t)

)
− βF

(
|B(x, y, t)|2A(x, y, t)

)
, (102)

and

N2,kxky (A,B) = −g1F
(
|B(x, y, t)|2B(x, y, t)

)
− βF

(
|A(x, y, t)|2B(x, y, t)

)
, (103)

where F designates the 2D discrete Fourier transform. For the temporal discretization, the

time domain [0, tmax] is discretized with equal time step of width ∆t as tm = m∆t, m =

0, 1, 2.... Exponential Time Differencing method of second order (ETD2) proposed by Cox

and Matthews [43] is used. Additional details can be found in [44]. The pseudo-spectral

method is implemented in Matlab. Finally, to check the convergence, several simulations are

carried out with increasing numbers of grid points and refining the time step. The stability

properties of ETD2 are given in Appendix B.

B. Numerical results

1. Instability of a roll solution

Integration of the amplitude equations (51) and (52) is performed at some represen-

tative points shown in Fig. 15 by the symbol (+), for two cases: (a) low or moderate

shear-thinning effects and (b) high shear-thinning effects. The position of these points with

respect to Eckhaus (E) and cross-roll (CR) boundaries is clearly indicated.
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(a) (b)

FIG. 15. Rolls: Points P1, P2, P3, P4, where numerical simulations were performed. (a) Low or

moderate shear thinning effects, (b) strong shear thinning effects. (M) Marginal stability curve,

(E) Eckhaus boundary, (CR) cross-roll boundary, (Z) zigzag boundary.

Cross-roll instability: For moderate shear-thinning effects, i.e. α < αCR−E given by Eq.

(73), the stability diagram (Fig. 13) indicates that the region of stable rolls is bounded by

the CR instability. For a given Rayleigh number not too far above the critical value, roll

solution with a wavenumber k outside the CR boundary is either CR unstable (point P2 in

Fig. 15(a)) or Eckhaus and CR unstable (point P1 in Fig. 15(a)) if k is sufficiently large.

At the point P1, we have the following parameters: q = 0.4, ǫ = 0.05, α = 5 × 10−5, Λ = 1

and χ = 100. The convective pattern is Eckhaus and CR unstable, but CR is domi-

nant. This is indeed what happens as illustrated in Fig. 16, where the planform function,

f(x, y, t) = A(x, y, t)eikcx + B(x, y, t)eikcy + c.c. is represented. Initially, we have a uniform

set of rolls, A = R0 exp(iqx) and B = 0, with R0 given by Eq. (55). Small random per-

turbations have been added to this initial stationary solution. Due to the CR instability,

perpendicular rolls grow and the initial rolls decay until the initial rolls with their too short

wavelength are taken over by the perpendicular cross-roll with a wavenumber close to the

critical value. Similar results are obtained at point P2 and therefore are not represented.

Eckhaus instability: For sufficiently strong shear-thinning effects, i.e. α > αCR−E , a roll

solution with a wavenumber outside Eckhaus boundary (curve 2, Fig. 13), can be either

Eckhaus unstable and CR stable (P3 in Fig. 15(b)) or Eckhaus and CR unstable (P4 in

Fig. 15(b)). For these two situations, Eckhaus instability mechanism is dominant. This is
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(a) (b)

(c) (d)

FIG. 16. Four subsequent stages in the simulation of the coupled amplitude equations (51) and

(52), evolving from CR unstable roll to CR stable roll. (a) t = 0, (b) t = 4.5, (c) t = 6, (d)

t = 21.

illustrated by Figs. 17 and 18 where the planform function f(x, y, t) is represented. At point

P3, the initial state is a uniform roll solution with q = k−kc = 0.4, ǫ = 0.05 and α = 1.6 10−4.

It is in CR-stable and in Eckhaus unstable region, where the pattern wavelength is too short.

A small random perturbation is added in the x- and y-directions. Figure 17 shows the time

evolution of the convective pattern. The system eliminates two pairs of rolls in order to

augment its wavelength. After the local elimination of the wavelength, the system readjusts

through a process of phase diffusion. The system reaches a wavenumber inside the Eckhaus

stable region. Actually, the final wavenumber is close to kc. Note that, unlike the one
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(a) (b)

(c) (d)

FIG. 17. Four subsequent stages in the simulation of the coupled amplitude equations (51) and

(52), evolving from Eckhaus unstable roll to Eckhaus stable roll. (a) t = 0, (b) t = 27, (c)

t = 29.25, (d) t = 33.

dimensional situation, where the defect exists only for an instant while a pair of rolls is

created or eliminated, in two-dimensional situation, the defects persist for some time, as

shown by Figs. 17(b) and (c). At point P4, the initial state is a uniform roll with q = 0.5. In

this case, the system is CR and Eckhaus unstable. Figure 18 shows the time evolution of the

structure. In the first stage, a competition between CR and Eckhaus instability mechanisms

is observed, before a phase diffusion process.
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(a) (b)

(c) (d)

FIG. 18. Four subsequent stages in the simulation of the coupled amplitude equations (51) and

(52), evolving from Eckhaus and CR unstable roll to Eckhaus stable roll. (a) t = 0, (b) t = 6, (c)

t = 8.25, (d) t = 12.

2. Instability of a square solution

Figure 19 shows two representative points, denoted by the symbole (+), where the inte-

gration of amplitude equations (51) and (52) is performed.

At point P5, we have the following parameters: q = 0.2, ǫ = 0.05, α = 5 × 10−5, Λ = 0.01

and χ = 0.01. With these parameters, square solution is RI unstable and SE stable. In

addition |D‖| < Dxy. The Figure 20 shows the evolution of the convective pattern with time.

We have represented f(x, y, t) = A(x, y, t)eikcx+B(x, y, t)eikcy + c.c. at four different chosen
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FIG. 19. Squares: Points P5, P6, where numerical simulations were performed. (M) Marginal

stability curve, (SE) square Eckhaus boundary, (RI) rectangular instability boundary, (ZZ) zigzag

boundary.

times. Initially, the convective pattern is a perfect square. A small random perturbation

is added in the x- and y-directions. After elimination and adjustment of wavelengths, the

structure reaches a stable state with a wavenumber very close to the critical value.

At point P6, the parameters are q = 0.4, ǫ = 0.05, α = 5× 10−5, Λ = 0.01 and χ = 0.01.

In this case, the square solution is RI and SE unstable, furthermore |D‖| > Dxy. The time

evolution of the structure is shown in Fig. 21. It is not surprising that the dynamics is faster

that in the previous case, since P6 is farther for IR stability curve than P5. The process

of wavelength elimination is also quite different. This could be related to the fact that at

P5,|D‖| < Dxy, whereas at P6, |D‖| > Dxy.
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(a) (b)

(c) (d)

FIG. 20. Four subsequent stages in the simulation of the coupled amplitude equations (51) and

(52), evolving from RI unstable and SE stable square to RI stable square. (a) t = 0, (b) t = 1900,

(c) t = 2200, (d) t = 3000.
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(a) (b)

(c) (d)

FIG. 21. Four subsequent stages in the simulation of the coupled amplitude equations (51) and

(52), evolving from RI and SE unstable square to RI stable square. (a) t = 0, (b) t = 72, (c)

t = 92, (d) t = 132.
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VII. CONCLUSION

In this paper, long wavelength instabilities of roll and square patterns which emerge in

the Rayleigh-Bénard convection for shear-thinning fluids, in the situation where the slabs

have finite conductivities and thicknesses, is studied. The influence of the shear-thinning

behavior on the range of stable wavenumbers and the instability mechanisms that bound

the stability diagram is clearly highlighted.

The rheological behavior of fluids considered is described by the Carreau model. For this

model, the rheology does not play any role on the onset of convection. The nature of the

primary bifurcation and the selection of the convective pattern at threshold are investi-

gated as a function of the shear-thinning degree α, the slabs thickness Λ and the ratio of

thermal conductivities χ. Comparison between the self-saturated and the cross-saturated

coefficients in the Landau equation indicates that shear-thinning effects favor formation of

rolls rather than squares. Indeed, with increasing shear-thinning effects, the intensity of

convection increases due to a decrease of the viscosity. The nonlinearities and the coupling

between the modes that constitute the square pattern become stronger, which may lead

to a destabilization of the square solution. On the other hand, the intensity of convection

for poorly conducting walls is lower than that for highly conducting walls, thus the critical

shear-thinning degree, αS−R, below which squares are stable increases with decreasing χ.

The influence of the slabs thickness Λ on αS−R is weak when Λ > 1.

The Nusselt number is roughly the same for rolls and squares and the stable structure has

the highest Nusselt number, in agreement with the maximum heat transfer principle.

Subsequently, the stability of modulated rolls and squares with respect to inhomogeneous

spatial perturbation is analyzed. The influence of shear-thinning effects is clearly high-

lighted. In the case of modulated rolls, contrary to the Newtonian case where cross-roll

instability is always dominant, except at low Prandtl number, it is shown that for a non-

Newtonian shear-thinning fluid, this instability prevails only when α is less than a critical

value denoted αCR−E . Under this condition, the domain of stable rolls is bounded by zigzag

instability for k < kc and by cross-roll instability for k > kc. Furthermore, the marginal

cross-roll curve enlarges with increasing shear-thinning effects. For sufficiently strong shear-

thinning effects, here α > αCR−E , Eckhaus instability which is independent of the rheology

becomes dominant. The stable rolls are bounded by zigzag and Eckhaus instabilities.
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In the case of modulated squares, i.e. α < αS−R, it is observed that the rectangular insta-

bility is dominant and the width of the stable wavenumbes band decreases as α increases.

The time evolution of the convective pattern initially in the unstable part of the stability-

diagram is obtained from the numerical computation of the amplitude equations. The

instability mechanisms are illustrated, and for all the cases considered, it is observed at the

final state the structure reaches a wavenumber very close to the critical value.

In this study, the variation of the fluid properties and particularly the viscosity with

temperature is not taken into account. Generally, non-Newtonian fluids are highly viscous

and thermodependent. The thermodependency of the fluid properties leads to hexagonal

patterns at the onset [45], [46], [47]. Analysis of the stability of this convective pattern is

the next step of our work, dealing with the influence of the rheology on the pattern selection.

An other direction of the present study is the determination of the Busse Balloon for

highly shear-thinning fluids. This is particularly interesting, since the lower part of this

balloon is delimited by zigzag and Eckhaus boundaries.

Appendix A: Eigenvalues versus Q1 and Q2 arising from the full dispersion relation

The dispersion relation arising from the system (79)-(82) is solved numerically for different

values of the parameters (q, α, ǫ,Λ, χ). It is observed that the two first eigenvalues σ1 and

σ2 are always negative. They are associated with the amplitudes which are damped.

Figure 22 shows the four eigenvalues as a function of Q1 and Q2 for the case where (q + kc, ǫ)

is square Eckhaus stable and Rectangular Eckhaus unstable. The eigenvalues σ1 and σ2 are

negative as indicated above. The eigenvalue σ3 is negative because the point considered is

square Eckhaus stable. The eigenvalue σ4 is positive and is associated with the Eckhaus

rectangular instability. It is interesting to note that the maximum of σ4 is reached at

|Q1| = |Q2|. Further calculations indicate that for a given a wavenumber q, σ4 increases

with increasing shear-thinning effects.

The case where (q + kc, ǫ), is zigzag unstable (q < 0) and Eckhaus stable is illustrated by
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FIG. 22. Variations on Q1 and Q2 of the four eigenvalues in the situation where the square pattern

is RI unstable only. Here ǫ = 0.1, q = 0.3, α = 0.5× αc, Λ = 1, χ = 10−3. (a) σ1, (b) σ2, (c) σ3,

(d) σ4

Fig. 23. The eigenvalues σ1 and σ2 are negative and their variations on Q1 and Q2 are

similar to those in Fig. 22 and are therefore not represented. The eigenvalue σ3 is negative

and may be associated with the Eckhaus stability, whereas σ4 is positive and is associated

with the zigzag instability which is maximum along the axis.
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FIG. 23. Variations on Q1 and Q2 of the eigenvalues σ3 (a) and σ4 (b) in the situation where the

square pattern is only zigzag unstable. Here ǫ = 0.1, q = −0.1, α = 0.5× αc, Λ = 1, χ = 10−3.

Appendix B: Stability of the ETD2 scheme: Extension to two coupled Ginzburg-

Landau equations

1. Case of a single ODE

We consider first a single ordinary differential equation (ODE) of the form:

du(t)

dt
= cu(t) + F (u(t)) (B1)

Using the second order exponential time differencing scheme for the time discretization leads

to:

un+1 = une
c∆t + Fn

(1 + c∆t)ec∆t − 1− 2c∆t

c2∆t
+ Fn−1

1 + c∆t− ec∆t

c2∆t
(B2)

To evaluate the stability domain of this scheme, we have adopted the same approach as

in [43] and in [48]. We suppose that there is a fixed point u0, so that cu0 + F (u0) = 0.

Linearizing about this fixed point leads to

du(t)

dt
= cu(t) + λu(t), (B3)

where u is now the perturbation to u0 and λ = F ′(u0). The fixed point, u0, is stable provided

that Re(c + λ) < 0.

It can be shown straightforwardly that the fixed points of the ETD2 scheme are the same as

those of the ODE (B1): consequently, the linear stability analysis of the ETD2 scheme can be

43



performed by replacing Fn by λun in (B2). A recurrence relation involving un+1, un and un−1

is obtained:

un+1 = une
c∆t + λun

(1 + c∆t)ec∆t − 1− 2c∆t

c2∆t
+ λun−1

1 + c∆t− ec∆t

c2∆t
(B4)

Defining r = un+1/un, x = λ∆t, y = c∆t, the following quadratic equation for the factor r

by which the solution is multiplied after each step is derived:

y2r2 − r(y2ey + x[(1 + y)ey − 2y − 1]) + (ey − 1− y)x = 0 (B5)

r is the factor by which the solution is multiplied after each step so ETD2 scheme is stable

provided that |r| < 1. In general, both c and λ are complex and consequently, the stability

domain of the ETD2 scheme is four dimensional. To simplify, we choose to determine the

stability region in the real plane (Re(x), Re(λ)). The boundaries of this domain are obtained

for the values r=1 and r=-1 and correspond to the curves:

y = −x and x =
−y2(1 + ey)

(y + 2)ey − 3y − 2
. (B6)

2. Extension to two coupled Ginzburg-Landau equations

In our case, we have the following set of ODE for each couple (kx, ky):

dÂkx,ky(t)

dt
=
(

ǫ
τ0
− ξ2

0

τ0

[
k2x +

kxk2y
kc

+
k4y
4k2c

])
Âkx,ky(t) +N1,kxky (B7)

dB̂kx,ky(t)

dt
=
(

ǫ
τ0
− ξ2

0

τ0

[
k2y +

kyk2x
kc

+ k4x
4k2c

])
B̂kx,ky(t) +N2,kxky (B8)

where Âkx,ky(t) = F(A(x, y, t)) and B̂kx,ky(t) = F(B(x, y, t)). F(.) designates the 2D discrete

Fourier transform. We add small perturbations a and b to the initial stationary solutions

A0 and B0. Replacing A = A0 + a and B = B0 + b in the former equations and after

linearization, we get:

dâkx,ky(t)

dt
=
(

ǫ
τ0
− ξ2

0

τ0

[
k2x +

kxk2y
kc

+
k4y
4k2c

]
− 2g1 |A0|2 − β |B0|2

)
âkx,ky(t) (B9)

− g1F (A2
0ā)kx,ky − βF

(
A0B̄0b

)
kx,ky

− βF
(
A0B0b̄

)
kx,ky

db̂kx,ky(t)

dt
=
(

ǫ
τ0
− ξ2

0

τ0

[
k2y +

kyk2x
kc

+ k4x
4k2c

]
− 2g1 |B0|2 − β |A0|2

)
b̂kx,ky(t) (B10)

− g1F
(
B2

0 b̄
)
kx,ky

− βF
(
B0Ā0a

)
kx,ky

− βF (B0A0ā)kx,ky
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FIG. 24. The stability domain of ETD2 scheme and the repartition of the points (xa, ya) and

(xb, yb) along the vertical line.

Since we consider infinitesimal perturbations, we assume that we can simplify the former

equations according to:

dâkx,ky(t)

dt
=
(

ǫ
τ0
− ξ2

0

τ0

[
k2x +

kxk2y
kc

+
k4y
4k2c

]
− 2g1 |A0|2 − β |B0|2

)
âkx,ky(t) (B11)

db̂kx,ky(t)

dt
=
(

ǫ
τ0
− ξ2

0

τ0

[
k2y +

kyk2x
kc

+ k4x
4k2c

]
− 2g1 |B0|2 − β |A0|2

)
b̂kx,ky(t) (B12)

We deduce that the values of c and λ in this approximation are given by :

ca(kx, ky) = ǫ
τ0
− ξ2

0

τ0

[
k2x +

kxk2y
kc

+
k4y
4k2c

]
; λa(kx, ky) = −2g1 |A0|2 − β |B0|2 (B13)

cb(kx, ky) =
ǫ
τ0
− ξ2

0

τ0

[
k2y +

kyk2x
kc

+ k4x
4k2c

]
; λb(kx, ky) = −2g1 |B0|2 − β |A0|2 . (B14)

We have checked that for our time step ∆t and for each couple (kx, ky), the points (xa, ya) =

(ca(kx, ky)∆t, λa(kx, ky)∆t) and (xb, yb) = (cb(kx, ky)∆t, λb(kx, ky)∆t) lie in the stability do-

main whose boundaries are defined by (B6). To illustrate, we have represented below the

stability domain of the ETD2 scheme and the repartition of the points (xa, ya) and (xb, yb)

in the case of squares for Λ = 0.1 and χ = 10−2:
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