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Environmental impact of engineered carbon
nanoparticles: from releases to effects on the
aquatic biota
Antoine Mottier1,2, Florence Mouchet1,2, Éric Pinelli1,2,

Laury Gauthier1,2 and Emmanuel Flahaut3,4

Nano-ecotoxicology is an emerging science which aims to

assess the environmental effect of nanotechnologies. The

development of this particular aspect of ecotoxicology was

made necessary in order to evaluate the potential impact of

recently produced and used materials: nanoparticles (NPs).

Among all the types of NPs, carbon nanoparticles (CNPs)

especially draw attention giving the increasing number of

applications and integration into consumer products. However

the potential impacts of CNPs in the environment remain poorly

known. This review aims to point out the critical issues and

aspects that will govern the toxicity of CNPs in the environment.
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CNRS-UPS-INP N!5085, Université Toulouse 3 Paul Sabatier, Bât.

CIRIMAT, 118, route de Narbonne, 31062 Toulouse cedex 9, France
4CNRS, Institut Carnot Chimie Balard CIRIMAT, F-31062 Toulouse,

France

Corresponding authors: Gauthier, Laury (laury.gauthier@univ-tlse3.fr),

Flahaut, Emmanuel (flahaut@chimie.ups-tlse.fr)

Introduction
Nanoparticles (NPs) are usually defined as objects with at

least one dimension between 1 and 100 nm. They can be

released into the environment from natural (volcanoes,

forest fires, etc.) or anthropogenic (brake pads residues,

welding, combustion, etc.) sources. Among anthropogenic

nanoparticles, engineered nanoparticles (ENPs) have

recently emerged and quickly shown a very fast develop-

ment [1]. The fields of applications of ENPs are many

(automobile, medicine, optics, electronics, etc.) and ENPs

are now integrated in daily life consumer products. The

number of products integrating nanoparticles was esti-

mated between 1814 [2"] and 2332 [3] and was in 2015

30-fold more important than in 2005 [2"]. Among the wide

variety of ENPs, Carbon-based nanoparticles (CNPs)

represent a specific class, especially interesting in terms

of rapid development and applications. Although all

composed of carbon atoms, the different hybridization

of the C–C bonds gives them very specific physical

properties. CNPs can be distinguished between 0D: full-

erenes, onion-like carbon, carbon dots, nanodiamonds;

1D: nanofibers, nanotubes and nanohorns; 2D: multilayer

graphitic nanosheets, graphene nanoribbons, and

graphene and related materials (GRMs). CNPs were first

described in 1985 with C60 fullerene [4] but most applica-

tions came later with carbon nanotubes (CNTs) in

1991 [5] and graphene more recently [6]. Given their

unique properties, GRMs are currently subject to

important research efforts to improve their large scale

production [7,8]. CNPs are already used in daily life

products (nanocomposites, paints, energy storage, waste

water treatment [9], etc.). Depending on data sources,

between 89 and 217 consumer products integrate carbo-

naceous nanomaterials [2",3] and it is likely that CNPs

will be released in the environment during the life cycle

of manufactured products [9–11]. This review aims to

report the state of the art dealing with CNPs effects on

the environment with a special focus on the aquatic

environment because of its ability to concentrate pollu-

tion. An emphasis will be made on the fate and detection

of CNPs in the environment and in complex biological

matrices.

Carbon nanoparticles in the environment
The risk posed by a xenobiotic in the environment is

defined as the result of environmental exposure and its

intrinsic danger. The releases and fate will govern con-

centrations of CNPs in the environment and are thus key

aspects that will determine their ecotoxicity.

Analytical measurements of CNPs in complex matrix

Several experimental techniques are currently used and

developed in order to directly measure environmental

concentrations of CNPs. Most types of nanoparticles such

as metal nanoparticles can be more easily detected and

quantified in complex organic matrix (especially using

single particles inductively-coupled plasma quadrupole

mass spectrometer: sp-ICP-MS or synchrotron) [12].



reported environmental predicted concentrations (EPCs)

in surface water between 0.23 ng/L (Q0.15 = 0.17 ng/L;

Q0.85 = 0.35 ng/L) in 2012 [19] and 0.28 ng/L

(Q0.15 = 0.04 ng/L; Q0.85 = 0.65 ng/L) in 2014 [20""]. Simi-

larly sediment concentrations were estimated and ranged

from 0.79 ng/L (Q0.15 = 0.61 ng/L; Q0.85 = 1.2 ng/L) in

2012 [19] to 6.34 ng/L (Q0.15 = 4.32 ng/L; Q0.85 = 9.24 ng/

L) in 2014 [20""]. With an expected continuous increase in

needs, the concentration of CNPs will increase in all

environmental compartments. Although very useful, these

predictions are not validated by analytical measurements

[22] and improvements are needed in both fields [23].

Modeling methods are also used to determine the fate of

engineered CNPs [24], which is governed by both biotic

and abiotic processes [25]. These transformations could

drastically change the behavior and the bioavailability of

CNPs [9,15,26]. The review by Mitrano et al. gives a

complete overview of the aging and transformations that

CNTs may experience in the environment and during

the life cycle of manufactured products [9]. Because of

transformations, the behavior and physical properties of

pristine CNPs might be completely different following

their release. A complete characterization of nanoma-

terials has become a requirement to publish nano-

ecotoxicological data. There is however some ambiva-

lence between the need of full characterization of pris-

tine CNPs (just manufactured) and transformations of

these particles after interaction with exposure media

and organisms during ecotoxicological trials. Physico-

chemical characteristics are necessary to understand

toxicological phenomena but, as reliable analytical

measurements and detection of CNPs in complex

However, the intrinsic nature of CNPs but also many 
technological barriers prevent their reliable detection in 
carbon-rich complex environmental matrices: quantifica-

tion of CNPs is often more difficult than looking for a 
needle in a hay stack. Among CNPs, a real effort was put 
on the detection of CNTs. Recent reviews [13"",14,15,16] 
identified available technologies for extraction (a dozen) 
and measurement (around twenty) of CNPs in both the 
environment and in organisms but also highlighted all the 
limitations of these techniques. The lack of hindsight 
concerning the robustness of these methods but also the 
lack of reproducibility is pointed out. However thermal 
methods such as microwave-induced heating (MIH) [17] 
or PTA (programmed thermal analysis) seem promising 
and have also been successfully used to measure gra-

phene and graphene oxide in complex organic matrices 
[18].

Release and fate

Release of CNPs into the environment could occur at 
each stage of the life cycle of manufactured nano-

products: production, use, waste, and disposal [9,10,19]

(Figure 1). Without reliable and robust analytical methods 
for detecting trace concentrations of CNPs (apart from the 
special case of isotopic labeling with 13C and 14C), mathe-
matical modeling is a useful tool to predict releases and 
environmental concentrations. Studies modeling the CNPs 
release mainly focused on CNTs as well as graphene more 
recently, and few information is available for other types of 
CNPs [11,19,20"",21]. Available data showed that world-
wide production of CNTs is close to 3 kt/year [10] and 
European production contributes about 0.38 kt/year [19]. 
Based on European production data, latest estimations
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Schematic representation of the potential pathways and contamination of the environment by CNPs.



matrices are still improving and mostly do not allow

characterization afterwards, the need of characterization

data of pristine materials sometimes sounds pointless.

Transformations and aging of CNPs are challenging

research topics but they are of fundamental importance

in order to realistically assess the effects of CNPs in

complex environments (Figure 1).

Assessment of CNPs toxicity in the biota
Historically, assessment of CNPs ecotoxicological effects

relied upon methodologies used for ‘classical contam-

inants’ (i.e. chemicals). For ‘new’ contaminants such as

CNPs, these test methods have initially played a role in

order to define toxicity thresholds. Due to recent devel-

opments and uses, recent studies on CNPs’ ecotoxicolog-

ical potential mainly focused on the effects of CNTs,

graphene and GRMs.

Photosynthetic microorganisms are at the base of many

trophic chains. Toxic effects on these micro-organisms

could lead to drastic effects on the whole trophic chain

(Figure 1). These organisms are thus a critical group to

look at for assessing the effects of CNPs on the environ-

ment. Effects of two different types of CNTs (double

walled: DWCNTs and multiwalled: MWCNTs) were

assessed on the benthic diatom Nitzschia palea [27,28].

Results showed that environmentally realistic concentra-

tions of natural organic matter (NOM) used as a disper-

sant could increase the short term growth inhibition

induced by CNTs. Dispersion of CNPs is essential to

characterize as it will greatly determine the bioavailability

of these particles. A second essential issue concerns the

secretion of extracellular polymeric substances (EPS)

which has a protective role against CNTs and helps for

growth recovery (Figure 2). Furthermore the EPS-coated

CNTs could potentially move to higher trophic levels

(Figures 1 and 2) of the food chain, after being grazed by

organisms. Oxidized nanomaterials (carboxylic function-

containing single walled CNTs: C-SWCNTs and gra-

phene oxide: GO) exhibit a different toxicological profile

with generation of reactive oxygen species (ROS) from

0.01 mg/L in the green algae Chlorella vulgaris [29].

Oxidative damages were also detected in the protozoa

Euglena gracilis exposed to GO [30]. CNPs effects on

photosynthetic organisms also depend on the intrinsic

nature of the CNPs and on the physiology and anatomy of

these organisms. For instance, oxidized particles appear

more toxic and are associated with oxidative stress. Some

characteristics, such as the presence of the cellular wall or

the secretion of EPS seem to make algae more resistant

[27–29] compared to other organisms [30]. The question

of the role of oxygen-containing functions is still debated

because not only this modifies the surface chemistry on

the CNPs and thus their surface charge depending on the

pH, but it also contributes to make them much easier to

disperse in water.

Amphibian models such as Xenopus laevis are well char-

acterized (genetics, development and physiology) and are

very relevant candidates for ecotoxicology assessment.

X. laevis was used to assess genotoxicity and toxicity of

CNPs using standardized procedures [31–33]. If oxidative

stress and DNA damages (repairable) were evidenced

after short term exposure, CNTs exhibited no genetoxic

potential since no micronuclei (thus non-repairable

damages) were observed after a 12-day exposure.

However growth inhibition was observed at high concen-

trations (from 10 mg/L). Growth is a crucial parameter

whose measurement integrates all modifications and

disturbances undergone by an organism. Based on

Figure 2
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(a) Scanning electron microscopy images of Nitzschia palea (dark arrow) with extracellular polymeric substances (white arrow) after exposure to

DWCNTs. (b) Scanning electron microscopy images of exopolymeric substances (EPS) (white arrow) and CNTs embedded by EPS (dark arrow).



Classical monospecific tests reveal toxic effects at con-

centrations far higher than the predicted ones. However

several limitations should be taken into account suggest-

ing that the potential impact may be higher than expect-

able. The use of the classical approach of mass-based

concentration as the favorite metrics to express and

compare toxicity results should evolve, and surface-based

concentration should be seriously considered instead,

especially in the case of CNPs. Ecotoxicology should

move from the classical ‘toxicology’ approach toward a

more relevant ‘eco’ evaluation of CNPs’ impacts. Identi-

fication of specific toxic effects remains unavoidable to

understand the mechanisms of intoxication of living

systems but these studies must be completed with more

complex but also more realistic exposures reflecting the

real environment. It may allow to uncover toxicity at

levels where no effects could be observed until now with

simpler exposure methods like the classical single species

test systems [41]. Finally we should go toward the use of

integrated biomarkers and approaches (i.e. biodegrada-

tion, growth) reflecting all the disturbances induced by

CNPs at lower levels of organization. This will give

clearer responses for the environmental risks posed by

CNPs, and nanoparticles in general.
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