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Abstract—This paper introduces a matrix cofactorization ap-
proach to perform spectral unmixing and classification jointly.
After formulating the unmixing and classification tasks as matrix
factorization problems, a link is introduced between the two
coding matrices, namely the abundance matrix and the feature
matrix. This coupling term can be interpreted as a clustering
term where the abundance vectors are clustered and the resulting
attribution vectors are then used as feature vectors. The overall
non-smooth, non-convex optimization problem is solved using a
proximal alternating linearized minimization algorithm (PALM)
ensuring convergence to a critical point. The quality of the
obtained results is finally assessed by comparison to other
conventional algorithms on semi-synthetic yet realistic dataset.

Index Terms—supervised learning, spectral unmixing, cofac-
torization, hyperspectral images.

I. INTRODUCTION

Following the fast increase of available remote sensing

images, many methods have been proposed to extract infor-

mation from such specific data. In particular classification

algorithms received a lot of attention from the scientific

community. The emergence of state-of-the-art algorithms such

as convolutional neural network [1] or random forest [2]

have brought unprecedented good results. In the so-called

supervised classification framework, these algorithms make it

possible to infer, from a reduced number of examples provided

by an expert, a classification rule. This rule is then used to

attribute to unknown pixels a class among a predefined set of

classes. Although very efficient, classification methods remain

a limited analysis of the image since it only attributes a single

class to each pixel when it is sometimes possible to extract

more information. In the specific case of hyperspectral images

(HSI), images capture a very rich signal since each pixel is

a sampling of the reflectance spectrum of the corresponding

area, typically in the visible and infrared spectral domains

with hundreds of measurements. To fully exploit the available

information, it is interesting to resort to alternative methods of

interpretation such as representation learning methods, namely

spectral unmixing in the case of HSI [3]. Spectral unmixing is
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cial and Natural Intelligence Toulouse Institute (ANITI).

a physic-based model which assumes that a given pixel, i.e. a

given measured spectrum, is the result of the combination of

a reduced number of elementary spectra called endmembers,

specific to a given material. The aim of unmixing methods is

to infer the proportion of each material present in the pixel.

The obtained abundance maps display the spatial distribution

of the material in the observed scene.

Even if classification and spectral unmixing are two widely-

used techniques, very few attempts have been made to com-

bine them. Most of these works [4], [5] intend to improve

classification results by using spectral unmixing to identify

mixed pixels and then process specifically the identified mixed

pixels. Instead of using the two methods sequentially, the

method proposed in this paper introduces the idea of a joint

unmixing and classification. This method is formulated as a

cofactorization problem, which is known to produce valuable

results in many application fields such as music source separa-

tion [6], and image analysis [7]. The core concept is to express

the two problems of interest, namely spectral unmixing and

classification, as factorization problems and then to introduce

a coupling term to intertwine the two estimations. Similarly

to [8], the coupling term is defined as a clustering term where

the abundance vectors provided by the unmixing step are

clustered and the resulting attribution vectors are then used as

feature vectors for the classification. The overall optimization

problem is non-convex non-smooth. Such problems are known

to be challenging to solve but, building on recent advances in

optimization, the PALM algorithm proposed in [9] is used as

an optimization scheme, thus guaranteeing convergence to a

critical point of the objective function.

The rest of this paper is organized as follows. Section II

defines the two factorization tasks and introduces the global

cofactorization problem. Then, the method used to minimize

the resulting criterion is presented in Section III. Finally,

the method is tested and compared to other unmixing and

classification methods in Section IV. Section V draws some

conclusions and perspectives.

II. PROBLEM STATEMENT

As presented in Sections II-A and II-B, spectral unmixing

and supervised classification are commonly expressed as fac-

torization problems. We propose to derive a unified framework
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by considering a global cofactorization problem. It relies on

a link between the two factorization problems in order to

perform a joint estimation. In the proposed model, the link

is made between the abundance matrix and the feature matrix.

More precisely, the coupling term is expressed as a clustering

term over the abundance vectors where the attribution vectors

to the clusters are also the feature vectors of the classification

as detailed in Section II-C.

A. Spectral unmixing

Each pixel of an HSI is a L-dimensional measurement of

a reflectance spectrum. Physics models this spectrum as a

combination of R elementary spectrum, gathered in the so-

called endmember matrix M ∈ R
L×R, each characterizing a

specific material. The spectral unmixing task aims at retrieving

the so-called abundance vectors ap ∈ R
R, with R ≪ L,

from the spectrum yp ∈ R
L of the pth pixel (p ∈ P where

P ! {1, . . . , P} is the set of pixel indexes). These abundance

vectors describe the mixture contained in the pixel. Using

the conventional linear mixture model, the spectral unmixing

problem can be expressed as follow

min
M,A

1

2
‖Y −MA‖2F + λa ‖A‖1 + ı

R
R×P

+

(A) (1)

where matrix Y ∈ R
L×P gathers the P pixel spectra and A ∈

R
R×P the abundance vectors. In addition to the data fitting

term, two penalization terms are considered in the proposed

unmixing model. The term ı
R

R×P

+

(A) enforces a nonnegativity

constraint, ensuring an additive decomposition of the spectra.

The second penalization λa ‖A‖1 is a sparsity penalization

promoting the concept that only a few endmembers are active

in a given pixel. In the following work, the choice has been

made to discard the estimation of the endmember matrix for

the sake of simplicity. The endmember matrix is assumed to

be known or estimated beforehand.

B. Classification

In the context of supervised classification, a subset of pixels

is available with their corresponding groundtruth. The index

subset of labeled pixel is denoted hereafter L while the index

subset of unlabeled pixel is U ( L ∩ U = ∅ and L ∪ U = P).

Classification intends to assign one of the C classes to each

pixel. In practice, classifying can be formulated as estimating

a C × P matrix C whose columns correspond to unknown

C-dimensional attribution vectors cp (p ∈ U ). Each vector is

made of 0 except for ci,p = 1 when the pth pixel is assigned

the ith class. Numerous decision rules have been proposed

to carry out classification. Most of them rely on the use of

feature vectors zp ∈ R
K (p ∈ P) associated with the P

pixels, gathered in the matrix Z ∈ R
K×P . Considering a

linear classifier parametrized by the matrix Q ∈ R
C×K , a

vector-wise nonlinear mapping φ(·), such as a sigmoid or a

softmax operator, is then applied to the output of the classifier.

Finally the classification rule can be expressed as the matrix

factorization problem

min
Q,CU

Jc(C, φ(QZ)) + ı
S
|U|
C

(CU ) (2)

where Jc(·, ·) is a cost function measuring the quality of the

estimated attribution vectors φ(Qzp) and and SC is the C-

dimensional probability simplex ensuring nonnegativity and

sum-to-one constraints of the attribution vectors. In this work,

the cost function Jc(·, ·) has been chosen as the cross-entropy,

defined in a multi-class problem as

Jc(C, Ĉ) = −
∑

p∈P

dp
∑

i∈C

ci,p log (ĉi,p) (3)

with

dp =

{

1
|Li|

, if p ∈ Li,
1
|U| , if p ∈ U ,

(4)

where Li is the subset of labeled pixels belonging to class i,

ĉp is the estimated attribution vector and cp the true one. The

weighing coefficients dp adjust the cost function with respect

to the sizes of the training and test sets, in particular in the

case of unbalanced classes. This particular loss function has

been extensively used in the context of neural networks [10].

Moreover, the nonlinear mapping φ(·) is chosen as a sigmoid,

which makes the proposed classifier interpretable as a one

layer neural network.

To consider a more elaborate case, it is also possible to add a

set of penalizations/constraints. In particular, a penalization of

the classifier parameters Q is considered to prevent an artificial

decrease of the loss function. This penalization is based on

a Frobenius-norm and is well-known in the neural network

community where it is referred to as weight decay. The second

considered penalization is a spatial regularization enforced

through a smoothed weighted vectorial total variation norm

(vTV). This regularization promotes a piece-wise constant

solution for the classification map C. The overall resulting

problem can be written

min
Q,CU

−
∑

p∈P

dp
∑

i∈C

ci,p log

(

1

1 + exp(−qi:zp)

)

+ λq ‖Q‖2F + λc ‖C‖vTV + ı
S
|U|
C

(CU ) (5)

where qi: is the i-th line of Q, λq and λc weight the

regularization terms and

‖C‖vTV =

P
∑

p=1

βp

√

∥

∥

∥
[∇hC]p

∥

∥

∥

2
+

∥

∥

∥
[∇vC]p

∥

∥

∥

2
+ ǫ (6)

where ǫ > 0 is a smoothing parameter and [∇h(·)]p and

[∇v(·)]p denote horizontal and vertical discrete gradients1

[∇hC](m,n) = c(m+1,n) − c(m,n)

[∇vC](m,n) = c(m,n+1) − c(m,n).

The weighting coefficients βm,n are introduced to account for

the natural boundaries present in the image. They are com-

puted beforehand using external data containing information

on the spatial structures, e.g., a panchromatic image or a

LIDAR image [11]. An example of such weights is described

in Section IV.

1With a slight abuse of notations, c(m,n) refers to the pth column of C

where the pth pixel is spatially indexed by (m,n).
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Fig. 1. Structure of the cofactorization model. Variables in blue stand for
observations or available external data. Variables in olive green are linked
through the clustering term. The variable in a dotted box is assumed to be
known beforehand.

C. Clustering

To define a global cofactorization problem, a relation is

drawn between the activation matrices of the two factorization

problems, namely the abundance matrix and the feature matrix.

More specifically, following the idea developed in [8], a clus-

tering term is introduced as a coupling. Abundances vectors

are clustered and the resulting attribution vectors are then

used as feature vectors for the classification. Ideally, clustering

attribution vectors zp ∈ R
K are filled with zeros except for

zk,p = 1 when ap is associated with the kth cluster. The well-

known k-means is chosen to perform this task since it is easily

expressed as an optimization problem

min
Z,B

1

2
‖A−BZ‖2F + ıSP

K

(Z) + ı
R

R×K

+

(B) (7)

where columns of B ∈ R
R×K stands for the centroids of

the K clusters. Two constraints are considered in this k-

means clustering problem: i) a positivity constraint on B since

centroids are expected to be interpretable as mean abundance

vectors and ii) the vectors zp (p ∈ P) are assumed to be

defined on the K-dimensional probability simplex SK . Thus,

the resulting clustering method is a particular instance of k-

means where the attribution vectors are relaxed and can be

interpreted as the collection of probabilities to belong to each

of the clusters.

D. Multi-objective problem

The two factorization problems corresponding to the spec-

tral unmixing and classification tasks have been expressed and

the link between these two problems has been set up through

the clustering term. The global cofactorization problem, illus-

trated in Figure 1, is finally formulated as

min
A,Q,Z
CU ,B

λ0

2
‖Y −MA‖2F + λa ‖A‖1 + ı

R
R×P

+

(A)

−
λ1

2

∑

p∈P

dp
∑

i∈C

ci,p log

(

1

1 + exp(−qi:zp)

)

+
λq

2
‖Q‖2F + λc ‖C‖vTV + ı

S
|U|
C

(CU )

+
λ2

2
‖A−BZ‖2F + ıSP

K

(Z) + ı
R

R×K

+

(B) (8)

where λ0, λ1 and λ2 are introduced to weight the contribution

of the various terms.

III. OPTIMIZATION SCHEME

The proposed global optimization problem (8) is non-

convex and non-smooth. Such problem are usually very chal-

lenging to solve. To handle it, we propose to resort to the

PALM algorithm proposed in [9]. PALM algorithm ensures

convergence to a critical point, i.e., a local minimum of the ob-

jective function. To apply PALM, the objective is rewritten as

a sum of independent non-smooth terms fj(·) (j ∈ {1, . . . , 3})

and a smooth coupling term g(·)

min
A,B,Z,
Q,CU

f0(A)+f1(B)+f2(Z)+f3(CU )+g(A,B,Z,CU ,Q)

where

f0(A) = ıR+
(A) + λa ‖A‖1 , f1(B) = ıR+

(B)

f2(Z) = ıSP
K

(Z), f3(CU ) = ı
S
|U|
K

(CU )

g(A,B,Z,CU ,Q) =
λ0

2
‖Y −MA‖2F

−
λ1

2

∑

p∈P

dp
∑

i∈C

ci,p log

(

1

1 + exp(−qi:zp)

)

+
λ2

2
‖A−BZ‖2F +

λq

2
‖Q‖2F + λc ‖C‖vTV .

Algorithm 1: PALM

1 Initialize variables A0, B0, Z0, CU
0 and Q0;

2 Set α > 1;
3 while stopping criterion not reached do

4 Ak+1 ∈ prox
αLA
f0

(Ak − 1
αLA

∇Ag(Ak,Bk,Zk,Ck
U
,Qk));

5 Bk+1 ∈

prox
αLB
f1

(Bk − 1
αLB

∇Bg(Ak+1,Bk,Zk,Ck
U
,Qk));

6 Zk+1 ∈

prox
αLZ
f2

(Zk − 1
αLZ

∇Zg(A
k+1,Bk+1,Zk,Ck

U
,Qk));

7 Qk+1 ∈ prox
αLQ

f3
(Qk −

1
αLQ

∇Qg(Ak+1,Bk+1,Zk+1,CU
k,Qk));

8 Ck+1
U

∈ prox
αLCU
f4

(Ck
U
−

1
αLCU

∇CU
g(Ak+1,Bk+1,Zk+1,Ck

U
,Qk+1));

9 end

10 return Aend,Bend,Zend,Qend,Cend
U

The concept of this algorithm is to perform a proximal

gradient descent according to each variable alternatively. To

apply PALM, the functions fj(·) have to be proper, lower

semi-continuous, extended real-valued. A sufficient condition

on the function g(·) is to be C2, i.e., with continuous first

and second derivatives, and its partial gradients have to be

globally Lipschitz. LX denotes herein the Lipschitz constant

associated to the partial gradient according to X. The detailed

steps of the algorithm are summarized in Algorithm 1 and

further theoretical details are available in [9].

In practice, one needs to be able to compute the partial

gradient and its associated Lipschitz constant to perform the

gradient descent. It is also necessary to compute the proximal

operator associated to the non-smooth terms. In the present

case, the partial gradients is easily computed and all globally

Lipschitz. The only problematic term is the vTV term which

is not globally Lipschitz in its canonical form. To alleviate,



a smoothed counterpart has been introduced in (6) with a

smoothing parameter ǫ ∈ R+. As for the proximal operators,

they are are well-known [12] except for f0(·). For f0(·), it

is necessary to resort to the composition of the proximal

operators associated to the non-negative constraint and the ℓ1-

norm, which is here possible according to [13].

IV. EXPERIMENTS

Data generation – The HSI used to perform the experiments is

a semi-synthetic image. More specifically, the image has been

generated using a real HSI. The real image has been unmixed

using a fully constrained least square (FCLS) algorithm [14]

using R = 5 endmembers extracted with the well-known VCA

algorithm [15]. The obtained abundance maps have then been

used to generate a new synthetic image using pure spectra

from the hyperspectral library ASTER [16]. The groundtruth

of the original data, composed of C = 3 classes has been

preserved to assess the quality of the classification. A color

composition, a panchromatic version and the groundtruth are

presented in Figure 2. The subset of the image used as training

data is as also shown in Figure 2.

(a) (b) (c) (d)

Fig. 2. Synthetic image: (a) colored composition of the HSI Y, (b)
panchromatic image yPAN, (c) classification ground-truth, (d) training set.

Initialization and convergence – As stated before, cofac-

torization is a non-convex problem and PALM only ensures

convergence to a local minimum of the objective function.

It is thus important to carefully initialize the estimated vari-

ables in order to reach a relevant solution. In the presented

experiment, abundance matrix A0 has been initialized by

solving min
A∈R

R×P

+

‖Y −MA‖2F using a projected gradient

algorithm. Then, a k-means algorithm has been applied to the

obtained abundance vectors and the resulting centroids and

attribution vectors have been used to initialize B0 and Z0.

On the other hand, classifier parameters Q0 and classification

matrix C0
U have been initialized randomly.

In order to assess the convergence of the optimization

scheme, the normalized difference between two consecutive

values of the objective function is monitored. When this

value reach a certain threshold (10−4 for this experiment), the

optimization process stops and the last estimation is assumed

to be close enough to the solution.

Hyperparameters – Multiple hyperparameters λ· have been

introduced in problem (8) to weight the various terms of

the objective function. For practical use, these parameters

have been normalized by the size and dynamics of the cor-

responding variables. These normalized parameters, denoted

TABLE I
UNMIXING AND CLASSIFICATION RESULTS.

Model Kappa F1-mean RMSE(Â) RE Time (s)

RF 0.817 0.842 N\A N\A 0.4
FCLS N\A N\A 0.0701 0.224 1.2
CBPDN N\A N\A 0.0792 0.229 2
D-KSVD 0.494 0.554 N\A 0.923 70
Cofact. 0.847 0.870 0.0504 0.750 180
Cofact. + vTV 0.874 0.895 0.0526 0.752 81

λ̃·, have been empirically tuned to obtain consistent results

(λ̃0 = λ̃1 = λ̃2 = 1, λ̃a = 10−3, λ̃q = 0.15). For the last

hyperparameter λ̃c, two values have been considered 0. and

0.1, standing respectively for the case without and with spatial

regularization. The definition of the vTV regularization also

includes parameters which has to be properly set. First, the

smoothing parameter is set to ǫ = 0.01 to ensure the gradient-

Lipschitz property without modifying substantially the TV-

norm. Secondly, it is necessary to define the weighing coeffi-

cients βm,n. They have been computed from a panchromatic

image yPAN, shown in Figure 2, generated by normalizing

hyperspectral bands by their mean and then summing them.

More precisely, to account for possible homogeneous areas in

the image, they are defined as follows

βp =
β̃p

∑

q β̃q

with β̃q =
(∥

∥

∥
[∇yPAN]q

∥

∥

∥

2
+ σ

)−1

where σ = 0.01 controls the variation of the weights and

avoids numerical issues.

Compared methods – To assess the quality of the unmix-

ing and classification results, the proposed method has been

compared to several well-known unmixing and classification

algorithms. Regarding classification, we considered the ran-

dom forest (RF) algorithm, known to perform very well to

classify HSI. Parameters of the RF (number of trees, depth)

have been adjusted using gridsearch and cross-validation. The

discriminative K-SVD (D-KSVD) method has been used as a

benchmark [17]. This model is also a cofactorization method

but with a simpler approach where the two coding matrices A

and Z are imposed to be equal. In this case, the first term is not

a spectral unmixing task but rather a dictionary learning task

where dictionary elements are assumed to be discriminative

for the classification task. Only a sparsity penalization is

considered for D-KSVD using a ℓ0-norm.

As for the unmixing comparison, we considered two meth-

ods described in [14]. The first method is the fully constrained

least square method (FCLS) where the corresponding opti-

mization problem is defined as the data fitting term with a

positivity and sum-to-one constraint on abundance vectors ap.

The second method is the constrained basis pursuit denoising

(CBPDN) corresponding to problem 1. The hyperparameter

λa, weighting the sparsity penalty is also adjusted using

gridsearch and cross-validation. It should be noted that all

unmixing methods use directly the correct endmember matrix

M which has been used to generate the data. Additionally, the

endmember matrix is used to initialize the dictionary of the

D-KSVD method.



Results – To evaluate the unmixing results quantitatively, the

reconstruction error (RE) and root global mean squared error

(RMSE) are considered, i.e.,

RE =

√

1

PL

∥

∥

∥
Y −MÂ

∥

∥

∥

2

F
,RMSE =

√

1

PR

∥

∥

∥
Atrue − Â

∥

∥

∥

2

F
,

where Atrue and Â are the actual and estimated abundance

matrices. To evaluate the classification accuracy, two con-

ventional metrics are used, namely Cohen’s kappa coefficient

and the averaged F1-score over all classes [18]. The results

have been averaged over 20 trials. A different random noise

has been added to the image for each trial such that the

SNR = 30dB.

0 100200300

Band

Blue class

0 100200300

Band

Brown class

0 100200300

Band

Cyan class

Fig. 3. Results: (1st row) classification maps for D-KSVD, RF, Cofact.,
Cofact. + vTV, (2nd row) cluster map and spectral centroids recovered by the
proposed method (Cofact. + vTV).

Results reported in Table I show that the proposed co-

factorization framework outperforms both RF and D-KSVD

in term of classification. Regarding spectral unmixing, FCLS

and CBPDN reach lower REs which is expected since both

methods exhibit more degrees of freedom. Note however this

metrics only evaluates the quality of the reconstructed data.

However, RMSE is lower for the cofactorization methods than

for FCLS and CBPDN. It is finally interesting to underline

the improvement due to the vTV. As expected, classification

results improve when the spatial regularization is considered

but additionally the convergence time of the PALM algorithm

is significantly reduced. Processing time is indeed higher for

the proposed cofactorization method than for RF, FCLS and

CBPDN. However, it simultaneously tackles two problems

instead of one, and processing time still remains comparable

to the one of D-KSVD method.

In terms of qualitative results, Figure 3 presents the clas-

sification maps which appear consistent with the quantitative

results. Moreover, results of the clustering task are shown with

spectral centroids of the clusters for each classes. In particular,

this cluster maps exhibits some heterogeneity, which can

be explained by the multi-modality of some classes. This

additional result is a very interesting byproduct of the proposed

method to interpret the scene.

V. CONCLUSION AND PERSPECTIVE

This paper introduces a unified framework to perform

jointly spectral unmixing and classification by the mean of

a cofactorization problem. Coding matrices of two problems

of interest are linked thanks to a clustering term. The over-

all cofactorization task is formulated as a non-convex non-

smooth optimization problem whose solution was approx-

imated thanks to a PALM algorithm which ensured some

convergence guarantees. Even if the proposed method appears

to perform significantly well compared to other state-of-the-

art methods, further improvements are yet to be considered.

In particular, the additional learning of the endmember matrix

could be considered. It would be also relevant to exploit the

supervised information on the spectral unmixing part which is

very rarely available in a conventional unmixing problem.
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