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This paper is devoted to the state and input estimation of a linear time varying system in the presence
of an unknown input (UI) in both state and measurement equations, and affected by Gaussian noises.
The classical rank condition used in this kind of approach is relaxed in order to be able to be used in a
wider range of systems. A state observer, that is an unbiased estimator with minimum error variance, is
proposed. Then a UI observer is constructed, in order to be a best linear unbiased estimator, it follows
a unique construction whether the direct feedthrough matrix is null or not. In a sense the proposed
approach, generalizes and unifies the existing ones. Besides, a stability result is given for linear time
invariant systems, which is a novelty for unbiased minimum variance observers relaxing the classical
rank condition.

Keywords: state estimation; stochastic systems; unknown input; linear time varying systems; discrete-
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1. Introduction

Observation of the state of a dynamical system is one of the most important issues in control. For this
reason, the developments of the Luenberg observer (Luenberger, 1971) (for deterministic systems), as
well as the Kalman filter (Kalman, 1960) and its extensions for non-linear systems (Julier & Uhlmann
(1997); Jazwinski (2007)) (for stochastic systems), or the H∞ filtering were all a revolution in the control
community. First applied on linear time invariant (LTI) systems, several variant of these observers have
then been declined for linear time variant (LTV), or non-linear systems.

In the field of dynamical systems observers, systems with unknown inputs (UIs) are of a certain
interest. These systems involve the presence of an UI on which there is no assumption: it can be an
exogenous input as well as a non-linear function of the state for example.

In that field of research several works have been developed in deterministic case without any
additional disturbance (Ichalal et al., 2009; Ichalal & Mammar, 2015), via L2 minimization when the
disturbance is bounded (Pertew et al., 2005; Charandabi & Marquez, 2014), or with an additional non-
linear Lipschtiz term in the state equation as in Yang et al. (2014), or via variance minimization when
the system is perturbed by Gaussian white noise as in Darouach & Zasadzinski (1997) and Darouach et
al. (2003).
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This paper takes place in that last field of research. More precisely, it addresses the problem of
estimating the state and the UI of a discrete-time LTV system in the presence of Gaussian noises, via
the use of a minimum variance unbiased observer (as in Kalman Filtering, see Grewal, 2011). In this
field of research, several works have been done. Darouach & Zasadzinski (1997) has first proposed an
efficient state observer for systems affected by UI in the state equation, and Darouach et al. (2003)
has extended that work when the UI affects both state and measurement equations. Then Gillijns &
Moor (2007a) (resp. Gillijns & Moor, 2007b) has proposed dual state and UI observers when the UI
affects the state equation only (resp. both state and measurement equations). However, in that former
work, the feedthrough matrix (the matrix associated with the UI in the measurement equation) has
been assumed to be full column rank. Hsieh (2009a) has relaxed that last condition, but it has yield
to a biased estimation of the UI. Cheng et al. (2009) gives necessary and sufficient conditions for the
stability and the convergence of such a state observer. Wang et al. (2015) and Yong et al. (2016) both
provide an unbiased minimum variance observer for state and UI estimation. In Ansari & Bernstein
(2018) and Maes et al. (2018), those results have been applied on maneuvering vehicle and structural
dynamics. Song & Zheng (2018b) and Song & Zheng (2018a) have proposed a solution for state and
input estimation when there are missing measurements. In Li et al. (2018), a new approach is proposed
using an extended state in order to solve the estimation problem in a higher dimensional state before
coming back to the initial state space. Finally, in Yong et al. (2014), the problem of state and UI
estimation is considered using the entire time interval, and in Hsieh (2013), a filter for descriptor systems
is provided.

The limit of the previous cited papers is that they are based on the assumption of a particular
rank condition on system matrices. When that rank condition does not hold, those observers cannot
be used anymore. Sundaram & Hadjicostis (2006) has proposed a delayed observer that has relaxed that
former rank condition. However, this method is not easy to implement, as it is based on some ad hoc
constructions. Besides, it does not deliver any UI observer but only a state one. Finally, it is limited to the
LTI case. Hsieh (2009b) has proposed an interesting alternative to the work of Sundaram & Hadjicostis
(2006). Based on the work done in Hsieh (2009a), it extends the rank condition, in order to be applied
on the same classes of LTI systems with UI than Sundaram & Hadjicostis (2006), but with a dual state
and UI observer. Moreover, this latter work can also be applied on LTV systems. However, it does not
propose a unique UI observer, but two different observers depending whether the feedthrough matrix
is null or not. Besides none of the two previous works has made a stability analysis with convergence
conditions, as with the proposed observer structures, such a analysis is not easy to deal with.

The aim of the present paper is to propose state and UI observers for all kinds of LTV systems
even if the restrictive rank condition discussed above is not satisfied. In that sense, it overpasses
most of the results discussed above, except the ones proposed in Sundaram & Hadjicostis (2006)
and Hsieh (2009b). In comparison to this two papers, this work gives an interesting alternative: it
does not give any improvement in terms of performance, but the proposed observer structure enables
to derive stability conditions (that has not been done before in Sundaram & Hadjicostis, 2007 nor
Hsieh, 2009b), and also to propose a unified alternative to Hsieh (2009b) for the UI estimation
(Sundaram & Hadjicostis, 2007 has not proposed any UI observer). Besides, the proposed observers
take into account the presence of known input (which has not been the case in the two previous
works).

This paper is divided as follows. After some preliminaries in Section 2, the mathematical frame of
the observation problem is stated in Section 3. In Section 4, the state observer construction, as well as a
stability analysis in the LTI case are given and proved. In Section 5, the same is done for the UI observer.
In Section 6, some practical tools and remarks on the observer implementation are given (in particular,
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an algorithm is proposed). Finally, examples are given in Section 7 in order to illustrate the theoretical
results.

2. Preliminaries

The set of real matrices with n × p elements is denoted by Mn,p(R). The subset of invertible matrices of
Mn,n(R) is denoted by GLn(R). In ∈ Mn,n(R) (I when there is no ambiguity) denotes the identity matrix
and 0n,p ∈ Mn,p(R) (0 when there is no ambiguity) denotes the null matrix with n rows and p columns.

For any matrix A ∈ Mn,p(R), AT denotes its transpose, and A† its pseudo-inverse. For any square matrix
A ∈ Mn,n(R), tr(A) denotes its trace, and det(A) denotes its determinant. If x is a stochastic vector, its
expected value is denoted by E[x].

For any vector sequence vk and any integer r � 0, let us set vk:k+r = [
vT

k vT
k+1 ... vT

k+r

]T
. Finally,

for n � 1 and r � 1, let us set Un,r = [
In 0n,rn

]
.

Definition 2.1 Let be xk a stochastic signal. x̂k is said to be an unbiased observer of xk if

E[xk − x̂k] = 0, ∀k � 0. (2.1)

Note that, in particular, the state estimation error of an unbiased observer has to be independent from
the UI when no assumption is made on that former.

Let recall that the state estimation error covariance matrix Pk of a stochastic observer is given by
Pk = E[(xk − x̂k)(xk − x̂k)

T ] for any k � 0. The variance of such an observer is given by the trace of
this matrix.

3. Problem Statement

Let consider the following LTV system

{
xk+1 = Akxk + Bkuk + Dkdk + Fkwk

yk = Ckxk + Ekdk + vk
, (3.1)

where xk ∈ R
nx , yk ∈ R

ny , uk ∈ R
nu and dk ∈ R

nd are the state vector, the output vector, the known
input vector and the UI vector of the system, respectively. (wk)k∈N ⊂ R

nw and (vk⊂N
) ∈ R

ny are two
sequences of independent zero-mean Gaussian noises whose covariance matrices sequences are denoted
by (Wk)k∈N and (Vk)k∈N, respectively. Moreover, the noises are assumed to be independent from x0,
whose covariance matrix is denoted by P0. Finally, Ak, Bk, Ck, Dk, Ek an Fk are six time-varying matrices
with appropriate dimensions.

Let be integers r � 1 and k � 0. A straightforward calculation gives the following equation (used
for the main theorems proof):

yk:k+r = Ak:k+rxk + Bk:k+rur,k + Dk:k+rdr,k + Fk:k+rwk:k + vk:k+r, (3.2)

where matrices Ak:k+r, Bk:k+r, Dk:k+r and Fk:k+r are given in (3.3).
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For the rest of the paper, the following notations will be used for any integer r � 1 and any k � 0:

Wk:k+r =
⎡

⎣
Wk 0

...
0 Wk+r

⎤

⎦ and Vk:k+r =
⎡

⎣
Vk 0

...
0 Vk+r

⎤

⎦.

Ak:k+r =

⎡

⎢⎢
⎢⎢
⎣

Ck
Ck+1Ak

Ck+2Ak+1Ak
...

Ck+rAk...Ak+1Ak

⎤

⎥⎥
⎥⎥
⎦

,

Bk:k+r =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0ny,nu
0ny,nu

0ny,nu
... 0ny,nu

0ny,nu

Ck+1Bk 0ny,nu
0ny,nu

... 0ny,nu
0ny,nu

Ck+2Ak+1Bk Ck+2Bk+1 0ny,nu
... 0ny,nu

0ny,nu

... ... ... ... ... ...
Ck+rAk+r−1...Ak+1Bk Ck+rAk+r−1...Ak+2Bk+1 ... ... Ck+rBk+r−1 0ny,nu

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Dk:k+r =

⎡

⎢⎢⎢
⎢
⎣

Ek 0ny,nd
0ny,nd

... 0ny,nd
0ny,nd

Ck+1Dk Ek+1 0ny,nd
... 0ny,nd

0ny,nd

Ck+2Ak+1Dk Ck+2Dk+1 Ek+2 ... 0ny,nd
0ny,nd

... ... ... ... ... ...
Ck+rAk+r−1...Ak+1Dk Ck+rAk+r−1...Ak+2Dk+1 ... ... Ck+rDk+r−1 Ek+r

⎤

⎥⎥⎥
⎥
⎦

,

Fk:k+r =

⎡

⎢
⎢⎢⎢⎢
⎣

0ny,nw
0ny,nw

0ny,nw
... 0ny,nw

0ny,nw

Ck+1Fk 0ny,nw
0ny,nw

... 0ny,nw
0ny,nw

Ck+2Ak+1Fk Ck+2Fk+1 0ny,nw
... 0ny,nw

0ny,nw

... ... ... ... ... ...
Ck+rAk+r−1...Ak+1Fk Ck+rAk+r−1...Ak+2Fk+1 ... ... Ck+rFk+r−1 0ny,nw

⎤

⎥
⎥⎥⎥⎥
⎦

(3.3)

4. State observer

The aim of this section is to construct an unbiased state observer with minimum variance. The general
form of such a linear observer, is

x̂k+1 = Rkx̂k + Skuk:k+r + Kkyk:k+r. (4.1)

The following assumption is useful in order to decouple the unknown input from the state estimation
error.

Assumption 4.1 There exists an integer r � 1 such that for any integer k � 0, the following rank
condition holds:

rank
(
Dk:k+r

) = rank
(
Dk+1:k+r

) + rank

([
Dk
Ek

])
. (4.2)

The following lemma gives another characterization of the rank condition given in Assumption 4.1.
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Lemma 4.1 Let be an integer r � 1, then for any k � 0, the following equation

rank

([
Dk:k+r
DkUnd ,r

])
= rank

(
Dk:k+r

)
. (4.3)

is equivalent to

rank
(
Dk:k+r

) = rank
(
Dk+1:k+r

) + rank

([
Dk
Ek

])
. (4.4)

Proof. See also Sundaram & Hadjicostis (2007) for an alternative proof. For any r � 1 and k � 0,
we have

[
Dk:k+r

DkUnd ,r

]
=

⎡

⎣
Ek 0ny,rnd

Σk,rDk Dk+1:k+r
Dk 0nx,rnd

⎤

⎦

=
⎡

⎣
0 I 0

Σk,r 0 I
I 0 0

⎤

⎦

⎡

⎣
Dk 0nx,rnd

Ek 0ny,rnd

0rny,nd
Dk+1:k+r

⎤

⎦ , (4.5)

where Σk,r =

⎡

⎢⎢
⎣

Ck+1
Ck+2Ak+1

...
Ck+rAk+r−1...Ak+1

⎤

⎥⎥
⎦. The matrix

⎡

⎣
0 I 0

Σk,r 0 I
I 0 0

⎤

⎦ being clearly non singular, the rank

condition given by the lemma is established. �
Remark 4.1 Note that for r = 1, equation (4.4) gives

rank

([
Ek 0

Ck+1Dk Ek+1

])
= rank

([
Dk
Ek

])
+ rank(Ek+1), (4.6)

which is the rank condition widely required for UI decoupling (see for example Darouach et al., 2003 or
Yong et al., 2016 for an alternative formulation). One characteristic of the proposed observer is precisely
that it relaxes this condition thanks to the use of Assumption 4.1 and equation (3.2) for r � 2.

4.1. Unbiased state observer

Remark 4.2 In order to make the observer unbiased when Assumption 4.1 holds but not for r = 1, the
use of successive measurements is required. Due to that fact, it is not easy to deal with the covariance
calculation of the successive state estimation error (see Sundaram & Hadjicostis, 2005 for more details
on that issue).

The problem can be tackled in several ways. In Sundaram & Hadjicostis (2007), a part of the state
is estimated directly from the measurement vector, whereas the remaining part is estimated after several
successive change of variables through a classical method of variance minimization (as in the Kalman
filter). In Hsieh (2009b), a recursive three-step filter mixing both state and UI estimation is considered.

Our method is based on a judicious change of variable including the noises in a new extended
state vector. Once that change of variable has been made, the sequel of the proof is based on the same
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techniques as for the Kalman filter. Thus, contrary to the previous works, the present filter derivation
can easily lead to stability results (based on equivalent results for the Kalman filter).

Note that moreover, and contrary to Hsieh (2009b), the state estimation is totally independent from
the UI estimation (Sundaram & Hadjicostis, 2007 does not provide any UI observer). This means that
if only the state estimation is needed, the part of the algorithm dealing with the UI estimation can be
skipped, which can accelerate the filter execution.

Theorem 4.1 Let Assumption 4.1 hold. Let us assume that E[x̂0] = E[x0]. Then, equation (4.1) defines
an unbiased observer for the state xk of system (3.1) if and only if its gains are given by

⎧
⎪⎨

⎪⎩

Rk = Ak − KkAk:k+r

Sk = BkUr,nu
− KkBk:k+r

Kk = Gk + XkMkHk

, (4.7)

where Gk = DkUr,nd
D†

k:k+r, Hk = I(r+1)ny
−Dk:k+rD

†
k:k+r, Mk and Xk are any matrices with appropriate

and compatible dimensions (they will be discussed in the sequel).
Besides, the state estimation error ek = xk − x̂k satisfies the following dynamics:

ek+1 = (Ak − KkAk:k+r)ek + (FkUr−1,nw
− KkFk:k+r)wk:k+r − Kkvk:k+r. (4.8)

Proof. The calculation of the error gives

ek+1 = (Ak − KkAk:k+r)ek + (Ak − KkAk − Rk)x̂k + (DkUr,nd
− KkDk:k+r)dk:k+r

+ (BkUr,nu
− Sk − KkBk:k+r)uk:k+r + (FkUr,nw

− KkFk:k+r)wk:k+r − Kkvk:k+r. (4.9)

Based on Definition 2.1, the proposed observer is an unbiased one if and only if

∀k � 0, E[ek] = 0. (4.10)

In the present case, recalling that all noises have zero means, the expected value of ek satisfies

E[ek+1] = (Ak − KkAk:k+r)E[ek] + (Ak − KkAk:k+r − Rk)E[x̂k]

+ (DkUr,nd
− KkDk:k+r)E[dk:k+r] + (BkUr,nu

− Sk − KkBk:k+r)E[uk:k+r]. (4.11)

Thus, in order to have an unbiased observer, and provided that E[e0] = 0 (i.e. E[x̂0] = E[x0]), it is
necessary and sufficient to satisfy the following conditions:

⎧
⎪⎨

⎪⎩

Rk = Ak − KkAk:k+r

Sk = BkUr,nu
− KkBk:k+r

KkDk:k+r = DkUr,nd

. (4.12)



A NEW UNBIASED MINIMUM VARIANCE OBSERVER 7

Using Assumption 4.1 and Lemma 4.1, the last equality has a general solution for Kk given by

Kk = Gk + XkMkHk, (4.13)

where Gk = DkUr,nd
D†

k:k+r, Hk = I(r+1)ny
− Dk:k+rD

†
k:k+r and Mk and Xk are any matrices with

appropriate dimensions.
Finally, under Conditions (4.12) (or equivalently under conditions (4.7)), the state estimation error

takes the form

ek+1 = (Ak − KkAk:k+r)ek + (FkUr−1,nw
− KkFk:k+r)wk:k+r − Kkvk:k+r, (4.14)

which concludes the proof. �

4.2. Minimum variance state observer

The aim of this subsection is to find the gain Xk so that the covariance matrix of the state estimation
error is with minimal trace.

Theorem 4.2 Let us set Rk = BkP̃kB
T
k + DkΣk+rD

T
k . Let us assume that Rk is non-zero. Then among

all the observers of the form (4.1) with gain matrices given by Theorem 4.1, the matrix Xk leading to the
minimum variance observer is given by

Xk = I
T(

AkP̃kB
T
k + CkΣk+rD

T
k

)
MT

k

(
MkRkMT

k

)−1. (4.15)

where

• P̃k evolves according to

P̃k+1 = (Ak − IXkMkBk)P̃k(Ak − IXkMkBk)
T + (Ck − IXkMkDk)Σk+r(Ck − IXkMkDk)

T ,
(4.16)

where Σk+r =
[

Wk+r 0
0 Vk+r

]
and P̃0 =

⎡

⎣
P0 0 0
0 W0:r−1 0
0 0 V0:r−1

⎤

⎦,

• Mk is such that MkRkMT
k is non-singular (see Remark 4.4 for a possible way of constructing Mk),

• I =
[

Inx

0rnη ,nx

]
, with nη = nw + ny,

• Ak, Bk, Ck and Dk are given in (4.17), in which Il1:l2
n stands for the sub matrix of In composed by

the columns from l1 to l2.
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Ak =

⎡

⎢
⎢⎢⎢⎢
⎣

Ak − GkAk:k+r Fk − GkFk:k+rI1:nw
(r+1)nw

−GkFk:k+rInw+1:rnw
(r+1)nw

−GkI
1:ny

(r+1)ny
−GkI

ny+1:rny

(r+1)ny

0(r−1)nw,nx
0(r−1)nw,nw

I(r−1)nw
0(r−1)nw,ny

0(r−1)nw,(r−1)ny

0nw,nx
0nw,nw

0nw,(r−1)nw
0nw,ny

0nw,(r−1)ny

0(r−1)ny,nx
0(r−1)ny,nw

0(r−1)ny,(r−1)nw
I(r−1)ny

0(r−1)ny,ny

0ny,nx
0ny,nw

0ny,(r−1)nw
0ny,ny

0ny,(r−1)ny

⎤

⎥
⎥⎥⎥⎥
⎦

Bk =
[
HkAk:k+r HkFk:k+rI1:nw

(r+1)nw
HkFk:k+rInw+1:rnw

(r+1)nw
HkI

1:ny

(r+1)ny
HkI

ny+1:rny

(r+1)ny

]

Ck =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−GkFk:k+rIrnw+1:(r+1)nw
(r+1)nw

−GkI
rny+1:(r+1)ny

(r+1)ny

0(r−1)nw,nw
0(r−1)nw,ny

Inw
0nw,ny

0(r−1)ny,nw
0(r−1)ny,ny

0ny,nw
Iny

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Dk =
[
HkFk:k+rIrnw+1:(r+1)nw

(r+1)nw
HkI

rny+1:(r+1)ny

(r+1)ny

]
,

Ek =
[
Ak:k+r Fk:k+rI1:rnw

(r+1)nw
I

1:rny

(r+1)ny

]

Fk =
[
Fk:k+rIrnw+1:(r+1)nw

(r+1)nw
I

rny+1:(r+1)ny

(r+1)ny

]
(4.17)

Remark 4.3 If at a particular time step k, Rk is null, the minimum of the state estimation error does
not exist uniquely. However, the user can set Xk = 0 and continue to apply the observer at the next time
step.

Remark 4.4 A way of determining the matrix Mk is the following. Rk being symmetric, its singular

value decomposition takes the following form: Rk = Uk

[
Γk 0
0 0

]
UT

k , where Uk is an orthogonal matrix

and Γk is a non-singular diagonal matrix. Let us set Mk = [
Iγk

0
]

UT
k , where γk = rank(Rk) =

rank(Γk). Then MkRkMT
k = Γk is non-singular.

Let establish the proof of Theorem 4.2.

Proof. Let us rewrite equation (4.8) under the form

ẽk+1 = (Ak − IXkMkBk)ẽk + (Ck − IXkMkDk)ηk+r, (4.18)

where ẽk =
⎡

⎣
ek

wk:k+r−1
vk:k+r−1

⎤

⎦, ηk+r =
[

wk+r
vk+r

]
, I =

[
Inx

0rnη ,nx

]
, nη = nw + ny and Ak, Bk, Ck and Dk are given

in (4.17).
Now, recalling that (wk)k∈N and (vk)k∈N are sequences of independent Gaussian noises, it comes that

ηk+r and ẽk are independent stochastic signals (which is the reason why the previous transformation has
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been made). Besides, ek having zero mean (according to Theorem 4.1) and wk+r and vk+r having zero
means (by assumption), it comes that ẽk and ηk+r have zero means, and thus

P̃k+1 = (Ak − IXkMkBk)P̃k(Ak − IXkMkBk)
T + (Ck − IXkMkDk)Σk+r(Ck − IXkMkDk)

T , (4.19)

where P̃k =
[

Pk Ψk
Ψ T

k Σk:k+r−1

]
, Σk+r =

[
Wk+r 0

0 Vk+r

]
, Σk:k+r−1 =

[
Wk:k+r−1 0

0 Vk:k+r−1

]
, Pk =

E
[
ek eT

k

]
and Ψk = E

[

ek

[
wk:k+r−1
vk:k+r−1

]T
]

.

Now, the rest of the proof is devoted to the calculation of the gain Xk that leads to the minimum
variance of ek, i.e. that minimizes tr(Pk+1). Then, tr(P̃k) = tr(Pk) + tr(Σk:k+r−1), but Σk:k+r−1 being
independent from the gain Xk, it leads that finding Xk that minimizes tr(Pk+1) is equivalent to finding
Xk that minimizes tr(P̃k+1).

In order to do that, let us calculate ∂tr(P̃k+1)

∂Xk
and ∂2tr(P̃k+1)

∂X2
k

. Using derivation’s matrices formulas from

Petersen & Pedersen (2008), it comes as

∂tr(P̃k+1)

∂Xk
= 2XkMkRkMT

k − 2I
T(

AkP̃kB
T
k + CkΣk+rD

T
k

)
MT

k , (4.20)

and

∂2tr(P̃k+1)

∂X2
k

= 2MkRkMT
k , (4.21)

where Rk = BkP̃kB
T
k +DkΣk+rD

T
k . It is clear that ∂2tr(P̃k+1)

∂X2
k

is a non-negative symmetric matrix. Then let

us choose the matrix Mk such that MkRkMT
k is non-singular (a way of doing it is given in Remark 4.4).

Then, it comes that ∂2tr(P̃k+1)

∂X2
k

is a positive symmetric definite matrix, and thus, there exists a unique

solution Xk that minimizes tr(P̃k+1), solution satisfying ∂tr(P̃k+1)

∂Xk
= 0. Hence, it leads to the following

value for Xk:

Xk = I
T(

AkP̃kB
T
k + CkΣk+rD

T
k

)
MT

k

(
MkRkMT

k

)−1. (4.22)

�
Remark 4.5 It is important to note that the variance is minimized from each time step to the next
one: the variance minimization is local. Thus, there is no reason to obtain a global minimum variance
observer. However, in some cases, that way of doing can lead to an optimal solution (as for the Kalman
filter, see in Anderson & Moore, 1979). But, in the present case, it is not the case: the local optimization
leads to suboptimal global solution. This is due to the use of the extended state vector ẽk composed by
the state estimation error but also by the noises. This point is explained in detail in Anderson & Moore
(1979), page 300.

Note that in Sundaram & Hadjicostis (2007) and Hsieh (2009b), the proposed observer are also
suboptimal, as they are also constructed from time step to time step with a local variance minimization
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goal. As a consequence, and as the local minimum in each time step in unique (see the proof of Theorem
4.2), the three observers give the same state estimation and Hsieh (2009b) as well as the observer
proposed in this paper lead to the same UI estimation (see the example’s results). However, the three
algorithms proposed in the papers for the state and UI estimation are very different.

Then, again, the main contribution of this paper is not in terms of performance. The contribution is
first to unify the estimating method for UI estimation (Sundaram & Hadjicostis, 2007 has not proposed
any UI estimation method, and Hsieh, 2009b has proposed two different algorithms depending on
whether the matrix Ek is null or not). The second contribution is the stability results given in the next
subsection. This has not been done in previous works (probably due to the complex approaches of
previous observers that cannot easily lead to the derivation of stability conditions).

4.3. Stability property in LTI case

Let consider the LTI system associated with system (3.1). The aim of the present subsection is to derive
conditions for the convergence of matrix P̃k.

In order to do so, let assume that matrix DΣD is non-null. This guarantee the possible construction
of a constant matrix M such that the inversion needed in the calculation of P̃k+1 from P̃k is always
possible (replace Rk by DΣD in the construction proposed in Remark 4.4).

• First of all, let recall the dynamics of P̃k given in equation (4.16):

P̃k+1 = (A − IXkMB)P̃k(A − IXkMB)T + (C − IXkMD)Σ(C − IXkMD)T , (4.23)

• Let us set Xk = IXk. Then equation (4.23) can be written as

P̃k+1 = (A − XkMB)P̃k(A − XkMB)T + (C − XkMD)Σ(C − XkMD)T . (4.24)

• By setting

⎧
⎪⎨

⎪⎩

S = CΣD
T

MT

Θ = MDΣD
T

MT

Q = CΣC
T

, (4.25)

and then by setting As = A − SΘ−1MB, Bs = MB, Qs = Q − SΘ−1ST and Kk = Xk − SΘ−1, it
comes as

P̃k+1 = (As − KkBs)P̃k(As − KkBs)
T + KkΘKT

k + Qs. (4.26)

• Finally, using the well-known results for the Kalman Filter (available for example in Anderson &
Moore, 1979), the following theorem holds.

Theorem 4.3 With the notations introduced previously, and under the following conditions:

• the pair (As, Bs) is detectable,

• the pair (As, Q1/2
s ) is stabilizable,
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the covariance matrix P̃k given in Theorem 4.2 converges to the stabilizing solution P̃ of the following
algebraic Riccati equation:

P̃ = (As − KBs)P̃(As − KBs)
T + KΘKT + Qs. (4.27)

As a consequence, the state estimation error ek = xk − x̂k of the state observer introduced in
Theorems 4.1 and 4.2 converges in mean-square to a constant positive bound.

5. UI Observer

In this section, the best linear unbiased estimator (BLUE) is constructed for UI estimation.
From equation (3.2), it comes that

yk:k+r = Ak:k+rxk + Bk:k+rũk:k+r + Dk:k+rd̃k:k+r + Fk:k+rw̃k:k+r + vk:k+r. (5.1)

By rewriting it, it comes:

zk = Dk:k+rdk:k+r + εk, (5.2)

where zk = yk:k+r − Bk:k+ruk:k+r − Ak:k+rx̂k is only made by known estimation, inputs and
measurements and

εk = Ak:k+rek + Fk:k+rwk:k+r + vk:k+r. (5.3)

Then εk can be rewritten under the following form:

εk = Ekẽk + Fkηk+r, (5.4)

where matrices Ek and Fk are given in (4.17). It is clear that εk is a Gaussian signal (as a linear
combination of Gaussian signals) with expected value equal to E[εk] = 0 (as E[ek] = 0, E[w̃k:k+r] = 0
and E[ṽk:k+r] = 0), and covariance matrix equal to

Pεk
= EkP̃kE

T
k + FkΣk+rF

T
k . (5.5)

In order to establish the UI observer, let us consider the following equation

d̂k = Lkzk. (5.6)

Let us look for the gain Lk leading to the BLUE. Both following theorems will be necessary in order
to achieve the desired result. Before establishing them, let us make the following assumption.

Assumption 5.1. There exists an integer r � 1 such that for any k � 0 the following rank condition
holds

rank
(
Dk:k+r

) = rank
(
Dk+1:k+r

) + nd. (5.7)

Assumption 5.1 is needed in order to estimate the UI (as it will be seen in the proof of Theorem 5.1).
The following lemma gives another characterization of the rank condition given in Assumption 5.1.
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Lemma 5.1 For any r � 1, the following equation

rank

([
Dk:k+r
Und ,r

])
= rank(Dk:k+r) (5.8)

is equivalent to

rank
(
Dk:k+r

) = rank
(
Dk+1:k+r

) + nd. (5.9)

Proof. For any r � 1 and any k � 0, we have

[
Dk:k+r
Und ,r

]
=

⎡

⎣
Ek 0ny,rnd

Σk,rDk Dk+1:k+r
Inx

0nx,rnd

⎤

⎦

=
⎡

⎣
Iny

0 Ek

0 Irny
Σk,rDk

0 0 Ind

⎤

⎦

⎡

⎣
0ny,nd

0ny,rnd

0rny,nd
Dk+1:k+r

Ind
0nd ,rnd

⎤

⎦ , (5.10)

where Σk,r =

⎡

⎢⎢
⎣

Ck+1Dk
Ck+2Ak+2Dk

...
Ck+rAk+r−1...Ak+1Dk

⎤

⎥⎥
⎦. The matrix

⎡

⎣
Iny

0 Ek

0 Irny
Σk,rDk

0 0 Ind

⎤

⎦ being clearly non singular, the

rank condition given by the lemma is proved. �

5.1. Unbiased UI Observer

Theorem 5.1 Let Assumption 5.1 hold. Then, equation (5.6) defines an unbiased observer for the UI
dk of system (3.1) if and only if the gain Lk takes the following form:

Lk = Jk + ZkNkHk, (5.11)

where Jk = Und ,rD
†
k:k+r, Hk = I(r+1)ny

− Dk:k+rD
†
k:k+r, and matrices Zk and Nk are any matrices

with appropriate and compatible dimensions (they will be discussed in the sequel). Furthermore, the UI
estimation error covariance matrix Pdk

= E[edk
eT

dk
] (where edk

= dk − d̂k is the UI estimation error) is
given by

Pdk
= LkPεk

LT
k . (5.12)

Proof. The UI estimation error edk
= dk − d̂k gives

edk
= dk − d̂k

= Ur,nd
dk:k+r − Lkzk

= Ur,nd
dk:k+r − Lk(Dk:k+rdk:k+r + εk)

= (Ur,nd
− LkDk:k+r)dk:k+r − Lkεk

(5.13)

Based on Definition 2.1, the proposed UI observer (5.6) is an unbiased one if and only if

∀k � 0, E[edk
] = 0. (5.14)
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In the present case, recalling that E[ε] = 0, the expected value gives

E[edk
] = (Ur,nd

− LkDk:k+r)E[dk:k+r]. (5.15)

Thus, in order to obtain an unbiased observer, it is necessary and sufficient to satisfy the following
condition:

LkDk:k+r = Ur,nd
, (5.16)

which, under Assumption 5.1 and thanks to Lemma 5.1, has a solution for Lk given by (5.11). Finally,
the UI estimation error becomes

edk
= −Lkεk, (5.17)

which gives the covariance matrix given in the theorem’s statement, and concludes the proof. �

5.2. Minimum Variance UI Observer

Theorem 5.2 Let Assumption 5.7 hold. Let us set Sk = HkPεk
HT

k . Let us assume that Sk �= 0. Then,
among all the observers under the form (5.6) with a gain Lk given in (5.11), the one leading to the BLUE
has the following gain Zk:

Zk = −JkPεk
HT

k NT
k

(
NkSkNT

k

)−1, (5.18)

where matrix Nk is chosen in order to make the matrix NkSkNT
k non-singular (a possible way of

constructing Nk is given in Remark 5.3).

Remark 5.1 In Theorem 5.2, the term ‘Best’ in BLUE means that the proposed observer has the lowest
variance as compared to the other unbiased observers.

Remark 5.2 If at a particular time step k, Sk is null, the minimum of the UI estimation error does not
exist uniquely. However, the user can set Zk = 0 and continue to apply the observer at the next time
step.

Remark 5.3 A way of determining the matrix Nk is the following. Sk being symmetric, its singular

value decomposition takes the following form: Sk = Uk

[
Γk 0
0 0

]
UT

k , where Uk is an orthogonal matrix

and Γk is a non-singular diagonal matrix. Let us set Nk = [
Iγk

0
]

UT
k , where γk = rank(Sk) = rank(Γk).

Then NkSkNT
k = Γk is non-singular.

Let establish the proof of Theorem 5.2.

Proof. Under the conditions of Theorem 5.1, the UI estimation covariance matrix is given by

Pdk
= (Jk + ZkNkHk)Pεk

(Jk + ZkNkHk)
T . (5.19)

Looking for the observer leading to the BLUE is equivalent to look for the gain Zk that gives the
minimum variance, or equivalently to the gain Zk that gives the minimum value for the trace of the
covariance matrix. It comes as

∂tr(Pdk
)

∂Zk
= 2ZkNkSkNT

k + 2JkPεk
HT

k NT
k , (5.20)
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and

∂2tr(Pdk
)

∂Z2
k

= 2NkSkNT
k , (5.21)

where Sk = HkPεk
HT

k .

It is clear that
∂2tr(Pdk )

∂Z2
k

is a non-negative symmetric matrix. Besides, Nk is chosen in order to make

it non-singular. Thus,
∂2tr(Pdk )

∂Z2
k

is a positive definite matrix, and hence there exists a unique gain Zk that

minimizes the trace of the covariance matrix Pdk
, and this gain is solution of the following equation:

∂tr(Pdk
)

∂Zk
= 0. (5.22)

Finally, it comes as

Zk = −JkPεk
HT

k NT
k

(
NkSkNT

k

)−1, (5.23)

which concludes the proof. �
Remark 5.4 Let us consider the LTI case, and let us discuss the stability of the matrices sequence

(Pdk
)k∈N. Let us assume that HFΣF

T
HT is non-null. Then it is possible to construct a matrix N such

that NSkNT is non-singular (recall that Sk = HkPεk
HT

k ). Now, using previous results, it comes that Pdk
can be expressed as

Pdk
= LkPεk

LT
k

= (J + ZkNH)Pεk
(J + ZkNH)T

= (J − JPεk
HTNT(NSNT)−1NH)Pεk

(J − JPεk
HTNT(NSNT)−1NH)T

= (J − JPεk
HTNT(NHPεk

HTNT)−1NH)Pεk
(J − JPεk

HTNT(NHPεk
HTNT)−1NH)T

= JPεk
JT − JPεk

HTNT(NHPεk
HTNT)−1NHPεk

JT .

(5.24)

The previous considerations show that, if the sequence (Pεk
)k∈N is stable, then it is also the case of the

sequence (Pdk
)k∈N. Besides, equation (5.5) gives

Pεk
= EP̃kE

T + FΣF
T

. (5.25)

Therefore, if the sequence (P̃k)k∈N is stable, it is also the case of the sequence (Pdk
)k∈N. Hence, under

the condition of stability and convergence on matrix P̃k given by Theorem 4.3, the sequence (Pdk
)k∈N is

also stable and converges to the matrix Pd given by

Pd = JPεJT − JPεHTNT(NHPεHTNT)−1NHPεJT , (5.26)

where Pε = EP̃E
T + FΣF

T
, and P̃ is the limit of convergence of P̃k.
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Algorithm 6.1. State and UI observer algorithm

Determination of the decoupling degree r � 1.
Initialize the value of x̂0.
Initialize the value of P0 = E[(x0 − x̂0))

T(x0 − x̂0))] (take a high value if not known).
for %k � 0 do

% State observer
Gk = DkUnd ,r(Dk:k+r)

+
Hk = I(r+1)ny

− Dk:k+rD
+
k:k+r

Calculate Ak, Bk, Ck, Dk, Ek and Fk with notations (4.17)


k+r =
[

Wk+r 0
0 Wk+r

]

Rk = BkP̃kB
T
k + Dk
k+rD

T
k

Determine of Mk according to remark 4.4

Xk = I
T
(AkP̃kB

T
k + Ck
k+rD

T
k )MT

k (MkRkMT
k )−1

Kk = Gk + XkMkHk
Sk = BkUr,nu

− KkBk:k+r
Rk = Ak − KkAk:k+r
x̂k = Rkx̂k + Skũk:k+r + Kkỹk:k+r
P̃k+1 = (Ak + Inx

XkMkBk)P̃k(Ak + Inx
XkMkBk)

T + (Ck + Inx
XkMkDk)
k+r(Ck + Inx

XkMkDk)
T

% UI Observer
Jk = Ur,nd

D†
k:k+r

Pεk
= EkP̃kE

T
k + Fk
k+rF

T
k

Sk = HkPεk
HT

k
Determine of Nk according to remark 5.3
Zk = −JkPεk

HT
k NT

k (NkSkNT
k )−1

Lk = Jk + ZkNkHk
zk = ỹk:k+r − Bk:k+r − Ak:k+rx̂k
d̂k = Lkzk
If needed, calculate Pdk

thanks to equation (5.6)
end for

6. Practical implementation

6.1. Algorithm

Algorithm 6.1 gives a practical method for implementing the state and UI observers described in
Sections 4 and 5.

6.2. Real time consideration

It is worth noting that due to the use of yk:k+r in the observers, the estimation of k + 1 can only be made
after k + r iterations. Hence, if r � 2, a delay of (k + r) − (k + 1) = r − 1 time steps is introduced in
the estimation process (note that such a delay is also introduced in the filters provided in Sundaram &
Hadjicostis, 2006 and in Hsieh, 2009b).
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For some systems, such a delay can be very prejudicial, as controlling time-delayed systems is very
difficult (ususally more difficult than controlling uncertain systems (Richard, 2003)). For such systems,
the proposed observer cannot be used if r � 2.

Fortunately, not all applications are concerned by such an issue. Indeed, for many applications the
estimation can be done with a slight delay without any consequence, or the estimation can even be done
offline. In those cases, the proposed approach is totally satisfying.

Anyway, to the best of the authors’ knowledge, when Assumption 4.1 is not satisfied for r = 1, there
does not exist any unbiased observer with minimum variance without a delay.

6.3. Extension to linear parameter varying case

Let consider the following linear parameter varying system:
{

xk+1 = Aρk
xk + Bρk

uk + Dρk
dk + Fρk

wk

yk = Cρk
xk + Eρk

dk + vk
, (6.1)

whose the only difference with system (3.1) is the fact that all system matrices do not depend explicitly
on time, but depend on a time-varying parameter ρk. In the sequel, the parameter ρk is assumed to be
known in real-time, and to belong to a compact set Ω of Rnρ .

The results presented in the previous sections can be easily extended to such systems. In particular, if
Algorithm 1 is used inline, it is just needed to provide it the successive values of the parameter. Besides,
Assumptions 4.1 and 5.1 are replaced by Assumptions 6.1 and 6.2, respectively.

Assumption 6.1 There exist an integer r � 1 such that for any ρk:k+r ∈ Ωr+1 the following rank
condition holds:

rank
(
Dρk:k+r

) = rank
(
Dρk:k+r

) + rank

([
Dρk

Eρk

])
. (6.2)

Assumption 6.2 It exists an integer r � 1 such that for any ∀ρk:k+r ∈ Ωr+1 the following rank
condition is satisfied:

rank
(
Dρk:k+r

) = rank
(
Dρk:k+r

) + nd. (6.3)

The statements of Assumptions 6.1 and 6.2 are justified by the fact that the rank conditions have to
be satisfied for any sequence of the parameter values.

7. Illustrative examples

In this section, three examples are proposed in order to illustrate the main results provided in the paper.

7.1. Example 1

Let consider the following system (from Sundaram & Hadjicostis, 2006 and Hsieh, 2009a):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk+1 =
[

0.1 1

0 0.2

]

xk +
[

1 1

0 1

]

dk + wk

yk =
[

0 1

1 1

]

xk +
[

0 0

0 1

]

dk + vk

, (7.1)
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Table 1 Example 1. RMSE (average on 1000 simulations) of the HO, SHO and MIVO

RMSE on ... x1 x2 d1 d2

SHO 0.2267 0.1991 NA NA
HO 0.2273 0.2004 0.3095 0.2294
MIVO 0.2267 0.1991 0.3088 0.2267

Estimation of the state x1.

Estimation of the state x2.

Fig. 1. Example 1. State estimation.

where wk and vk are Gaussian noises with zero mean and covariance matrices equal to W =
diag(0.01, 0.01) and V = diag(0.04, 0.04), respectively. As in Hsieh (2009b), the UI is set to dk =[

5h[k − 1] − 5h[k − 20] + 5h[k − 70]
4h[k − 1] − 4h[k − 30] + 4h[k − 65]

]
, where h is the Heaviside function. Here the rank condition is

satisfied for r = 2. The observers are used in order to estimate both state and UI. The results are pre-
sented on Figs 1 for the state estimation, and 2 for the UI estimation. Table 1 gives the root–mean–square
performances. The observers are denoted by Sundaram and Hadjicostis Observer (SHO) for the observer
proposed in Sundaram & Hadjicostis (2006), Hsieh Observer (HO) for the one proposed in Hsieh
(2009b) and Meyer Ichalal and Vigneron Observer (MIVO) for the one proposed in the present paper.

It can be seen in Table 1 that the proposed observer gives results slightly equivalent than those
given by Hsieh (2009a), and similar results to the one proposed in Sundaram & Hadjicostis (2006).
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Estimation on Unknown Input d1.

Estimation on Unknown Input d2.

Fig. 2. Example 1. UI estimation.

As discussed in Remark 4.5, it can be concluded that, even if the three observers are constructed in
different ways, they seem to give similar results. The few differences between the proposed observer
and the one given by Hsieh (2009b) may be due to the difference of initialization that may affect the
first estimations.

7.2. Example 2

In this second example, let us consider the following system (from Sundaram & Hadjicostis, 2006 and
Hsieh, 2009a):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 =

⎡

⎢⎢⎢
⎣

0.1 0 0 0

0 0.2 0 0

0 0 0.3 0

0 0 0 0.9

⎤

⎥⎥
⎥
⎦

xk +

⎡

⎢⎢⎢
⎣

1 0

0 1

1 0

0 1

⎤

⎥⎥
⎥
⎦

dk + wk

yk =
[

1 0 0 0

−1 1 1 −1

]

xk + vk

, (7.2)
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Table 2 Example 2. RMSE (average on 1000 simulations) of the HO, SHO and MIVO

RMSE on ... x1 x2 x3 x4 d1 d2

SHO 0.0998 0.2123 0.1020 0.1534 NA NA
HO 0.0998 0.2123 0.1020 0.1535 0.1413 0.2585
MIVO 0.0998 0.2122 0.1020 0.1534 0.1413 0.2584

Estimation of the state x1.

Estimation of the state x2.

Fig. 3. Example 3. State estimation.

where wk and vk are Gaussian noises with zero mean and covariance matrices equal to W = 0.01I4 and

V = 0.01I2, respectively. As in Hsieh (2009b), the UI is set to dk =
[

sin(0.01k) + 0.2 sin(0.03k)
0.1 sin(0.005k) + 0.1 sin(0.05k)

]
.

Here the rank condition is again satisfied for r = 2. Note that for this example, Hsieh (2009b) uses
another procedure than in the previous example in order to derive its estimations (as E = 0), whereas in
our case, the same observer is used, which has an advantage of unification for real applications.

Then the observers are used in order to estimate both state and UI. The results are presented in
Table 2.

Here again, the three observers give quite similar results.
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Estimation on Unknown Input d1.

Estimation on Unknown Input d2.

Fig. 4. Example 3. UI estimation.

7.3. Example 3

In this third example, let consider a modified version of Example 1 in order to illustrate the exhaustive
form of an observer dealing with system such as (3.1). In particular, a known input is added, and the
matrices are time-varying.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk+1 =
[

0.1 1
k2+1

0 0.2

]

xk +
[

1 exp(−k)

0 1

]

uk +
[

1 1
k+1

0 1

]

dk + wk

yk =
[

0 1

1 + sin(k2) 1

]

xk +
[

0 0

0 1

]

dk + vk

, (7.3)

where wk and vk are Gaussian noises with zero mean and covariance matrices equal to W =
diag(0.01, 0.01) and V = diag(0.04, 0.04), respectively. The known input is set to uk =

[−4 cos( π
20 k)

4 cos( π
20 k)

]
.

Finally, as in Example 1, the UI is set to dk =
[

5h[k − 1] − 5h[k − 20] + 5h[k − 70]
4h[k − 1] − 4h[k − 30] + 4h[k − 65]

]
, where h is the

Heaviside function.
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Table 3 Example 3. RMSE (average on 1000 simulations) of the HO, SHO and MIVO

RMSE on ... x1 x2 d1 d2

MIVO 0.165 0.200 0.196 0.227

Here the rank condition is satisfied for r = 2. In this example, due to the presence of the known
input, the observers provided in Sundaram & Hadjicostis (2006) and Hsieh (2009b) cannot be used
anymore (as this case has not been considered in those papers).

The observers provided in the present paper are used in order to estimate both state and UI. The
results are presented on Figs 3 for the state estimation, and 4 for the UI estimation. Table 3 gives the
root–mean–square performances.

It can be seen in Figs 3 and 4 that the state and UI estimations give quite good results (numerical
values are given in Table 3), which confirm the theoretical contributions of the paper in a more complex
example (with known input and time-varying matrices).

8. Conclusions

In that paper, the problem of state and input estimation is considered for an LTV system with UI and
Gaussian noises in both state and measurement equations. The classical rank condition usually used to
decouple the state estimation from the UI is relaxed in order to provide an observer that can be used
in a wider range of systems. Observers are proved to be unbiased and with minimum variance error.
Contrary to equivalent works on the subject, a unified UI observer is provided. Besides, a stability
theorem is given for LTI systems, which is a novelty for minimum variance observer with relaxed rank
condition. Examples are given in order to illustrate the results.
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