
HAL Id: hal-02441990
https://hal.science/hal-02441990v1

Submitted on 16 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

aMV-LSTM: an attention-based model with multiple
positional text matching

Thiziri Belkacem, Taoufiq Dkaki, Jose G. Moreno, Mohand Boughanem

To cite this version:
Thiziri Belkacem, Taoufiq Dkaki, Jose G. Moreno, Mohand Boughanem. aMV-LSTM: an attention-
based model with multiple positional text matching. 34th ACM/SIGAPP Symposium on Applied
Computing (SAC 2019), Apr 2019, Limassol, Cyprus. pp.788-795. �hal-02441990�

https://hal.science/hal-02441990v1
https://hal.archives-ouvertes.fr

Official URL

DOI : https://doi.org/10.1145/3297280.3297355

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/24975

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Belkacem, Thiziri and Dkaki, Taoufiq

and Moreno, José and Boughanem, Mohand aMV-LSTM: an

attention-based model with multiple positional text matching.

(2019) In: 34th ACM/SIGAPP Symposium on Applied

Computing (SAC 2019), 8 April 2019 - 12 April 2019

(Limassol, Cyprus).

aMV-LSTM: an a!ention-based model with multiple positional
text matching

Thiziri Belkacem
Paul Sabatier University, IRIT laboratory

thiziri.belkacem@irit.fr

Taoufiq Dkaki
Jean Jaures University, IRIT laboratory

taoufiq.dkaki@irit.fr

Jose G. Moreno
Paul Sabatier University, IRIT laboratory

jose.moreno@irit.fr

Mohand Boughanem
Paul Sabatier University, IRIT laboratory

mohand.boughanem@irit.fr

ABSTRACT

Deep models are getting a wide interest in recent NLP and IR state-
of-the-art. Among the proposed models, position-based models
and attention-based models take into account the word position
in the text, in the former, and the importance of a word among
other words in the latter. The positional information are some of
the important features that help text representation learning. How-
ever, the importance of a given word among others in a given text,
which is an important aspect in text matching, is not considered
in positional features. In this paper, we propose a model that com-

bines position-based representation learning approach with the
attention-based weighting process. The latter learns an importance
coefficient for each word of the input text. We propose an exten-
sion of a position-based model MV-LSTM with an attention layer,
allowing a parameterizable architecture. We believe that when the
model is aware of both word position and importance, the learned
representations will get more relevant features for the matching
process. Our model, namely aMV-LSTM, learns the attention based
coefficients to weight words of the different input sentences, before
computing their position-based representations. Experimental re-
sults, in question/answer matching and question pairs identification
tasks, show that the proposed model outperforms the MV-LSTM
baseline and several state-of-the-art models.

KEYWORDS

Attention models, positional, text representation, text matching

. . .https://doi org/10 1145/3297280 3297355

1 INTRODUCTION

Deep neural networks have been used in a large scope of natural
language processing (NLP) and information retrieval (IR) models,
including several models for text representation and matching. In
most state-of-the-art studies [7, 14, 17, 23], the input text is first
mapped to a set of word vectors, then different mechanisms are used
to capture the most important representation features. Words of the
input texts are considered according to their semantic similarities.
Position-based models [9, 22] rely on the word position to compute
representations of the input text. The positional information of the
word, such as proximity, word dependencies and the sequence
structure, are important in learning text representations and can
have an important impact in the matching process. Attention-based
representation models [16, 24, 27], learn coefficient vectors for the
weighting process. These coefficients enable to designate the words
from the input text that deserve more attention, regardless of their
position. But, it would be interesting for a representation learning
model to have information about the most important words, as well
as their positions in the input text.
In this paper, we propose a model architecture that combines
attention-based and position-based representation learning. Our
model, namely aMV-LSTM, is an extension of the positional
sentence representa-tion model (MV-LSTM) [22]. We adopted
different architectures of the aMV-LSTM model, to compute the
importance weight of every term in the input text, using learnable
attention coefficients, then construct a position-based sentence
representations. In this work, our contributions are as follow:

(1) We combine the position-based and the attention-based rep-

resentation learning algorithms. To do so, we propose a

model architecture that extends an existing position-based

model, with an attention-based layer. Our aim is to focus

more on the most important and informative words of the in-

put text making more effective the succeeding text matching

layers.

(2) We conduct a comparative experimental setup, where we

compare different models of the state-of-the-art and the pro-

posed representation learning model. We use two question-

answering (QA) tasks: question-answer matching in the

WikiQA1 dataset and question-question matching (question-

pairs identification) in QuoraQP2 dataset. The results show

the effectiveness of the proposed model compared to the

different baselines.

2 RELATEDWORK

Among the different neural models proposed for text matching, we

are interested in position-based and attention-based deep models.

In this section, we first, present some deep models for text match-

ing. Then, we present the attention-based and the position-based

concepts, in text representation learning and matching, with some

corresponding models from the state-of-the-art.

2.1 Deep models for text matching

Representation and text matching are central for many real world

applications, such as document retrieval [7], question answering

[17] and paraphrase identification [14]. Several approaches based

on neural networks have been proposed, to go beyond the classical

similarity of bag-of-words [12, 20].

Huang et al [7], propose the Deep Structured Semantic Model

(DSSM). This model uses a DNN architecture in order to map a

high-dimensional sparse features vector, of a given input text, into

a low-dimensional dense vector. The architecture of DSSM is made

of a multiple layers percetron (MLP) with three processing layers: a

word hashing layer that constructs a high dimensional sparse vector

followed by two projection layers that produce a low-dimensional

semantic representation vector. A convolution based version of

DSSM, namely C-DSSM, is proposed by Shen et al [18]. C-DSSM

extends the DSSM model with a convolutional layer, such that a

3-max-pooling is applied to the computed hash vector in order to

extract stronger representation features. The experimental results

show that the C-DSSM outperforms the DSSM model. In [5], the

authors proposed two convolutional models for sentence matching:

ARC-I and ARC-II. The first constructs a sentence representation

using a sequence of convolution and pooling layers, where the out-

put features vector is the corresponding sentence representation.

An MLP layer is then used to compute the matching degree of the

input sentences. ARC-II applies a series of convolution and pooling

layers to the input matching matrix. In both ARC-I and ARC-II, the

input sentences are mapped to their embedded word vectors. In

[14], Pang et al proposed a text matching model that matches two

input sequences as in image recognition, namely MatchPyramid.

This model, first, considers the embedded vectors of the input text

sequences, using embeddings trained in the target corpus, then com-

putes the matching tensor using cosine and dot-product similarity

functions. The computed matching tensor is then fed to a sequence

of convolution and pooling layers in order to extract high level

interaction signals between the two input texts. Reported results, in

paraphrase identification and paper citation matching tasks, show

that the model outperforms several classical and state-of-the-art

models.

1https://www.microsoft.com/en-us/download/details.aspx?id=52419
2http://qim.ec.quoracdn.net/quora_duplicate_questions.tsv

2.2 Attention-based text matching models

The "attention" concept, resulting from machine translation [1],

has brought a significant gain in several NLP applications, includ-

ing sentiment classification [16, 26] and paraphrase identification

[27]. Attention-based models, identify the kernel information to

be considered in a given sequence and allow focusing on some

discriminated elements. The main idea is as follows:

Given an element sequence S , the attention-based model should

learn a coefficient vector α that determines how much attention

should be given for each element of S . The elements in S will be

then weighted accordingly. Hence, the attention vector α is used in

order to elaborate an optimal weighting process according to the

task to be performed.

Severyn et al [17] proposed a simple attention model to explore

contextual information of input sentences, in order to handle the

QA task. The proposed model is based on convolution layers, ap-

plied to the word level, combined with additional tf-idf features,

such as word overlap features and BM25 scores, to compute the fi-

nal matching score. Yang et al [26] propose a hierarchical attention

network for document classification. The model combines a word

and a sentence attention levels in a recurrent model architecture.

The input text is first represented using word embeddings, then

a first bidirectional GRU3 (bi-GRU) layer is applied to compute a

representation vector for the input text. This vector is then passed

through an MLP layer in order to construct an intermediate repre-

sentation vector that will be used to learn attention coefficients of

the different words. A second bi-GRU layer is used to compute the

sentence level representation and learn the corresponding atten-

tion coefficients. The same process as in the word level is repeated

in the sentence level. The final score is then computed based on

these representations. Yang et al [24] propose an attention-based

neural model (aNMM) for question-answer matching. aNMM uses

a DNN architecture with a value shared weighting scheme and

question words gating. In aNMM, some elements of the fully con-

nected layers share the same connection weights, according to the

interval of these elements values which represent the matching

signal strength. The input question and answer are represented

by their embedded word vectors. Then an interaction matrix is

computed using the cosine similarity. Then a bin-sum technique is

used, where elements of the same raw having interaction signal of

the same interval will be added. Hence, these elements share the

same connection weights. In addition to the value shared weights,

the aNMM model uses question gates, where input question word

vectors are used to compute attention scores for the shared weights.

The question gates determine the attention vector that enable the

model to focus on the strongest interaction signals from the value

shared weights.

2.3 Position-based models

The word position is already considered in convolutional and recur-

rent models for text matching. In convolutional models [5, 18], the

convolution layers process slighted windows or n-grams of the in-

put text in order to extract contextual features. In recurrent models

3Is a specific LSTM architecture that, differently from the basic LSTM, GRU uses a
gating mechanism to track the state of a given sequences without using separate
memory cells [1]

Figure 1: The bidirectional process in a bi-LSTM network with 2

layers. Forward (continue thick arrows) and backward (dashed thick

arrows) hidden states are computed by the equation 1.

[11, 13, 21], the words ordering of a given input sentence is pre-

served. In these models, the hidden activation vector, corresponding

to the last input word, is considered as the embedding vector of

the whole sentence. However, these models do not consider the

position of individual words in a given sequence. Position-based

models [9, 22] consider the position of an individual word, in a given

text, as an important factor to determine its importance weight.

Hui et al [9] proposed a representation learning model, based on

word positions, for a relevance-based text matching. The model

computes first the semantic similarity matrix using the embedded

word vectors of the input document and query terms. The similarity

matrix is then distilled, by selecting the k most significant matching

signals along the document words dimension. The objective is to

localize the relevance matching over all the matrix entries. This

matrix is then fed to the DRMM4[3] as input, to compute the final

matching score.

MV-LSTM [22] is a semantic matching model based on different

positions for sentence representation. The model uses bi-LSTM net-

works to construct a position-aware representations for the input

sentences. Each input sentence acquires a different representation

at each position provided by the bi-LSTM units, as follows: Let

St =
[−→
ht ,

←−
ht

]

be a bidirectional representation vector, at position t

of the input sentence S = (w0,w1, ...,wl). S contains l + 1 words,

wherewt is the embedded vector of the wordw at position t . In a

bi-LSTM unit, a similar process is repeated on both forward and

backward directions, to compute
−→
ht and

←−
ht vectors respectively.

The resulted vectors are concatenated to construct a unique rep-

resentation ht at a given position t . This process is highlighted in

figure 1 in a given position t . The pipeline equations 1 describe how

one hidden state ht is computed by an LSTM unit at one direction:

it = σ
(

Wxiwt +Whiht−1 + bi
)

,

ft = σ
(

Wxf wt +Whf ht−1 + bf

)

,

mt = ftmt−1 + it tanh
(

Wxmwt +Whmht−1 + bm
)

,

ot = σ
(

Wxowt +Whoht−1 + bo
)

,

ht = ot tanh(mt)

(1)

where i , f ,m and o are respectively: the input and the forget in-

formation, the information to memorize by the cell through the

current pass and the output information.Wx corresponds to the

4The architecture of the DRMM model [3] takes as input an interaction matrix of two
given texts, then applies a histogram function to map all input pairs to the same length,
based on intervals (beans) of elements of the interaction matrix. The histograms are
then fed to an MLP to compute the matching score.

weighting matrices of the different gates f ,m and o of the LSTM

network. In MV-LSTM [22], the positional sentence representa-

tion yt is computed, based on the embedded word vectors of that

sentence, by the equation 2.

yt = ε(St) (2)

where St = w0,w1, ...,wt is the sub-sequence of the first t + 1

words from S . ε stands for the computational pipeline, described in

equation 1, applied on forward and backward directions.

Given two input sentences S1 and S2, MV-LSTM computes inter-

action matrices based on the bidirectional representations of the

two sentences. These matrices are then passed through a pooling

layer, where k strongest interactions are selected and fed to the

final layer. Named k-Max pooling, this process is used in several

neural text matching models [10, 15, 17, 19]. The objective is to

remove the noisy features from the interaction tensor. The final

score s is computed using the features vector z resulted from the

pooling layer as described in equation 3.
s = δ (Uz + b) (3)

whereU and b stands for the MLP training parameters and δ is the

output activation function.

2.4 Discussion

In this paper, we consider short text matching models for QA tasks.

Most of the the reviewed models in the previous section treat the

input text sequences as a whole: words are represented by their

embedded vectors, then an interaction matrix is computed, using

functions such as the cosine similarity [5, 14]. Attention-based mod-

els [24, 26] have shown the effectiveness of the learnable attention

coefficients in the weighting process, for the input text representa-

tion learning and during the matching process. The attention-based

models associate an attention score to each word in the input text,

these scores represent the importance of each word among the

others, independently from their positions in the input text. While

in the position based models [11, 22], the importance of a given

word is mainly determined by its positional features. Position-based

models motivate the importance of the positional information, such

as the words ordering and individual positions of words in a given

input sequence. But, words are not weighted according to the other

words of an input sentence. These models basically rely on the

word position in the input text, ignoring the mutual differences

between its words that can determine the kernel words of that text.

Note that, attention-based and position-based models complement

each other and can be used together to exploit their advantages.

However, none of previously overviewed models have provided the

way to compute the representation of the input text, based on the

attention scores and positions of its words.

3 ATTENTION-BASED POSITIONAL TEXT
MATCHING

3.1 Motivation

Position based neural models [22] focuses at the word position as an

asset to construct complex representations for input sequences. Dif-

ferent features are learned from different positions independently

of the words themselves in the sentence. The position of a word

considerably influences its importance in the sentence as well as its

significant contribution to the meaning of that sentence. However,

there are some other parameters that can measure the contribution

of a given word in the sentence, such as the relatedness of this

word with the other words of that sentence. We believe that, in

a given sentence, there are always a few words that convey the

main information. Therefore, these words are the key words of

that sentence regardless of their position. So the matching model

should focus more on these words and give them more attention.

To highlight more this concept, let us look at the following example

taken from the WikiQA dataset: Q: "how are glacier caves formed?"

A1: "Ice formations in the Titlis glacier cave"

A2: "A glacier cave is a cave formed within the ice of a glacier"

A3: "Glacier caves are often called ice caves, but this term is properly

used to describe bedrock caves that contain formed year-round ice"

How can a position-based model identify the suitable answer from

A1, A2 and A3 for the question Q?

By focusing on the position of the question words on the differ-

ent answers, we can eliminate the A1 since the position of the

word stem "form" with respect to the position of the word "glacier"

does not correspond to the appropriate position ordering in the

question Q. But, the position alone could not help to find out the

most appropriate answer from the other two answers, A2 and A3,

where positions of the question words corresponds to the posi-

tions in these answers. In this case, the model must focus on some

words differently than the other words. In the question and in the

given answers: the word "form" needs more focus then the words

"glacier" and "cave" in the question Q and both the answers A2 and

A3, because we are asking about the formatting process. In order

to determine how many attention the model should give to each

word of the sentence, we propose to use an attention layer, before

computing a position-based representation for a given sentence.

The attention layer will learn an attention coefficient to each word,

based on its semantic representation (embedded vector), in order

to provide the positional representation layer with the relevant

information about the importance of the word at the position to be

processed.

3.2 Attention gating

We consider the MV-LSTM [22] model for short text matching

and propose a new model architecture that extends this model, to

take into account the attention-based coefficients in the weighting

process. Namely aMV-LSTM, the architecture of the model that

we propose is described in figure 2. This figure show the attention

layer that is used to extend the architecture of the MV-LSTM [22]

model.

Given two input sentences to be compared: S1 = (w0
1
,w1

1
, ...,wl1

1)

of l1 words and S2 = (w0
2
,w1

2
, ...,wl1

2) of l2 words. In both S1 and

S2, wt
i is the embedded vector of the word w at position t of the

sentence Si . We compute attention weight vectors α i for all words

of each sentence, using a gating function [24], as represented in

equation 4.

αt
i
=

exp(V i
T
.wt

i)
∑li
j=1 exp(V i

T
.w j

i)
(4)

Where V i is a model parameter that represents the attention coef-

ficients vector for the input sentence Si , i ∈ {1, 2}. u
T represents

the transposed vector of u.

The αi weights, are computed with dependence on the words in

the sentence from each other. Hence, it will provide the positional

model with an information about words requiring more attention

while constructing the representation of the whole sentence. The

input sentence representations are then computed using their em-

bedded word vectors, scaled with the attention coefficients:

S ′1 = w0
1 × α0

1
,w1

1 × α1
1
, ...,wl1

1 × αl1
1

S ′2 = w0
2 × α0

2
,w1

2 × α1
2
, ...,wl2

2 × αl2
2

The attention-based representations S ′
1
and S ′

2
are then provided to

a bi-LSTM layer, to compute a positional sentence representation, as

described in equation 2. The final matching score, is then computed

by equation 3 as in the original MV-LSTM model [22].

3.3 Model training

The aMV-LSTM model could be trained with, two different loss

functions, according to the learning objective:

Rank hinge loss. is an objective function for a ranking tasks, this

function is used in several text matching models [3, 4]. Given a

sequence S and two other different sequences S+ and S−, such that

S+ is most similar to S and must be ranked better then S−. The loss

function L is defined in equation 5.

L(S, S+, S−;θ) =max(0, 1 − s(S, S+) + s(S, S−)) (5)

where θ represents the model parameters and s(S, S∗) is the match-

ing score predicted by the model for the input sentences S and

S∗.

Categorical cross entropy. is an objective function for a classifica-

tion tasks [28]. Given two sequences S1 and S2, the objective is to

compute the probability that event x = S1 ≈ S2 (S1 is similar to S2)

may occur. The loss function H is defined in equation 6.

H (p,q;θ) = −
∑

x

p(x)loд (q(x)) (6)

where q(x) is the observed probability computed by the model and

p(x) is the truth value.

4 EXPERIMENTS AND RESULTS

4.1 Experimental protocol

Tool. The model implementation and the experimental process are

made using theMatchZoo framework [2]. MatchZoo is a framework

for implementing, experimenting and comparing neural based text

matching models. This framework is developed with Python using

different deep learning libraries such as keras5, in addition to other

libraries.

Datasets. In our experiments, we used two datasets: Microsoft Re-

searchWikiQA Corpus [25], which is a set of question and sentence

pairs. The questions have been collected from Bing query logs. Each

question is linked to a Wikipedia page that potentially has the an-

swer. The candidate answers are the sentences of the summary

section of a corresponding Wikipedia page that provides the most

important information about the topic. The second corpus consists

of question pairs which are either duplicate6 or not. A data sam-

ple of the QuoraQP dataset is presented in table 1. Statistics about

5https://keras.io/
6Duplicate questions are questions that mean the same thing.

Figure 2: The aMV-LSTMmodel architecture. The input sentences

S1 and S2 are first mapped to their embedded word vectors via the

Embedding layer. Then, trainable attention coefficients αi
1 and α j

2

are used to weight the embedded representations of the input sen-

tences, in the A!ention layer. The Position layer aims to learn spe-

cific representations at each position of the input sentences. These

representations are then used by the Pooling and matching layer to

compute positional interaction matrices, for the forward and back-

ward representations. Then most important matching signals are

combined to compute the final matching score s .

both WikiQA and QuoraQP datasets are presented in table 2. In

both datasets, we used 80% for training, 10% for test and 10% for

validation of the proposed model. All the evaluated models use the

same experimental setup.

Parameters and embeddings. For all the models that use word em-

beddings, words are presented using the pre-trained Glove7 word

embedding. All the embedded vectors have been normalized. All

the different models have been trained to optimize the ranking

hinge loss function, defined in equation 5, for 400 epochs on the

WikiQA dataset and for 500 epochs to optimize the categorical

cross entropy, described in equation 6, on the QuoraQP dataset. For

every model, we reported the results performance at the end of the

training epochs. Concerning parameters of the baselines, we have

adopted the configuration of the best result published in the cor-

responding paper. The same configuration of the neural network,

with 50 bi-LSTM units and k = 100 in the k-Max pooling8 layer, are

used for MV-LSTM and aMV-LSTM.

Semantic interaction and features aggregation. We used the cosine

similarity function, of the bidirectional representations computed

for each input sentence, to compute the interaction matrices that

7http://nlp.stanford.edu/data/glove.840B.300d.zip
8The pooling layer is applied over both the forward and backward interaction matri-
ces, corresponding to the bi-directional position-based representations of the input
sentences.

are used in both MV-LSTM [22] and the proposed aMV-LSTM archi-

tectures. Let y1t and y
2
t ′ be representations computed with equation

2 for a given input sentences S1 and S2 (corresponding to S
′
1
and S ′

2
in aMV-LSTM), at positions t and t ′ respectively. We semantic sim-

ilarity sim between these sentences is computed using the cosine

function

sim(y1t ,y
2
t ′) =

y1Tt y2t ′

y1t

.

y2
t ′

where ‖y‖ stands for the L2 norm of then vector y.

4.2 Experimented models

aMV-LSTM configurations. We evaluated three architectures of the

aMV-LSTM model, we refer to each as follows:

• aMV-LSTM (Q) refers to the architecture where the attention

coefficients are learned for only the first element in the input

layer (question on the question-answer matching task and

first question only on the question-question matching task).

• aMV-LSTM (A) refers to the architecture where attention

coefficients are learned for only the second element in the

input layer (answer on the question-answer matching task

and second question only on the question-question matching

task).

• aMV-LSTM (Q+A) refers to the architecture described in

figure 2, where the attention coefficients are learned for

both the elements of input layer, at once.

Baselines. We considered the following state-of-the-art models:

• DSSM refers to the deep structured semantic IR model [8].

• CDSSM refers to extended version of DSSM model with a

convolutional layer [19].

• ARC-I and ARC-II are twomodel architectures for text match-

ing proposed by Hu et al [6].

• MV-LSTM is a position-basedmodel [22] amodel for position-

aware representations of the input sentences.

• ANMM is an attention-basedmodel with value sharedweight-

ing scheme [24].

• MATCHPYRAMID is a convolution based model for text

matching [14].

4.3 Results and discussion

In this section, we compare results of the different aMV-LSTM

model architectures, with those of the MV-LSTM baseline model.

We considered two different tasks: question answering with Wik-

iQA dataset and the classification task with QuoraQP dataset. Table

3 shows performance results of the different evaluated models, in

terms of ndcд@3, ndcд@5 andMAP , in the WikiQA dataset. In this

table, the aMV-LSTM (Q) performs better than the basic MV-LSTM

model with more than 7%, in terms of MAP. The aMV-LSTM (A) and

aMV-LSTM (Q+A) are less effective than the MV-LSTM baseline.

Focusing on the words of the question, in aMV-LSTM (Q), is better

than focusing on the words of the answer, in aMV-LSTM (A), or the

words of both the question and the answer, in aMV-LSTM (Q+D).

Besides, WikiQA is a collection of asymmetric data, the answer

provides the information sought by the question. Therefore, it is

more important to focus in the question in order to find the most

Table 1: Sample of some questions from the QuoraQP dataset, where each question is given two different ids and the last column tells whether

the question is duplicated or not (1 or 0 respectively).

id qid1 qid2 question1 question2 is_duplicate

0 1 2
What is the step by step guide to invest
in share market in india?

What is the step by step guide to invest
in share market?

0

1 3 4
What is the story of Kohinoor (Koh-i-Noor)
Diamond?

What would happen if the Indian government
stole the Kohinoor (Koh-i-Noor) diamond back?

0

2 5 6
How can I increase the speed of my internet
connection while using a VPN?

How can Internet speed be increased by
hacking through DNS?

0

3 7 8
Why am I mentally very lonely? How can
I solve it?

Find the remainder when [math]23^{24}[/math]
is divided by 24,23?

0

4 9 10
Which one dissolve in water quikly sugar,
salt, methane and carbon di oxide?

Which fish would survive in salt water? 0

5 11 12
Astrology: I am a Capricorn Sun Cap moon
and cap rising...what does that say about me?

I’m a triple Capricorn (Sun, Moon and ascendant
in Capricorn) What does this say about me?

1

6 13 14 Should I buy tiago?
What keeps childern active and far from
phone and video games?

0

7 15 16 How can I be a good geologist? What should I do to be a great geologist? 1

Table 2: Description of the experimental datasets: WikiQA and

QuoraQP. In both datasets, we used 10% for test, 10% for validation

and 80% for training.

WikiQA

Questions Sentences Answers

3047 29258 1473

QuoraQP

Question pairs Positive (duplicates) Negative (non-duplicates)

404351 149306 255045

appropriate answer. Table 4 present the 3 first answers, correspond-

ing to one sampled question from WikiQA dataset. The considered

question is "Where do crocodiles live?" and there are 21 possible an-

swers in the WikiQA dataset, where only one question is relevant

(label = 1). Note that the answers retrieved by the MV-LSTMmodel

as well as the different aMV-LSTM model architectures deal with

the same subject as the question. However, the correct answer is

ranked better by the aMV-LSTM (Q) model. Compared to the rank

with aMV-LSTM (A) and aMV-LSTM (Q+A) models. This example

shows the effectiveness of the focus on the input question words.

Figure 4 show the comparison of the accuracy evolution during

the training and validation phase of the different architectures of

the proposed model aMV-LSTM and the MV-LSTM baseline, in

the QuoraQP dataset. The red line on the curves corresponding

to aMV-LSTM (A), aMV-LSTM (Q) and aMV-LSTM (Q+A), show

the accuracy value of the MV-LSTM model after training. We can

notice that all aMV-LSTM architectures evolve in the same way

and converge to higher accuracy values compared to the MV-LSTM

performance. aMV-LSTM (Q) outperforms the MV-LSTM baseline

with 3.8% in terms of accuracy. The attention-based weights has

the same effect in the different aMV-LSTM architectures, in the

QuoraQP dataset, because it is a symmetric dataset of inputs with

the same nature, where the task consists of identifying whether

an input question is a duplicate of another question or not. So, the

comparison process considers inputs with approximately a same

length and the same structure.

Comparison with state-of-the-art models

In table 3 and figure 3 we represent the performance results of our

model architectures, compared to the MV-LSTM baseline and some

other models from the state-of-the-art. Note that the proposed

model outperforms the MV-LSTM baseline and state-of-the-art

models. In table 3, the aMV-LSTM (Q) model outperforms all the

evaluated models. Figure 3 shows results of the question-pairs iden-

tification (in QuoraQP dataset). In this figure, the dashed line corre-

sponds to the maximum accuracy value given by the MatchPyramid

model [14]. The continue red line corresponds to the accuracy of the

MV-LSTM model. All the proposed aMV-LSTM model architectures

perform better then the position-based MV-LSTM baseline. Results

are also better then the attention-based aNMM model [24], where

attention gates are applied to the final model layer, independently

of the words position. However, better performances corresponds

to the MATCHPYRAMID and ARC-II [6] models. These models

are based on the interaction matrices of embedded word vectors of

the input texts. According to the different results, in both WikiQA

and QuoraQP datasets, we can conclude that the combination of

attention coefficients learning with the position-based representa-

tion learning, helps to improve state-of-the-art results. When the

word position only is used (MV-LSTM) or the word attention only

is used (aNMM), The results are less performent then the proposed

aMV-LSTM model, in both WikiQA and QuoraQP datasets. How-

ever, the convolution based models, ARC-II and MATCHPYRAMID,

outperform all the different models in QuoraQP dataset.

5 CONCLUSION

In this paper, we presented aMV-LSTM, a positional attention-based

model for text matching. Allowing parameterizable architectures,

aMV-LSTM uses an attention layer to weight input sequence words

then learns a position-based representation. Three architectures

were explored in our experiments: aMV-LSTM (A), aMV-LSTM (Q)

and aMV-LSTM (Q+A) that corresponds, respectively, to the ap-

plication of the attention layer to the answer input only, to the

question input only or to both the question and answer inputs. Ex-

perimental results show that aMV-LSTM (Q) outperforms existing

text-matching models, including a strong baseline MV-LSTM, with

more than 3.8% and 7% in terms of accuracy and MAP, respectively.

We conclude that attention-based coefficients of the input words,

Table 3: Experimental results showing the performance of the dif-

ferent models, in terms of ndcд@3, ndcд@5 and MAP on the Wik-

iQA dataset. Results presented in Bold characters stands for the best

performances over all the models.

Models ndcg@3 ndcg@5 MAP

CDSSM 0.409214 0.477269 0.435007

DSSM 0.531882 0.609625 0.560120

ARC-II 0.540994 0.609524 0.560602

ARC-I 0.564213 0.638075 0.587890

ANMM 0.609504 0.612841 0.645765

MATCHPYRAMID 0.644247 0.690151 0.643604

MV-LSTM 0.610065 0.654855 0.604582

aMV-LSTM (Q) 0.651922 0.694755 0.650664

aMV-LSTM (A) 0.598445 0.641318 0.602153

aMV-LSTM (Q+A) 0.556163 0.614518 0.556163

Figure 3: Performances of the different models in terms of accu-

racy. The values corresponds to the ones at the end of the training

process on the QuoraQP dataset. The dashed green line corresponds

to the maximum accuracy value and the continue red line corre-

sponds to the accuracy of the MV-LSTM model.

enable the model to focus on the most important content and im-

prove the results. Our work opens an interesting direction for future

research. Different neural matching models could be used within

the proposed architecture. The future work will focus on the study

of the proposed architecture with different state-of-the-art neural

models, in order to study the impact of the asymmetric architecture

in different datasets.

REFERENCES
[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[2] Yixing Fan, Liang Pang, JianPengHou, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng.
2017. Matchzoo: A toolkit for deep text matching. arXiv preprint arXiv:1707.07270
(2017).

[3] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance
matching model for ad-hoc retrieval. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. ACM, 55–64.

[4] Till Haug, Octavian-Eugen Ganea, and Paulina Grnarova. 2018. Neural multi-
step reasoning for question answering on semi-structured tables. In European
Conference on Information Retrieval. Springer, 611–617.

[5] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional
Neural Network Architectures for Matching Natural Language Sentences. In
Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc.,
2042–2050. http://papers.nips.cc/paper/5550-convolutional-neural-network-
architectures-for-matching-natural-language-sentences.pdf

[6] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional
Neural Network Architectures for Matching Natural Language Sentences. In
Advances in Neural Information Processing Systems 27, Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.). Curran Associates, Inc.,
2042–2050. http://papers.nips.cc/paper/5550-convolutional-neural-network-
architectures-for-matching-natural-language-sentences.pdf

[7] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning Deep Structured Semantic Models for Web Search Using
Clickthrough Data. In Proceedings of the 22Nd ACM International Conference on
Information & Knowledge Management (CIKM ’13). ACM, New York, NY, USA,
2333–2338. https://doi.org/10.1145/2505515.2505665

[8] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning Deep Structured Semantic Models for Web Search Using
Clickthrough Data. In Proceedings of the 22Nd ACM International Conference on
Information & Knowledge Management (CIKM ’13). ACM, New York, NY, USA,
2333–2338. https://doi.org/10.1145/2505515.2505665

[9] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. 2017. Position-
Aware Representations for Relevance Matching in Neural Information Retrieval.
In Proceedings of the 26th International Conference on World Wide Web Companion
(WWW ’17 Companion). International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, Switzerland, 799–800. https://
doi.org/10.1145/3041021.3054258

[10] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. 2014. A Convolutional
Neural Network for Modelling Sentences. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Vol. 1. 655–665.

[11] Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Skip-Thought Vectors. In Advances
in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 3294–3302.
http://papers.nips.cc/paper/5950-skip-thought-vectors.pdf

[12] DonaldMetzler andWBruce . 2004. Combining the languagemodel and inference
network approaches to retrieval. Information processing & management 40, 5
(2004), 735–750.

[13] Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen,
Xinying Song, and Rabab Ward. 2016. Deep Sentence Embedding Using Long
Short-termMemory Networks: Analysis and Application to Information Retrieval.
IEEE/ACM Trans. Audio, Speech and Lang. Proc. 24, 4 (April 2016), 694–707. https:
//doi.org/10.1109/TASLP.2016.2520371

[14] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.
2016. Text Matching as Image Recognition.. In AAAI. 2793–2799.

[15] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Jingfang Xu, and Xueqi Cheng.
2017. DeepRank: A NewDeep Architecture for Relevance Ranking in Information
Retrieval. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management (CIKM ’17). ACM, New York, NY, USA, 257–266. https:
//doi.org/10.1145/3132847.3132914

[16] Ankur P Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. 2016. A
decomposable attention model for natural language inference. arXiv preprint
arXiv:1606.01933 (2016).

[17] Aliaksei Severyn andAlessandroMoschitti. 2015. Learning to rank short text pairs
with convolutional deep neural networks. In Proceedings of the 38th international
ACM SIGIR conference on research and development in information retrieval. ACM,
373–382.

[18] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning Semantic Representations Using Convolutional Neural Networks for
Web Search. In Proceedings of the 23rd International Conference onWorldWideWeb
(WWW ’14 Companion). ACM, New York, NY, USA, 373–374. https://doi.org/
10.1145/2567948.2577348

[19] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning Semantic Representations Using Convolutional Neural Networks for
Web Search. In Proceedings of the 23rd International Conference onWorldWideWeb
(WWW ’14 Companion). ACM, New York, NY, USA, 373–374. https://doi.org/
10.1145/2567948.2577348

[20] Karen Sparck Jones. 1972. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation 28, 1 (1972), 11–21.

[21] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Processing
Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger (Eds.). Curran Associates, Inc., 3104–3112. http://papers.nips.cc/
paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

[22] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and Xueqi Cheng.
2016. A Deep Architecture for Semantic Matching with Multiple Positional

Table 4: Comparison of the 3 first answers retrieved by the MV-LSTM model, among 21 possible answers that correspond to the question

"Where do crocodiles live?", sampled from the WikiQA dataset. We show how these answers are ranked by the proposed architectures of the

aMV-LSTM model. (.) corresponds to the retrieval rank according to each model.

First answers
Predicted scores and rank values (.)

True label
MV-LSTM

aMV-LSTM
Q A Q+A

Crocodiles (subfamily Crocodylinae) or true crocodiles are large aquatic tetrapods that live throughout the tropics in Africa, Asia,
the Americas and Australia.

(3)
0.3646

(1)
0.9003

(2)
0.2871

(3)
0.3640

1

Crocodiles have more webbing on the toes of the hind feet and can better tolerate saltwater due to specialized salt glands for filtering
out salt, which are present but non-functioning in alligators.

(1)
0.8989

(2)
0.8826

(1)
3.5154

(1)
2.0885

0

Also when the crocodile ’s mouth is closed, the large fourth tooth in the lower jaw fits into a constriction in the upper jaw.
(2)

0.6290
(4)

-1.1083
(4)

-0.2245
(6)

-0.2575
0

They are carnivorous animals, feeding mostly on vertebrates such as fish, reptiles, birds and mammals, and sometimes on invertebrates
such as molluscs and crustaceans, depending on species and age.

(6)
-2.0848

(3)
-0.6799

(3)
0.2831

(2)
0.5409

0

Figure 4: Comparison of the validation and test accuracy values, after each training epoch on the QuoraQP dataset, of the proposed aMV-

LSTMmodel architectures compared with the MV-LSTM baseline. The red line on the curves corresponding to aMV-LSTM (A), aMV-LSTM (Q)

and aMV-LSTM (Q+A) shows the accuracy value of the MV-LSTM model after training.

Sentence Representations.. In AAAI, Vol. 16. 2835–2841.
[23] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power.

2017. End-to-End Neural Ad-hoc Ranking with Kernel Pooling. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’17). ACM, New York, NY, USA, 55–64. https:
//doi.org/10.1145/3077136.3080809

[24] Liu Yang, Qingyao Ai, Jiafeng Guo, and W Bruce Croft. 2016. aNMM: Ranking
short answer texts with attention-based neural matching model. In Proceed-
ings of the 25th ACM International on Conference on Information and Knowledge
Management. ACM, 287–296.

[25] Yi Yang, Wen-tau Yih, and Christopher Meek. 2015. WikiQA: A Challenge Dataset
for Open-Domain Question Answering. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, Lisbon, Portugal.

[26] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard
Hovy. 2016. Hierarchical attention networks for document classification. In
Proceedings of the 2016 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies. 1480–1489.
[27] Wenpeng Yin, Hinrich Schütze, Bing Xiang, and Bowen Zhou. 2016. ABCNN:

Attention-Based Convolutional Neural Network for Modeling Sentence Pairs.
Transactions of the Association of Computational Linguistics 4, 1 (2016), 259–272.

[28] Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu, Hongyun Bao, and Bo
Xu. 2016. Text classification improved by integrating bidirectional LSTM with
two-dimensional max pooling. arXiv preprint arXiv:1611.06639 (2016).

