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Covert Capacity of Non-Coherent Rayleigh-Fading
Channels

Mehrdad Tahmasbi, Anne Savard, and Matthieu R. Bloch

Abstract

The covert capacity is characterized for a non-coherent fast Rayleigh-fading wireless channel, in which a legitimate user
wishes to communicate reliably with a legitimate receiver while escaping detection from a warden. It is shown that the covert
capacity is achieved with an amplitude-constrained input distribution that consists of a finite number of mass points including
one at zero and numerically tractable bounds are provided. It is also conjectured that distributions with two mass points in fixed
locations are optimal.

I. INTRODUCTION

In cognitive radio networks or adversarial communication settings, situations arise in which legitimate users may attempt to
communicate covertly, in the sense of achieving a low probability of detection. Motivated by such applications, [1] proposed
an information-theoretic model to study the throughput at which two users could reliably and covertly communicate over an
Additive White Gaussian Noise (AWGN) channel in the presence of an adversary who observes the transmission through
another noisy channel. The optimal covert communication throughput has been shown to satisfy a square root law, by which
the maximum number of bits is on the order of

√
n bits over n uses of the channel. The square root law was subsequently

established for some quantum channels [2] and proved to hold without requiring secret keys for binary symmetric channels
under some channel conditions [3]. The exact pre-constant associated to the square root law, which plays the role of a covert
capacity, has since been nearly completely characterized for point-to-point discrete and AWGN classical channels [4], [5], [6],
as well as some classical-quantum channels [7], [8]. With the notable exception of [6], the covert capacity is typically derived
when using the relative entropy as a proxy metric for covertness. Recent results [9] offer a more nuanced perspective and
show that the optimal signaling scheme for covert communication over AWGN channels at finite length is metric-dependent;
nevertheless, the present work still uses relative entropy to characterize covert capacity because of its convenient mathematical
properties.

For Discrete Memoryless Channels (DMCs), the covert-capacity achieving input distribution takes the form of sparse
signalling corresponding to those symbols that might arouse suspicion if transmitted, are used a fraction 1/

√
n of the time if n

is the block length. Perhaps surprisingly, sparse signalling does not achieve the covert-capacity of AWGN channels [10], as the
optimal coding scheme exploits instead Gaussian or Binary Phase-Shift Keying (BPSK) [4] signaling with an average power
vanishing as O (1/n). In other words, encoding information in the phase of modulation symbols together with a diffuse power
is crucial for optimality. Gaussian signaling has therefore been used to further study covertness over Gaussian and wireless
channels, as in [11], [12] to show the benefits of uninformed jammers, in [13] to analyze the role of randomized timing,
in [14] to study the effect of randomized power allocation, and in [15] to analyze covert relaying strategies. We note that all
aforementioned works exploit random Gaussian codebooks, which simplifies the covertness analysis by reducing the optimal
attack to a radiometer. In contrast, we analyze covertness with non-random codebooks using the conceptual approach laid out
in [5].

While Gaussian codebooks provides valuable insight into the properties of coding schemes for covert communications over
AWGN channels, operating in the vanishing-power regime as suggested by the results might prove challenging. In particular,
not only may phase-lock loops fail to properly track the phase of the transmitted signals but symbols with low amplitude may
also be severely affected by phase noise, resulting in a significant degradation of the transmission reliability. These effects
are also likely to be amplified by the presence of fading in wireless links. The objective of the present paper is to develop
insight into this problem by characterizing the covert capacity of non-coherent fast Rayleigh-fading channels (Theorem III.1
in Section III), in which the phase is uniformly distributed over [0; 2π[; although no channel state information is available to
the transmitter and receivers, some symbol-level synchronization is assumed.

Our analysis of the covert capacity for non-coherent channels builds upon the ideas initially developed in [16], [17] for
amplitude constrained channels and extended to [18] for memoryless non-coherent Rayleigh fading channels under an average
power constraint. In particular we show that an optimal covert capacity achieving input distribution is discrete, with one mass
point located at zero and subject to an amplitude constraint. While the discrete nature of the distribution may not be a surprise,
the fact that the location of the mass points is bounded results from the specific nature of the covertness constraint. We also
conjecture that two mass points in fixed locations is actually optimal, which is supported by numerical results although we do
not have a formal proof. Overall, our results suggest that, in the presence of phase uncertainty, sparse signaling might be an
efficient modulation scheme for covert communication.
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Our proof technique follows for the most part the high-level approach outlined in [16], [17], [18]; however, the covert
communication constraint makes the analysis more intricate as the optimal capacity-achieving input distribution turns out depend
on the block length. In particular, the converse arguments for single-letterization lead to a parameter-dependent constrained
optimization problem, in which the parameter should be taken to zero as the blocklength goes to infinity (see the statement
of Theorem III.1 and (82) in Section IV-B). This requires us to analyze the fine dependence of the objective function and the
Lagrange multipliers as a function of a parameter using ideas from sensitivity analysis [19].

The rest of the paper is organized as follows. In Section III, we introduce the precise model for covert communication over
non-coherent Rayleigh-fading channels and discuss our characterization of the covert capacity. In Section IV, we develop the
proof of our main result, with the achievability proof in Section IV-A and the converse proof in Section IV-B.

II. NOTATION AND CONVENTIONS

Let (S,F) be a measurable space. When S is a subset of R, we always consider the σ-algebra induced by Borel sets, which
converts S to a measurable space. Let f : S → R be measurable and µ be a measure over S ⊂ R. We call f integrable if∫
S |f |dµ < ∞. We then denote the Lebesgue’s integral by

∫
S f(x)dµ. If S =]a, b[ and µ is the Lebesgue’s measure over S ,

we denote
∫
S f(x)dµ =

∫ b
a
f(x)dx =

∫ b
a
f . If µ is a probability measure, X : S → R is a random variable, and A is an

event, we use Pµ(A) and Eµ(X) to denote µ(A) and
∫
S X(s)dµ, respectively. When the probability measure µ is discrete,

it can be characterized with a Probability Mass Function (PMF) P : S → [0, 1] satisfying µ(A) =
∑
s∈A P (s). When the

probability measure µ is continuous, it can be characterized with a Probability Density Function (PDF) f : S → [0,∞[
satisfying µ(A) =

∫
A
f(s)ds. We do not distinguish between a probability measure and its PMF or PDF (if they exist). The

product of two measures µ and µ′ is defined in the standard way and is denoted by µ ⊗ µ′. We define the relative entropy
between two probability measures µ and µ′ as D(µ‖µ′) , Eµ

(
log dµ

dµ′

)
, where dµ

dµ′ is the Radon-Nikodym derivative. We also

define the χ2 divergence as χ2(µ‖µ′) , Eµ′
((

dµ
dµ′

)2
)
− 1. We define I(X;Y ) , D(µXY ‖µX ⊗ µY ) where µXY , µX and

µY denote the probability measures associated to (X,Y ), X , and Y , respectively.
Let X and Y be two subsets of R. A channel wY |X from X to Y is a mapping x 7→ µx where µx is a probability measure

on Y . If µx is always continuous, we write wY |X(y|x) to denote the PDF of µx. If µ is a probability measure on X and
wY |X : x 7→ µ′x is a channel from X to Y , we define a joint probability measure wY |X × µ on X × Y as

(µ× wY |X)(E) ,
∫
µ′x(Ex)dµ, (1)

where Ex , {(x̃, ỹ) ∈ E : x̃ = x}. We also define the marginal probability measure induced on Y by wY |X ◦ µ. If X and Y
denote the joint random variables associated to the measure µ×wW |X , we allow ourselves to denote their mutual information
by I(µ,wY |X) , I(X;Y ).

We shall use the standard asymptotic notations such as O(·), o(·), Ω(·), ω(·) and Θ(·).

III. SYSTEM MODEL AND NOTATIONS

We consider the fast Rayleigh-fading wireless channel illustrated in Fig. 1, in which at every time instant, the input-output
relationships are given by

Y = HmX +Nm and Z = HwX +Nw, (2)

where X is the channel input, Y is the received signal at the legitimate receiver, and Z is the received signal at the warden
attempting to detect the transmission. The fading coefficients Hm and Hw are independent complex circular Gaussian random
variables with zero-mean and variances θ2

m and θ2
w, respectively. The noises Nm and Nw are also independent zero-mean

complex circular random variables with variance σ2
m and σ2

w, respectively. Furthermore, we assume that the channels are
stationary and memoryless. The fading coefficients are unknown to all parties, who only have access to their statistical
distributions. Since the phase of the fading parameters is uniform, information can only be encoded into the magnitude
of X; additionally, |Y |2 and |Z|2 become sufficient statistics for detection. Hence, as shown in [18], upon re-labeling |X|2 by
X and the outputs |Y |2 and |Z|2 by Y and Z, the non-coherent channel is effectively a new memoryless channel with input
and output symbols in [0,∞[ and transition probabilities

wY |X(y|x) =
1

θ2
mx+ σ2

m

exp

(
− y

θ2
mx+ σ2

m

)
and wZ|X(z|x) =

1

θ2
wx+ σ2

w

exp

(
− z

θ2
wx+ σ2

w

)
. (3)

By properly normalizing Y and Z, we can assume that σw = σm = 1, and by normalizing X , we can further assume that
θw = 1. Thus, we can parameterize the channel by a single parameter1 θm, for which the transition probabilities are

px(y) , wY |X(y|x) =
1

θ2
mx+ 1

exp

(
− y

θ2
mx+ 1

)
and qx(z) , wZ|X(z|x) =

1

x+ 1
exp

(
− z

x+ 1

)
. (4)

1Note that θm in (3) is different from θm in (4).
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Although the input and output sets of the channels are all equal to [0,∞[, we distinguish them with the labels X , Y , and Z
for the input set, the output of main channel, and the output of the warden’s channel, respectively.

Fig. 1. Covert Wireless Channel

We next formally describe the covert communication problem in the wireless setting; as depicted in Fig. 1, the transmitter
aims to communicate a message W ∈ J1,MnK by encoding it into a sequence X = (X1, · · · , Xn) of n symbols using a
publicly known coding scheme. Upon observing the corresponding noisy sequence Y = (Y1, · · · , Yn), the receiver forms an
estimate Ŵ of W . The encoding and decoding may also use a pre-shared secret key S with an arbitrary distribution over
a measurable space.2 The objective of the warden is to detect the presence of a transmission based on its noisy observation
Z = (Z1, · · · , Zn). The requirements for reliable and covert communication may be formalized as follows. We let q̂Z denote
the output distribution induced by the coding scheme and q⊗n0 the product output distribution expected in the absence of
communication when the channel input is set to x = 0. The performance of an (Mn, n) code transmitting one of Mn message
over n channel uses is then measured in terms of the average probability of error P(Ŵ 6= W ) and in terms of the relative
entropy D(q̂Z‖q⊗n0 ).34 Let δ > 0. We say that a covert throughput R is δ-achievable if there exist (Mn, n) codes of increasing
block length n such that

logMn = ω(log n), lim
n→∞

P(Ŵ 6= W ) = 0, lim sup
n→∞

D(q̂Z‖q⊗n0 ) 6 δ, lim inf
n→∞

logMn√
nD(q̂Z‖q⊗n0 )

> R. (5)

The covert capacity, Cno-CSI(δ), is defined as the supremum of all δ-achievable covert throughputs. Note that we do not specify δ
in our terminology of achievable throughput, since it turns out that the normalization of logMn in (5) removes the dependence
on δ.

Theorem III.1. Let Ω̃>0 be the set of discrete probability measures over ]0, 1[ with a finite number of mass points. Cno−CSI(δ)
is independently of δ equal to

sup
µ∈Ω̃>0

√
2
Eµ
(
θ2
mX − log

(
1 + θ2

mX
))√

Eµ⊗µ
(

X1X2

1−X1X2

) . (6)

In addition, the following simple bounds hold:

max
x̃∈]0,1]

x̃−1
√

2(1− x̃2)
(
θ2
mx̃− log(1 + θ2

mx̃)
)
6 Cno-CSI(δ) 6

√
2θ2
m. (7)

Theorem III.1 provides useful insight into the problem of covert communication over non-coherent channels in several regards.
First, a straightforward calculation shows that D(px‖p0) = θ2

mx − log(1 + θ2
mx) and χ2(wZ|X ◦ µ‖q0) = Eµ⊗µ

(
X1X2

1−X1X2

)
.

The expression in (6) is therefore a counterpart of [5, Corollary 3] and [4, Eq. (28)]. Second, Theorem III.1 shows that we
may restrict the signaling schemes for covert communications to finite and amplitude bounded constellations; while the finite
nature of the constellation was somewhat expected from the non-coherent nature of the channel, the bound on the amplitude
of the points is perhaps more surprising as it was not imposed a priori. We numerically evaluate and plot in Fig. 2 (6) when

2We show in our achievability proof that a key uniformly distributed over a discrete set with size O(Mn) is sufficient to achieve the covert capacity.
3The constraint D(q̂Z‖q⊗n

0 ) 6 δ ensures that, regardless of the test performed by the adversary, the sum of the probability of missed detection and false
alarm is lower-bounded by 1−

√
δ. Please refer to [5, Appendix A] for a detailed discussion of the operational meaning of an upper-bound on the relative

entropy.
4 The choice of this specific relative entropy to measure covertness is driven in part by the ease of analysis using channel resolvability techniques. One

could of course consider alternative metrics, such as variational distance or a relative entropy with a reversed order of arguments, as discussed in [5], [6].
While the operational meaning of these other metrics remains the same, the analysis and the exact dependence on the constraint δ is metric-specific.
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the number of mass points in µ is fixed using a brute-force search. Based on our numerical results, we conjecture that two
mass points and On-Off Keying (OOK) signaling is optimal for covert communication.
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Fig. 2. Numerical evaluation of bounds on covert capacity.

IV. PROOF OF THEOREM III.1

A. Achievability proof

We prove the achievability result in two steps.
1) Let {µn}n>1 be a sequence of probability measures over X such that for all n, (i) for some x̃ > 0, sup(support (µn)) 6 x̃;

and, (ii) lim supn→∞ nD
(
wZ|X ◦ µn‖q0

)
= δ. (iii) nI(µn, wY |X) = ω(log n). We then show for all ζ > 0 that the cover

throughput

(1− ζ) lim inf
n→∞

I(µn, wY |X)√
D
(
wZ|X ◦ µn‖q0

) (8)

is δ-achievable.
2) Let µ ∈ Ω̃>0. We construct for an arbitrary δ > 0, a sequence {µn}n>1 satisfying

lim inf
n→∞

I(µn, wY |X)√
D
(
wZ|X ◦ µn‖q0

) =
√

2
Eµ
(
θ2
mX − log

(
1 + θ2

mX
))√

Eµ⊗µ
(

X1X2

1−X1X2

) , (9)

in addition to the conditions of step 1.
1) Step one: a random coding argument: Although we pursue the same approach as in [5], [20] in this step, the result

requires a proof of its own because of the continuous nature of the channels. Let {µn}n>1 be a sequence of probability measures
as described earlier, i.e., for all n, (i) for some x̃ > 0, sup(support (µn)) 6 x̃; and, (ii) lim supn→∞ nD

(
wZ|X ◦ µn‖q0

)
= δ.

(iii) I(µn, wY |X)n = ω(log n) For any ζ > 0, we shall prove the existence of a sequence of codes {Cn}n>1 achieving the
covert throughput (1−ζ) lim infn→∞

I(µn,wY |X)√
D(wZ|X◦µn‖q0)

with the relative entropy constraint δ. We use a random coding argument

and in particular, fix some n, and consider a random encoder F : J1,KnK× J1,MnK→ Xn whose codewords are independent
and identically distributed (i.i.d.) according to µ⊗nn . The transmitter uses the message W and the shared key S together with the
encoder F to obtain the codeword F (S,W ) that is transmitted through the channel. By [21], for any γ > 0, we upper-bound
the expected value with respect to random coding of the probability of error of an optimal decoder by

EF
(
P
(
W 6= Ŵ

))
6 Pw⊗n

Y |X×µ
⊗n
n

(
log

w⊗nY |X(Y|X)

(w⊗nY |X ◦ µ⊗nn )(Y)
> γ

)
+Mne

−γ . (10)
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Applying a Chernoff bound to the first term of the right hand side of the above inequality, for all s > 0, we obtain

Pw⊗n
Y |X×µ

⊗n
n

(
log

w⊗nY |X(Y|X)

(w⊗nY |X ◦ µ⊗nn )(Y)
> γ

)
6

(
EwY |X×µn

((
pX(Y )

(wY |X ◦ µn)(Y )

)s))n
exp (−sγ) . (11)

For any probability measure µ on X , upon defining

φrel(s, µ) , − log

(
EwY |X×µ

((
pX(Y )

(wY |X ◦ µ)(Y )

)s))
, (12)

we can re-write the right-hand side of (11) as

exp (−nφrel(s, µn)− sγ) . (13)

To upper-bound the above expression, we need the following technical lemma describing the behavior of φrel(s, µ) for small
s.

Lemma IV.1. For all x̃ > 0, there exist constants B > 0, s̃ > 0, and Ã > 0, such that for all probability measures µ and
ν > 0 with sup(support (µ)) 6 x̃ and D

(
wZ|X ◦ µ‖q0

)
6 ν, all s ∈]0, s̃], and all A ∈ [Ã,∞), we have

φrel(s, µ) > −sI(µ,wY |X)−B
((

(2
√
ν + ν)e2Ax̃+2AA2 +A2e−A

)
s2 + s3

)
. (14)

Proof. See Appendix D.

Applying Lemma IV.1 to (13), we upper-bound (11) by

exp

(
−n

(
−sI(µn, wY |X)−B

(((
2

√
δ

n
+
δ

n

)
e2Ax̃+2AA2 +A2e−A

)
s2 + s3

))
− sγ

)
. (15)

For n large enough, we then set A = log n/(2(4x̃+ 1)) to ensure

B

((
2

√
δ

n
+
δ

n

)
e2Ax̃+2AA2 +A2e−A

)
= O

(
A2
(
n−

1
2 e2Ax̃+2Ae−A

))
(16)

= O
(

log2 n
(
n−

1
2 + 2x̃+2

2(4x̃+1) + n−
1

2(4x̃+1)

))
(17)

= O
(
n−

1
2(4x̃+1) log2 n

)
, (18)

where the constant hidden in O (·) depends on x̃, δ, and the channel. Therefore, we have for s = n−β ,

B

(((
2

√
δ

n
+
δ

n

)
e2Ax̃+2AA2 +A2e−A

)
s2 + s3

)
(a)
= O

(
n−

1
2(4x̃+1) log2 ns2 + s3

)
(19)

= O
(
n−

1
2(4x̃+1)

−2β log2 n+ n−3β
)

(20)

= O
(
n−min(3β,2β+1/(2(4x̃+1))) log2 n

)
, (21)

where (a) follows from (18). The expression in (21) will be o(sI(µn, wY |X)) when I(µn, wY |X) = Ω
(
n−

1
2

)
and max(1/4, 1/2−

1/(2(4x̃ + 1))) < β. Moreover, if we choose β < 1/2, which is feasible with the previous constraint, we guarantee
that snI(µn, wY |X)> nc for some c > 0 and n large enough. Finally, for γ = (1 − ζ/2)I(µn, wY |X)n and logMn =
(1− ζ)I(µn, wY |X)n, we have by (10)

EF
(
P
(
W 6= Ŵ

))
6 exp

(
−(1 + o(1))

ζ

2
sI(µn, wY |X)n

)
+ exp

(
−ζ

2
I(µn, wY |X)n

)
(22)

6 2 exp (−ζnc) . (23)

This completes the reliability part of the proof.
We now proceed to the resolvability part. Recall that we denote the induced distribution at the output of the warden’s channel

by p̂Z , 1
MnKn

∑Kn
s=1

∑Mn

w=1 w
⊗n
Z|X(z|F (s, w)), where Mn and Kn are the message size and the key size, respectively. By a

modification of [22, Equation (194)], we know that for all s ∈ [0, 1],

EF
(
D
(
p̂Z‖

(
wZ|X ◦ µn

)⊗n))
6

1

s
exp (−s log(MnKn)− nφres(s, µn)) , (24)
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where

φres(s, µ) , − log

(
EwZ|X×µ

((
qX(Z)

(wZ|X ◦ µ)(Z)

)s))
. (25)

Since the above function is the same as φrel except that wY |X is replaced by wZ|X , wZ|X is a special case of wY |X for
θm = 1, and we choose s in the reliability part so that log 1

s = O(log n), we can follow the same approach to obtain for some
c̃ > 0,

EF
(
D
(
p̂Z‖

(
wZ|X ◦ µn

)⊗n))
6 2 exp

(
−nc̃

)
, (26)

if logMn + logKn > (1 + ζ)I(µn, wZ|X)n. Therefore, the expected value of the covertness of the random code is

EF (D(p̂Z‖q⊗n0 )) = EF
(∫

Rn
p̂Z(z) log

p̂Z(z)

q⊗n0 (z)
dz

)
(27)

= EF
(∫

Rn
p̂Z(z) log

p̂Z(z)

(wZ|X ◦ µn)⊗n(z)
dz +

∫
Rn
p̂Z(z) log

(wZ|X ◦ µn)⊗n(z)

q⊗n0 (z)
dz

)
(28)

= EF
(
D
(
p̂Z‖

(
wZ|X ◦ µn

)⊗n))
+ EF

(∫
Rn
p̂Z(z) log

(wZ|X ◦ µn)⊗n(z)

q⊗n0 (z)
dz

)
(29)

6 2 exp
(
−nc̃

)
+ EF

(∫
Rn
p̂Z(z) log

(wZ|X ◦ µn)⊗n(z)

q⊗n0 (z)
dz

)
(30)

(a)
= 2 exp

(
−nc̃

)
+

∫
Rn

EF (p̂Z(z)) log
(wZ|X ◦ µn)⊗n(z)

q⊗n0 (z)
dz (31)

= 2 exp
(
−nc̃

)
+

∫
Rn

(wZ|X ◦ µn)⊗n(z) log
(wZ|X ◦ µn)⊗n(z)

q⊗n0 (z)
dz (32)

= 2 exp
(
−nc̃

)
+ nD

(
wZ|X ◦ µn‖q0

)
, (33)

where (a) follows from Fubini’s theorem and EF
(∫

Rn p̂Z(z)
∣∣∣log

(wZ|X◦µn)⊗n(z)

q⊗n0 (z)

∣∣∣ dz) <∞ by Lemma C.4. Applying Markov’s
inequality, for large n, we obtain

PF
(
D(p̂Z‖q⊗n0 ) 6

n+ 1

n

(
2 exp

(
−nc̃

)
+ nD

(
wZ|X ◦ µn‖q0

))
,P
(
W 6= Ŵ

)
6 4n exp (−nc)

)
(34)

> 1− PF
(
D(p̂Z‖q⊗n0 ) >

n+ 1

n

(
2 exp

(
−nc̃

)
+ nD

(
wZ|X ◦ µn‖q0

)))
− PF

(
P
(
W 6= Ŵ

)
> 4n exp (−nc)

)
(35)

> 1− EF (D(p̂Z‖q⊗n0 ))
n+1
n

(
2 exp (−nc̃) + nD

(
wZ|X ◦ µn‖q0

)) − EF
(
P
(
W 6= Ŵ

))
4n exp (−nc)

(36)

> 1−
2 exp

(
−nc̃

)
+ nD

(
wZ|X ◦ µn‖q0

)
n+1
n

(
2 exp (−nc̃) + nD

(
wZ|X ◦ µn‖q0

)) − 2 exp (−nc)
4n exp (−nc)

(37)

= 1− n

n+ 1
− 1

2n
> 0. (38)

This implies that there exists a sequence of codes {Cn}n>1 such that Cn satisfies

logMn = (1− ζ)I(µn, wY |X)n = ω(log n), (39)
logMn + logKn=(1 + ζ)I(µn, wZ|X)n, (40)

Pe 6 4n exp (−nc) , (41)

D(p̂Z‖q⊗n0 ) 6
n+ 1

n

(
2 exp

(
−nc̃

)
+ nD

(
wZ|X ◦ µn‖q0

))
. (42)

The covert throughput would be then

lim inf
n→∞

logMn√
nD(p̂Z‖q⊗n0 )

= lim inf
n→∞

(1− ζ)I(µn, wY |X)n√
nD(p̂Z‖q⊗n0 )

(43)

> lim inf
n→∞

(1− ζ)I(µn, wY |X)n√
n
(
n+1
n

(
2 exp (−nc̃) + nD

(
wZ|X ◦ µn‖q0

))) (44)

= lim inf
n→∞

(1− ζ)I(µn, wY |X)√
D
(
wZ|X ◦ µn‖q0

) . (45)
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Since lim supn→∞ nD
(
wZ|X ◦ µn‖q0

)
6 δ by our assumption, we have

lim sup
n→∞

D(p̂Z‖q⊗n0 ) 6 lim sup
n→∞

(
n+ 1

n

(
2 exp

(
−nc̃

)
+ nD

(
wZ|X ◦ µn‖q0

)))
6 δ. (46)

2) Step two: obtaining the bound in Theorem III.1: Let µ ∈ Ω̃>0 and µ0 be the probability measure with a single mass point at
zero. We define αn ,

√
δ

nχ2(wZ|X◦µ‖q0) and µn , αnµ+(1−αn)µ0. We have max(support (µn)) = max(support (µ)) , a < 1

by definition of Ω̃>0. Hence, it is enough to check that

nI(µn, wY |X) = ω(log n), (47)

lim sup
n→∞

nD
(
wZ|X ◦ µn‖q0

)
6 δ, (48)

lim inf
n→∞

I(µn, wY |X)√
D
(
wZ|X ◦ µn‖q0

) >
√

2
Eµ
(
θ2
mX − log

(
1 + θ2

mX
))√

Eµ⊗µ
(

X1X2

1−X1X2

) . (49)

We next state a lemma providing a general upper-bound for the relative entropy in terms of the χ2 divergence.

Lemma IV.2. Let µ ∈ Ω̃>0 with max(support (µ)) 6 a < 1. Let M > 0 and ε > 0. We have

D
(
wZ|X ◦ µ‖q0

)
6

1

2
χ2

(
wZ|X ◦ µ‖q0

)
+ (Eµ(X))3 + (Eµ(X))

4
∫ M

0

ez(−1+ 4a
1+a )dz +

∫ ∞
M

e−
z

1+ε zdz

+
Eµ(X)

ε

∫ ∞
M

e−
z

1+a zdz (50)

Proof. See Appendix E.

Applying Lemma IV.2 to µn with some Mn and ε, we obtain

D
(
wZ|X ◦ µn‖q0

)
6

1

2
χ2

(
wZ|X ◦ µn‖q0

)
+ (Eµn(X))3

+ (Eµn(X))
4
∫ Mn

0

ez(−1+ 4a
1+a )dz +

∫ ∞
Mn

e−
z

1+ε zdz +
1

ε
Eµn(X)

∫ ∞
Mn

e−
z

1+a zdz, (51)

where a = max(support (µ)). We will prove for appropriately chosen Mn and ε that

(Eµn(X))3 + (Eµn(X))
4
∫ Mn

0

ez(−1+ 4a
1+a )dz +

∫ ∞
Mn

e−
z

1+ε zdz +
1

ε
Eµn(X)

∫ ∞
Mn

e−
z

1+a zdz = o(α2
n) (52)

Note that Eµn(X) = αnEµ(X), and therefore, (Eµn(X))3 = O(α3
n) = o(α2

n). We choose Mn = B log 1
αn

, where B is a
constant independent of n specified later. We then have

(Eµn(X))
4
∫ Mn

0

ez(−1+ 4a
1+a )dz 6

{
O
(
α4
nMne

Mn(−1+ 4a
1+a )

)
a > 1/3

O
(
α4
nMn

)
a 6 1/3

(53)

=

O
(
α

4−B 3a−1
a+1

n log 1
αn

)
a > 1/3

O
(
α4
n log 1

αn

)
a 6 1/3

(54)

(a)
= o(α2

n), (55)

where (a) requires that B < 2 1+a
3a−1 when a > 1/3. We further have∫ ∞

Mn

e−
z

1+ε zdz = (1 + ε)2e−
Mn
1+ε

(
Mn

1 + ε
+ 1

)
(56)

= (1 + ε)2α
B

1+ε
n

(
B log 1

αn

1 + ε
+ 1

)
(57)

(a)
= o(α2

n), (58)
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where (a) requires that B > 2(1 + ε). Finally, we have

1

ε
Eµn(X)

∫ ∞
Mn

e−
z

1+a zdz =
1

ε
Eµn(X)(1 + a)2e−

Mn
1+a

(
Mn

1 + a
+ 1

)
(59)

=
1

ε
Eµn(X)(1 + a)2α

B
1+a
n

(
B log 1

αn

1 + a
+ 1

)
(60)

(a)
= o(α2

n), (61)

where (a) requires that B > 1 + a. If a 6 1/3, we only need to choose B and ε such that B > max(2(1 + ε), 1 + a). For
a > 1/3, we choose 0 < ε < 1+a

3a−1−1 so that max(2(1+ε), 1+a) < 2 1+a
3a−1 . We then choose B such that max(2(1+ε), 1+a) <

B < 2 1+a
3a−1 . This complete the proof of (52). Note next that by Lemma C.5

χ2(wZ|X ◦ µn‖q0) = Eµn⊗µn
(

X1X2

1−X1X2

)
(62)

= Eµn⊗µn
(

X1X2

1−X1X2
|X1 > 0, X2 > 0

)
Pµn⊗µn(X1 > 0, X2 > 0) (63)

(a)
= α2

nEµ⊗µ
(

X1X2

1−X1X2

)
(64)

= α2
nχ2(wZ|X ◦ µ‖q0) (65)

(b)
=

δ

n
, (66)

where (a) follows from the definition of µn and (b) follows from the definition of αn. We therefore have

lim sup
n→∞

nD
(
wZ|X ◦ µn‖q0

)
6 δ. (67)

Following the same reasoning, one can show that D
(
wY |X ◦ µn‖p0

)
= O(α2

n). Finally, we have

I(µn, wY |X) = Eµn
(
θ2
mX − log(1 + θ2

mX)
)
− D

(
wY |X ◦ µn‖p0

)
(68)

= Eµn
(
θ2
mX − log(1 + θ2

mX)
)
−O(α2

n) (69)

= αnEµ
(
θ2
mX − log(1 + θ2

mX)
)
−O(α2

n) (70)

= Ω(n−
1
2 ) (71)

= ω

(
log n

n

)
, (72)

which yields that

lim inf
n→∞

I(µn, wY |X)√
D
(
wZ|X ◦ µn‖q0

) >
√

2
Eµ
(
θ2
mX − log

(
1 + θ2

mX
))√

Eµ⊗µ
(

X1X2

1−X1X2

) . (73)

To obtain the lower-bound in (7), we choose µ to be a probability measure with a single mass point at x̃ ∈]0, 1[. We then
have

√
2
Eµ
(
θ2
mX − log

(
1 + θ2

mX
))√

Eµ⊗µ
(

X1X2

1−X1X2

) = x̃−1
√

2(1− x̃)
(
θ2
mx̃− log(1 + θ2

mx̃)
)
. (74)

B. Converse proof

Before delving into the detailed proofs, we first provide the sketch of the various steps of the converse proof.
1) We first follow the reasoning of the converse proof of [5] to show that if R is a δ-achievable rate, then there exists a

sequence of probability measures {µn}n> over X such that D
(
wZ|X ◦ µn‖q0

)
6 δ/n for n and

R 6 lim inf
n→∞

I(µn, wY |X)√
D
(
wZ|X ◦ µn‖q0

) . (75)
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2) We show that the probability measure µn can be further restricted to be discrete with a finite number of mass points and
a mass point at zero. This is achieved by investigating the optimization problem

sup
µ:D(wZ|X◦µ‖q0)6ν

I(µ,wY |X), (76)

and adapting some techniques developed in [18].
3) We prove that we can still upper-bound a covert throughput even if we constraint the amplitude of µn as max(support (µn)) 6

1 + ζ for any ζ > 0.
4) Let {µn}nn > 1 be a sequence of probability measures such that µn has a finite number of mass and max(support (µn)) 6

1 + ζ. We show that

lim inf
n→∞

I(µn, wY |X)√
D
(
wZ|X ◦ µn‖q0

) 6 sup
µ∈Ω̃>0

√
2
Eµ
(
θ2
mX − log

(
1 + θ2

mX
))√

Eµ⊗µ
(

X1X2

1−X1X2

) . (77)

1) Step one: a general converse for covert communication: We consider a sequence of code {Cn}n>1 where each code
Cn can transmit logMn bits with probability of error εn and relative entropy at most δn, and we have limn→∞ εn = 0 and
lim supn→∞ δn 6 δ. If (X,Y,Z) denotes the input and the output of the channels when Cn is used and p̂XYZ denotes the
joint distribution, a standard application of Fano’s inequality yields

logMn6
I(X;Y) + Hb (εn)

1− εn
6

I(X;Y) + 1

1− εn
, (78)

where Hb (x) , −x log(x) − (1 − x) log(1 − x). One can then upper-bound the mutual information I(X;Y) using standard
techniques [23] to obtain

I(X;Y) 6
n∑
i=1

I(Xi;Yi) 6 nI(X̃n; Ỹn), (79)

where the random variables X̃n and Ỹn are distributed according to pX̃n(x) , 1
n

∑n
i=1 p̂Xi(x) and pX̃nỸn(x, y) , pX̃n(x)px(y).

Note that limn→∞ nI(X̃n; Ỹn) =∞ since we assumed that logMn = ω(log n). Following [24], [4], one can also lower-bound
the relative entropy as

δn > D(p̂Z‖q⊗n0 ) >
n∑
i=1

D(p̂Zi‖q0) > nD(pZ̃n ||q0), (80)

where Z̃n is distributed according to pZ̃n(z) , 1
n

∑n
i=1 p̂Zi(z). Consequently,

Cno-CSI 6 lim inf
n→∞

I(X̃n; Ỹn)

(1− εn)
√
D(pZ̃n‖q0)

(
1 +

1

nI(X̃n; Ỹn)

)
= lim inf

n→∞

I(X̃n; Ỹn)√
D(pZ̃n‖q0)

(81)

where the sequence of distributions {pX̃nỸnZ̃n}n>0 is subject to the constraint D(pZ̃n‖q0) 6 δn
n . This completes the first step

of the converse proof.
2) Step two: discreteness of the optimal distribution: We define the optimization problem

A(ν) , sup
µ∈Ω:D(wZ|X◦µ‖q0)6ν

I(µ,wY |X), (82)

where Ω is the set of all probability measures over X such as µ such that D
(
wZ|X ◦ µ‖q0

)
<∞. The next lemma shows that

there exists a unique maximizer to the above problem.

Lemma IV.3. Let ν > 0. There exists a unique probability measure µ∗ν ∈ Ω such that D
(
wZ|X ◦ µ∗ν‖q0

)
6 ν and

I(µ∗ν , wY |X) = A(ν).

Proof. See Appendix F.

We next characterize the unconstrained form of the optimization in (82).

Theorem IV.1. Let ν > 0. There exists γ(ν) > 0 such that the following holds.
1) We have

A(ν) = maxµ∈Ω

[
I(µ,wY |X)− γ(ν)

(
D
(
wZ|X ◦ µ‖q0

)
− ν
)]
, (83)

and µ∗ν is the unique maximizer of the above optimization.
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2) Define

w(x, µ1, ν) ,
∫ ∞

0

px(y) log
px(y)

(wY |X ◦ µ1)(y)
dy − γ(ν)

(∫ ∞
0

qx(z) log
(wZ|X ◦ µ1)(z)

q0(z)
dz − ν

)
. (84)

For all µ ∈ Ω, we have

A(ν) > Eµ(w(X,µ∗ν , ν)). (85)

3) Given µ1 ∈ Ω, we have for all µ ∈ Ω,

A(ν) > Eµ(w(X,µ1, ν)). (86)

if and only if

w(x, µ1, ν) 6 A(ν) ∀x ∈ X , (87)
w(x, µ1, ν) = A(ν) ∀x ∈ support (µ1). (88)

4) We have limν→0+ γ(ν) =∞ and limν→0+ γ(ν)ν = 0.

Proof. See Appendix F.

Lemma IV.4. There exists ν0 > 0 such that for all 0 < ν 6 ν0, support (µ∗ν) is discrete with a finite number of points in any
bounded interval.

Proof. Fix some ν > 0, and define r(y) , (wY |X ◦µ∗ν)(y) and f(z) , (wZ|X ◦µ∗ν)(z). We assume that there exists an interval
with an infinite number of points in support (µ∗ν) and obtain a contradiction for ν small enough in four steps.

Step 1: We first use the argument in [18] to show that the KKT condition in (88) holds for all x > 0. By the Bolzano-
Weierstrass theorem, there exists a convergent sequence {xi}i>1 in support (µ∗ν). Moreover, by (88), for any x ∈ support (µ∗ν),
we have

φν(x) , w(x, µ∗ν , ν)−A(ν) (89)

=

∫ ∞
0

px(y) log
px(y)

r(y)
dy − γ(ν)

∫ ∞
0

qx(z) log
f(z)

q0(z)
dz −A(ν) + γ(ν)ν = 0. (90)

We now show that φν(x) is analytic in x over the domain D , {x : R(x) > 0}. Note that
∫∞

0
px(y) log px(y)dy =

− log(1 + θmx)− 1 and
∫∞

0
qx(z) log q0(z)dz = −1− x, which are analytic over D. We furthermore have

|px(y)| = 1

|1 + θ2
mx|

∣∣∣e− y

1+θ2mx

∣∣∣ (91)

(a)
=

1

|1 + θ2
mx|

e
−
y(θ2mR(x)+1)
|1+θ2mx|

2 , (92)

where (a) follows from |ez| = eR(z). This implies that

∫ ∞
0

|px(y) log r(y)|dy
(a)

6
∫ ∞

0

|px(y)|
(
θ2
mEµ∗ν (X) + y

)
dy (93)

(b)

6
∫ ∞

0

|px(y)|
(
θ2
m

(
2
√
ν + ν

)
+ y
)
dy (94)

(c)
= θ2

m

(
2
√
ν + ν

) |1 + θ2
mx|

θ2
mR(x) + 1

+
|1 + θ2

mx|3

(θ2
mR(x) + 1)2

, (95)

where (a) follows from (205), (b) follows from Lemma C.2, and (c) follows by (92). Therefore,
∫∞

0
|px(y) log r(y)|dy is

uniformly bounded on any compact subset of D, and Theorem B.1 yields that
∫∞

0
|px(y) log r(y)|dy is analytic over D.

One can similarly argue that
∫∞

0
qx(z) log f(z)dx is also analytic over D and therefore φν is analytic. Since φν(x) is an

analytic function over D, and φν(x) = 0 over a set with a limit point in D, the identity theorem [25] states that φν(x) = 0
for all x ∈ D. Thus, φν(x) = 0 holds over the entire real line. Using

∫∞
0
px(y) log px(y)dy = − log(1 + θmx) − 1 and∫∞

0
qx(z) log q0(z)dz = −1− x, we can re-write

0 = φν(x) = − log(θ2
mx+ 1)− 1− γ(ν)(1 + x)−A(ν) + γ(ν)ν

−
∫ ∞

0

px(y) log r(y)dy − γ(ν)

∫ ∞
0

qx(z) log f(z)dz. (96)
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To obtain a contradiction, we cannot use the Laplace transform approach of [18] because there are two integrals in (96), which
is therefore the sum of two Laplace transforms with different arguments. Hence, we continue the proof with another approach.

Step 2: In this step, we shall find the supremum of the support of µ∗ν in terms of γ(ν). We first consider any non-zero
point x̃ ∈ support (µ∗ν) and any ∆ ∈]0; x̃[. Since x̃ ∈ support (µ∗ν), there exists δ > 0 with µ∗ν (]x̃−∆, x̃+ ∆[) = δ. Thus, for
any y, by definition of r(y) and the law of total probability, we lower-bound r(y) by

r(y) = Eµ∗ν

(
1

1 + θ2
mX

e
− y

1+θ2mX

)
(97)

>Eµ∗ν

(
1

1 + θ2
mX

e
− y

1+θ2mX

∣∣∣∣X ∈]x̃−∆, x̃+ ∆[

)
µ∗ν(]x̃−∆, x̃+ ∆[) (98)

>
δ

1 + θ2
m(x̃+ ∆)

e
− y

1+θ2m(x̃−∆) , (99)

and similarly, lower-bound f(z) by

f(z) >
δ

1 + x̃+ ∆
e−

z
1+x̃−∆ . (100)

Substituting these bounds in (96), we obtain

0 6 − log(θ2
mx+ 1)− 1− γ(ν)(1 + x)−A(ν) + γ(ν)ν

−
∫ ∞

0

px(y) log
δ

1 + θ2
m(x̃+ ∆)

e
− y

1+θ2m(x̃−∆) dy − γ(ν)

∫ ∞
0

qx(z) log
δ

1 + x̃+ ∆
e−

y
1+x̃−∆ dz (101)

= − log(θ2
mx+ 1)− 1− γ(ν)(1 + x)−A(ν) + γ(ν)ν

− log
δ

1 + θ2
m(x̃+ ∆)

+
1 + θ2

mx

1 + θ2
m(x̃−∆)

− γ(ν)

(
log

δ

1 + x̃+ ∆
− 1 + x

1 + x̃−∆

)
(102)

= κ− log(θ2
mx+ 1)− x

(
γ(ν)

x̃−∆

1 + x̃−∆
− θ2

m

1 + θ2
m(x̃−∆)

)
, (103)

where κ is a constant not depending on x. Since (103) holds for all x, by taking the limit x→∞, we should have

γ(ν)
x̃−∆

1 + x̃−∆
− θ2

m

1 + θ2
m(x̃−∆)

6 0. (104)

Moreover, by letting ∆ tend to zero, we obtain

γ(ν)
x̃

1 + x̃
− θ2

m

1 + θ2
mx̃

6 0, (105)

which implies that x∗ , sup(support (µ∗ν)) <∞. Furthermore, upon finiteness of x∗, we have

r(y) 6 e
− y

1+θ2mx
∗ , (106)

and

f(z) 6 e−
z

1+x∗ . (107)

Replacing these upper-bounds in (96), we obtain

0 > − log(θ2
mx+ 1)− 1− γ(ν)(1 + x)−A(ν) + γ(ν)ν −

∫ ∞
0

px(y) log e
− y

1+θ2mx
∗ dy − γ(ν)

∫ ∞
0

qx(z) log e−
z

1+x∗ dz

(108)

= − log(θ2
mx+ 1)− 1− γ(ν)(1 + x)−A(ν) + γ(ν)ν +

1 + θ2
mx

1 + θ2
mx
∗ + γ(ν)

1 + x

1 + x∗
(109)

= κ′ − log(θ2
mx+ 1)− x

(
γ(ν)

x∗

1 + x∗
− θ2

m

1 + θ2
mx
∗

)
, (110)

where κ′ is a constant not depending on x. Since (110) holds for all x, we have

γ(ν)
x∗

1 + x∗
− θ2

m

1 + θ2
mx
∗ > 0. (111)

By definition of the support of a distribution, it should be closed, and therefore, x∗ ∈ support (µ∗ν). Since (105) holds for all
points in the support, we can set x̃ = x∗ and obtain

γ(ν)
x∗

1 + x∗
− θ2

m

1 + θ2
mx
∗ = 0. (112)



12

Step 3: Using the equality for x∗ in (112), we derive an upper-bound on A(ν) depending on γ(ν) and ν. By definition
of µ∗ν , it holds that

A(ν) = I(µ∗ν , wY |X) (113)

= EwY |X×µ∗ν

(
log

pX(Y )

r(Y )

)
(114)

= EwY |X×µ∗ν

(
log

pX(Y )p0(Y )

r(Y )p0(Y )

)
(115)

= EwY |X×µ∗ν

(
log

pX(Y )

p0(Y )

)
− EwY |X◦µ∗ν

(
log

r(Y )

p0(Y )

)
(116)

= EwY |X×µ∗ν

(
log

pX(Y )

p0(Y )

)
− D(r‖p0) (117)

6 EwY |X×µ∗ν

(
log

pX(Y )

p0(Y )

)
(118)

= Eµ∗ν
(
θ2
mX − log(1 + θ2

mX)
)

(119)
(a)

6 Eµ∗ν

(
1

2
θ4
mX

2

)
(120)

6
1

2
θ4
mx
∗E(X) (121)

(b)

6
1

2
θ4
mx
∗ (2√ν + ν

)
, (122)

where (a) follows from log(1 + x) > x− x2/2 for x > 0, and (b) follows from Lemma C.2. Therefore, we can use (112) to
obtain

A(ν) 6
1

2
θ4
m

(
θ4
m(1 + x∗)

γ(ν)(1 + θ4
mx
∗)

)(
2
√
ν + ν

)
(123)

6
2
√
ν + ν

γ(ν)

(
1

2
θ4
m(1 + |1− θ4

m|)
)
. (124)

Step 4: We complete the proof by obtaining a contradiction. Lemma F.1 part 4 implies that there exists ν0 > 0
and C > 0 such that A(ν) > C

√
ν for all 0 < ν 6 ν0. By Theorem IV.1 part 4, we can choose ν0 small such that

γ(ν) > 3
C

(
1
2θ

4
m(1 + |1− θ4

m|)
)

in addition to A(ν) > C
√
ν for all 0 < ν 6 ν0. Since by decreasing ν0, the statement would

be weaker, we can always assume that ν0 < 1. Thus,

C
√
ν 6 A(ν) (125)

6
2
√
ν + ν

γ(ν)

(
1

2
θ4
m(1 + |1− θ4

m|)
)

(126)

<
2
√
ν + ν

3
C

(
1
2θ

4
m(1 + |1− θ4

m|)
) (1

2
θ4
m(1 + |1− θ4

m|)
)

(127)

6 C
√
ν. (128)

Lemma IV.5. There exists ν0 > 0 such that for any ν0 > ν > 0, the support of µ∗ν has a finite number of points.

Proof. We proceed by contradiction. Assume that the support of µ∗ν has infinitely many points {xi}∞i=1 in increasing order
with probabilities {αi}∞i=1. Since we proved that in any bounded interval, we can only have a finite number of points,
limi→∞ xi =∞. Note that for any j > 1, we have

(wY |X ◦ µ∗ν)(y) =

∞∑
i=1

αipxi(y) (129)

> αjpxj (y), (130)

and

(wZ|X ◦ µ∗ν) (z) > αjqxj (z) . (131)
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Therefore, for all j > 1, we can upper-bound φν(x) defined in (89) as

φν(x) =

∫ ∞
0

px(y) log
px(y)

(wY |X ◦ µ∗ν)(y)
dy − γ(ν)

∫ ∞
0

qx(z) log
(wZ|X ◦ µ∗ν)(z)

q0(z)
dz −A(ν) + γ(ν)ν (132)

6
∫ ∞

0

px(y) log
px(y)

αjpxj (y)
dy − γ(ν)

∫ ∞
0

qx(z) log
αjqxj (z)

q0(z)
dz −A(ν) + γ(ν)ν (133)

= log(θ2
mx+ 1)− 1− log

αj
1 + θ2

mxj
+

1 + θ2
mx

1 + θ2
mxj

− γ(ν)

(
1 + x− log

αj
1 + xj

+
1 + x

1 + xj

)
−A(ν) + γ(ν)ν (134)

= κ+ log(θ2
mx+ 1) +

(
−γ(ν) +

γ(ν)

1 + xj
+

θ2
m

1 + θ2
mxj

)
x, (135)

where κ is a constant not depending on x. Furthermore, the KKT condition in (88) implies that (135) is non-negative for all
xi, and since xi can be large enough, we should have

−γ(ν) +
γ(ν)

1 + xj
+

θ2
m

1 + θ2
mxj

> 0. (136)

Because xj can be large enough, we have −γ(ν) > 0. This cannot be true for small ν since limν→0+ γ(ν) = ∞ by
Theorem IV.1.

Lemma IV.6. There exists ν0 > 0 such that for all ν0 > ν > 0, µ∗ν has a mass point at 0.

The proof of Lemma IV.6 will require the following technical result which is a modification of [18, Lemma 1].

Lemma IV.7. Let f(z) be a PDF with mean m and g(z) be a strictly monotonically increasing function, then
∫

(z −
m)f(z)g(z)dz > 0.

Proof. (z−m)(g(z)− g(m)) is always positive as either the product of two negative terms if z < m or two positive terms if
z > m. Thus, (z −m)g(z) > (z −m)g(m) and

∫
(z −m)g(z)f(z)dz >

∫
(z −m)g(m)f(z)dz = 0.

Proof of Lemma IV.6. Let ν0 be as in Lemma IV.5 so that µ∗ν has finite number of mass points for all 0 < ν 6 ν0. For the sake
of a contradiction, assume that µ∗ν is a discrete probability measure over X with k mass points 0 < x1 < · · · < xk with corre-
sponding probabilities α1, · · · , αk. In [18], it is proved that reducing x1 increases the mutual information I(µ,wY |X). Therefore,

to complete the proof, it is enough to show that
∂D(wZ|X◦µ‖q0)

∂x1
> 0. Defining f(x1, z) , (wZ|X ◦ µ)(z) log

(wZ|X◦µ)(z)

q0(z) , we
have

∂D
(
wZ|X ◦ µ‖q0

)
∂x1

=
∂

∂x1

∫
Z
f(x1, z)dz. (137)

By Lemma C.4,
∫
Z |f(x1, z)|dz <∞, and we have

∂f

∂x1
(x1, z) =

α1

(1 + x1)2
qx1

(z)
(
z − Eqx1

(Z)
)(

log
(wZ|X ◦ µ)(z)

q0(z)
+ 1

)
, (138)

which satisfies that ∣∣∣∣ ∂f∂x1
(x1, z)

∣∣∣∣ 6 e−
z

1+x1 (z + x1 + 1) (2z + Eµ(X) + 1) . (139)

The right hand side of (139), is bounded with an integrable function of z independent of x1, if x1 is bounded. Hence,
Theorem A.1 implies that

∂D
(
wZ|X ◦ µ‖q0

)
∂x1

= α1
1

(1 + x1)2

∫ ∞
0

(z − Eqx1
(Z))qx1

(z)

(
log

(wZ|X ◦ µ)(z)

q0(z)
+ 1

)
dz. (140)

Note that

log
(wZ|X ◦ µ)(z)

q0(z)
= log

∑k
i=1 αi

1
xi+1e

− z
xi+1

e−z
(141)

= log

k∑
i=1

αi
1

xi + 1
e
z

xi
xi+1 . (142)

Since 1 > 1
x1+1 > · · · >

1
xk+1 , log

(wZ|X◦µ)(z)

q0(z) +1 is strictly monotonically increasing in z. Using Lemma IV.7,
∂D(wZ|X◦µ‖q0)

∂x1
>

0, and hence, by decreasing x1, the constraint D
(
wZ|X ◦ µ‖q0

)
6 ν still holds and I(µ,wY |X) is increased. This contradicts

with the definition of µ∗ν , and therefore, there exists a mass point at zero.
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3) Step three: an amplitude constraint: For a probability measure µ on X and a > 0, we define Ca[µ] as a new probability
measure µ̃ on X such that

µ̃(]−∞, x[) =

{
µ(]−∞, x[) x < a,

1 x > a.
(143)

Intuitively, µ̃ is obtained by moving all probability of ]a,∞[ in µ to a mass point at a.

Theorem IV.2. Let {νn}n>1 be o(1). For all a > 1, if n is large enough, we have Ca[µ∗νn ] ∈ Ωa (νn) and

lim inf
n→∞

I(µ∗νn , wY |X)√
D
(
wZ|X ◦ µ∗νn‖q0

) 6 lim inf
n→∞

I(Ca[µ∗νn ], wY |X)√
D
(
wZ|X ◦ Ca[µ∗νn ]‖q0

) . (144)

To prove this result, we need the following lemmas.

Lemma IV.8. If µ is a discrete probability measure on X with finite number of mass points x1 < · · · < xk and corresponding
probabilities α1, · · · , αk, then

D
(
wZ|X ◦ Ca[µ]‖q0

)
6 D

(
WZ|X ◦ µ‖q0

)
, (145)

I(Ca[µ], wY |X) > I(µ,wY |X)− θ2
mmax(support (µ))µ(]a,∞[). (146)

Proof. Similar to (140), for all i ∈ J1, kK, we have

∂

∂xi
D
(
wZ|X ◦ µ‖q0

)
= αi

1

(1 + xi)2

∫ ∞
0

(z − Eqxi (Z))qxi(z) log
(wZ|X ◦ µ)(z)

q0(z)
dz > 0. (147)

Hence, by moving all mass points located in ]a,∞[ to a to obtain Ca[µ], we decrease the relative entropy. Applying the same
argument to the channel wY |X , we have D

(
wY |X ◦ Ca[µ]‖p0

)
6 D

(
wY |X ◦ µ‖p0

)
. Additionally, we have

I(µ,wY |X) =

k∑
i=1

αiD(pxi‖p0)− D
(
wY |X ◦ µ‖p0

)
(148)

=

k∑
i=1

αi
(
θ2
mxi − log(1 + θ2

mxi)
)
− D

(
wY |X ◦ µ‖p0

)
, (149)

which implies that

I(µ,wY |X)− I(Ca[µ], wY |X) (150)

=

( ∑
i:xi>a

αi
(
θ2
mxi − log(1 + θ2

mxi)
)
− µ(]a,∞[)

(
θ2
ma− log(1 + θ2

ma)
))

+(
−D
(
wY |X ◦ µ‖p0

)
+ D

(
wY |X ◦ Ca[µ]‖p0

))
(151)

6
∑
i:xi>a

αi
(
θ2
mxi − log(1 + θ2

mxi)
)
− µ(]a,∞[)

(
θ2
ma− log(1 + θ2

ma)
)

(152)

6
∑
i:xi>a

αi
(
θ2
mxi − log(1 + θ2

mxi)
)

(153)

6 θ2
mmax(support (µ))µ(]a,∞[). (154)

Lemma IV.9. For all a > 0, there exist ν0 > 0, x̃ ∈ X , and ξ > 0 such that for all 0 < ν 6 ν0, if max(support (µ∗v)) > x̃,
then µ∗v(]a,∞[) 6 2−ξmax(support(µ∗v)).

Proof. Fix ν > 0 small enough and suppose that µ , µ∗ν has mass points x1 < · · · < xk with corresponding probabilities
α1, · · · , αk. Let r(y) , (wY |X ◦ µ)(z) and f(z) , (wZ|X ◦ µ)(z). Substituting the lower-bounds

r(y) >
µ(]a,∞[)

1 + θ2
mxk

e
− y

1+θ2ma , and f(z) >
µ(]a,∞[)

1 + xk
e−

z
1+a , (155)

in the KKT condition (88) for the point x = xk, we obtain

0 6 − log(θ2
mxk + 1)− 1− γ(ν)(1 + xk)−A(ν) + γ(ν)ν−

log
µ(]a,∞[)

1 + θ2
mxk

+
1 + θ2

mxk
1 + θ2

ma
+ γ(ν)

(
− log

µ(]a,∞[)

1 + xk
+

1 + xk
1 + a

)
. (156)
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Since limν→0+ γ(ν)ν = 0, for small ν, −1−A(ν) + γ(ν)ν 6 0, and therefore, (156) implies that

0 6 −γ(ν)(1 + xk)
a

1 + a
+ γ(ν) log(1 + xk) +

1 + θ2
mxk

1 + θ2
ma
− (1 + γ(ν)) log(µ(]a,∞[)). (157)

Furthermore, if xk is large enough, we have log(1 + xk) 6 (1+xk)a
4(1+a) , and if ν is small enough and xk is large enough, by

Theorem IV.1 part 4, we have 1+θ2
mxk

1+θ2
ma

6 γ(ν)(1 + xk) a
4(1+a) . Hence, there exist ν0 > 0 and x̃ > 0 such that if ν 6 ν0 and

xk > x̃, we have

0 6 −1

2
γ(ν)(1 + xk)

a

1 + a
− (1 + γ(ν)) log(µ(]a,∞[)), (158)

which yields that

µ(]a,∞[) 6 exp

(
−1

2

γ(ν)

1 + γ(ν)
(1 + xk)

a

1 + a

)
. (159)

Since limν→0+ γ(ν) = ∞, there exists ν0 > 0 such that infν∈]0,ν0]
γ(ν)

1+γ(ν) > 1
2 . Hence, for ξ , a

4(1+a) and all 0 < ν < ν0,
we have µ(]a,∞[) 6 2−ξxk .

We are now ready to establish the upper bound in (7) of Theorem IV.2.

Proof of Theorem IV.2. Let x∗n , max(support
(
µ∗νn
)
). By Lemma IV.5, if n is large enough µ∗νn is a discrete probability mea-

sure with finite number of mass points, and so is Ca[µ∗νn ]. By Lemma IV.8, we have D
(
wZ|X ◦ Ca[µ∗νn ]‖q0

)
6 D

(
µ∗νn‖q0

)
=

νn, and

I(Ca[µ∗νn ], wY |X)√
D
(
wZ|X ◦ Ca[µ∗νn ]‖q0

) >
I(µ∗νn , wY |X)− θ2

mx
∗
nµ
∗
νn(]a,∞[)√

D
(
wZ|X ◦ µ∗νn‖q0

) . (160)

Therefore, it is enough to show that

x∗nµ
∗
νn(]a,∞[) = o

(√
D
(
wZ|X ◦ µ∗νn‖q0

))
= o (

√
νn) . (161)

To do so, we consider ν0, x̃, and ξ from Lemma IV.9. For n large enough such that 2
ξ log 1

νn
> x̃, if x∗n > 2

ξ log 1
νn

, then

x∗nµ
∗
νn(]a,∞[) 6 x∗n2−ξx

∗
n , (162)

which is less than 2−
1
2 ξx
∗
n for large enough n. Thus, x∗n > 2

ξ log 1
νn

implies that x∗nµ
∗
νn(]a,∞[) 6 1

νn
. For the other case when

x∗n <
2
ξ log 1

νn
, let µ̃ be a probability distribution on X with two mass points at 0 and a with probabilities 1 − µ∗νn(]a,∞[)

and µ∗νn(]a,∞[), respectively. Then, we have

νn = D
(
wZ|X ◦ µ∗νn‖q0

) (a)

> D
(
wZ|X ◦ µ̃‖q0

) (b)

> K
(
µ∗νn(]a,∞[)

) a+1
a , (163)

where (a) follows from the same argument as in the proof of Lemma IV.8, and (b) follows from Lemma C.6 for a constant
K depending on a. Therefore, we have

x∗nµ
∗
νn(]a,∞[) 6

2

ξ
log

1

νn

(νn
K

) a
a+1

. (164)

Since both 1
νn

and 2
ξ log 1

νn

(
νn
K

) a
a+1 are o(

√
νn), we have (161).

4) Step four: obtaining the bound in Theorem III.1: We first prove a lemma that relates the constraint on the relative entropy
to χ2 divergence. Let Ω̃>0 be the set of discrete probability measures over [0, 1[ with finite number of mass points.

Lemma IV.10. Let ε > 0 be small enough and {νn}n> be a sequence of real numbers such that limn→∞ νn = 0 and
2
√
νn + νn 6 0.5 for all n. There exists a sequence of probability measures {λn}n>1 such that λn ∈ Ω̃>0 and

lim sup
n→∞

A(νn)
√
νn

6 lim sup
n→∞

I(λn, wY |X)√
1
2χ2(wZ|X ◦ λn‖q0)

+ ε. (165)

Proof. Let ξ > 0 and ζ , 6ξ
1−6ξ . Define

µn , µ∗νn (166)

µ′n , C1+ζ [µn] (167)

µ′′n , Can [µ′n], (168)
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where a′n , inf
a:µn(]a,∞[)6ν

1
2

+ξ
n

a and an , min(1−ζ, a′n). Let {νn}n> be a sequence of real numbers such that limn→∞ νn =

0 and 2
√
νn + νn 6 0.5 for all n. By construction, we have µ′′n([a′n,∞[) > ν

1
2 +ξ
n and µ′′n(]a′n,∞[) 6 ν

1
2 +ξ
n . We next use the

following lemma to upper-bound χ2(wZ|X ◦ µ′′n‖q0).

Lemma IV.11. Let µ ∈ Ω̃>0 such that D
(
wZ|X ◦ µ‖q0

)
6 ν and max (support (µ)) 6 a < 1. If 2

√
ν+ ν < 1/2 and for some

M > 0, we have (wZ|X ◦ µ)(M)/q0(M) > e, then

1

2
χ2(wZ|X ◦ µ‖q0) 6 D

(
wZ|X ◦ µ‖q0

)
+

1

2
(Eµ(X))3

∫ M

0

ez(−1+ 3a
1+a )dz +

1

2
(Eµ(X))2

∫ ∞
M

ez(−1+ 2a
1+a )dz + 2(Eµ(X))3.

(169)

Proof. See Appendix E.

We first establish a lower-bound on (wZ|X ◦ µ′′n(z))/q0(z) to use Lemma IV.11. Since an 6 a′n, we have

µ′′n([an,∞[) > µ′′n([a′n,∞[) > ν
1
2 +ξ
n , (170)

which yields that

(wZ|X ◦ µ′′n)(z)

q0(z)
> ν

1
2 +ξ
n

e
an

1+an
z

1 + an
. (171)

Choosing Mn = 1+an
an

(
2 +

(
1
2 + ζ

)
log 1

νn

)
, we have (wZ|X ◦ µ′′n)(Mn)/q0(Mn) > e. Therefore, Lemma IV.11 implies that

1

2
χ2(wZ|X ◦ µ′′n‖q0) (172)

6 D
(
wZ|X ◦ µ′′n‖q0

)
+

1

2
(Eµ′′n(X))3

∫ Mn

0

ez(−1+ 3an
1+an

)dz +
1

2
(Eµ′′n(X))2

∫ ∞
Mn

ez(−1+ 2an
1+an

)dz + 2(Eµ′′n(X))3 (173)

(a)

6 νn +
1

2
(Eµ′′n(X))3

∫ Mn

0

ez(−1+ 3an
1+an

)dz +
1

2
(Eµ′′n(X))2

∫ ∞
Mn

ez(−1+ 2an
1+an

)dz + 2(Eµ′′n(X))3 (174)

(b)

6 νn

(
1 +

27

2
ν

1
2
n

∫ Mn

0

ez(−1+ 3an
1+an

)dz +
9

2

∫ ∞
Mn

ez(−1+ 2an
1+an

)dz + 27ν
1
2
n

)
, (175)

where (a) follows since by Lemma IV.8

D
(
wZ|X ◦ µ′′n‖q0

)
6 D

(
wZ|X ◦ µ′n‖q0

)
6 D

(
wZ|X ◦ µn‖q0

)
6 νn, (176)

and (b) follows since by Lemma C.2, we have Eµ′′n(X) 6 2
√
νn + νn 6 3

√
νn. We now show that

lim
n→∞

27

2
ν

1
2
n

∫ Mn

0

ez(−1+ 3an
1+an

)dz = lim
n→∞

9

2

∫ ∞
Mn

ez(−1+ 2an
1+an

)dz = lim
n→∞

27M0ν
1
2
n = 0. (177)

For the first limit, we consider two cases.
If an 6 1/4, then −1 + 3an

1+an
6 −2/5 and

27

2
ν

1
2
n

∫ Mn

0

ez(−1+ 3an
1+an

)dz 6
27

2
ν

1
2
n

∫ ∞
0

e−
2z
5 dz (178)

=
135

4
ν

1
2
n . (179)

If an > 1/4, then∫ Mn

0

ez(−1+ 3an
1+an

)dz 6Mn max
(

1, eMn(−1+ 3an
1+an

)
)

(180)

=
1 + an
an

(
2 +

(
1

2
+ ξ

)
log

1

νn

)
max

(
1, e

1+an
an

(2+( 1
2 +ξ) log 1

νn
)(−1+ 3an

1+an
)
)

(181)

6 5

(
2 +

(
1

2
+ ξ

)
log

1

νn

)
max

(
1, e

2an−1
an

(2+( 1
2 +ξ) log 1

νn
)
)
. (182)

Note that

5

(
2 +

(
1

2
+ ξ

)
log

1

νn

)
= O

(
log

1

νn

)
(183)
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and

max
(

1, e
2an−1
an

(2+( 1
2 +ξ) log 1

νn
)
)

= O

(
1 + ν

− 2an−1
an

( 1
2 +ξ)

n

)
(184)

For an 6 1− 6ξ
1−6ξ , we have 2an−1

an

(
1
2 + ξ

)
6 1

2 − ξ. For the second limit in (177), note that∫ ∞
Mn

ez(−1+ 2an
1+an

)dz 6
∫ ∞
Mn

e−z
ζ

2−ζ dz. (185)

Because
∫∞

0
e−z

ξ
2−ξ <∞ and Mn = 1+an

an

(
2 +

(
1
2 + ζ

)
log 1

νn

)
goes to infinity as n goes to infinity, limn→∞

∫∞
Mn

ez(−1+ 2an
1+an

)dz =

0. The third limit in (177) follows since limn→∞ νn = 0. We thus obtain (177), which together with (175) results in

lim sup
n→∞

1
2χ2(wZ|X ◦ µ′′n‖q0)

νn
6 1. (186)

We now consider I(µ′′n, wY |X) and show that it is close to I(µn, wY |X) = A(νn).
If an = 1− ζ, then by a modification of Lemma IV.8

I(µ′′n, wZ|X) > I(µ′n, wZ|X)− 2ζµ′n(]1− ζ,∞[) (187)
= I(µ′n, wZ|X)− 2ζµn(]1− ζ,∞[) (188)

> I(µ′n, wZ|X)− 2ζ
Eµn(X)

1− ζ
(189)

> I(µ′n, wZ|X)− 6ζ

√
νn

1− ζ
. (190)

If an = a′n, by Lemma IV.8

I(µ′′n, wZ|X) > I(µ′n, wZ|X)− 2(1 + ζ)µ′n(]a′n,∞[) (191)

= I(µ′n, wZ|X)− 2(1 + ζ)ν
1
2 +ζ
n . (192)

Therefore,

I(µ′′n, wZ|X) > I(µ′n, wZ|X)−max

(
6ζ

√
νn

1− ζ
, 2(1 + ζ)ν

1
2 +ζ
n

)
(193)

(a)

> I(µn, wZ|X)−max

(
6ζ

√
νn

1− ζ
, 2(1 + ζ)ν

1
2 +ζ
n

)
− o(ν

1
2
n ), (194)

where (a) follows from the argument of Theorem IV.2. Taking λn = µ′′n ∈ Ω̃>0, by (194) and (186), we have (165) for
ε = 6ζ

1−ζ .

Let µ ∈ Ω̃>0. We claim that

I(µ,wY |X)√
χ2(wZ|X ◦ µ‖q0)

6 sup
µ̃∈Ω̃>0

Eµ̃
(
θ2
mX − log

(
1 + θ2

mX
))√

Eµ̃⊗µ̃
(

X1X2

1−X1X2

) . (195)

Let us define µ̃ as

µ̃(A) ,
µ(A∩]0, 1[)

µ(]0, 1[)
. (196)

In other words, µ̃ is the probability measure µ conditioned to the event ]0, 1[. We have

I(µ,wY |X) 6 Eµ
(
θ2
mX − log

(
1 + θ2

mX
)) (a)

= µ(]0, 1[)Eµ̃
(
θ2
mX − log

(
1 + θ2

mX
))
, (197)

where (a) follows since θ2
mx− log(1 + θ2

mx) = 0 for x = 0. Moreover,

χ2(wZ|X ◦ µ‖q0) = Eµ◦µ
(

X1X2

1−X1X2

)
= µ(]0, 1[)2Eµ̃◦µ̃

(
X1X2

1−X1X2

)
(198)

Therefore,

I(µ,wY |X)√
1
2χ2(wZ|X ◦ µ‖q0)

6
√

2
Eµ̃
(
θ2
mX − log

(
1 + θ2

mX
))√

Eµ̃⊗µ̃
(

X1X2

1−X1X2

) . (199)
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Furthermore, with the help of Lemma F.1, Eq. (394), we have that

lim sup
ν→0+

A(ν)√
ν

6
√

2θ2
m. (200)

Therefore, we obtain the upper-bound in (7).

V. CONCLUSION

For covert communications over non-coherent wireless channels, we showed that discrete constellations with an amplitude
constraint are optimal. This differs from the results for coherent Gaussian channels in which using the phase is required to
achieve the covert capacity. Supported by numerical results, we also conjectured that the optimal number of points is two and
that their positions are fixed.

APPENDIX A
LEIBNIZ INTEGRAL RULE

For a reader’s convenience, we recall Leibniz integral rule here as it is used extensively throughout the paper.

Theorem A.1. Let O be an open subset of R and Ω be a measure space. Suppose f : O × Ω → R satisfies the following
conditions

1) f(x,w) is a Lebesgue-integrable function of ω for each x ∈ O
2) For almost all ω ∈ Ω, the derivative ∂f

∂x exists for all x ∈ O
3) There is an integrable function θ : Ω→ R such that

∣∣∣∂f∂x (x, ω)
∣∣∣ 6 θ(ω) for all x ∈ O and almost every ω ∈ Ω.

Then, for all x ∈ O, we have

d

dx

∫
f(x, ω)dω =

∫
∂f

∂x
(x, ω)dω (201)

APPENDIX B
AN ANALYTICITY CRITERION

Theorem B.1. Let g : D × R → C be a function such that D is a simple connected subset of C, g(·, y) is analytic for all
y ∈ R, and supz∈C

∫
R |g(z, y)|dy <∞ for all compact C ⊂ D. The function f : z 7→

∫
R g(z, y)dy is analytic over the domain

D.

Proof. The proof is a straightforward application of Fubini’s theorem and Morera’s theorem. Fixing any closed piecewise C1

curve γ in D, we have ∫
γ

f(z)dz =

∫
γ

∫
R
g(z, y)dydz (202)

(a)
=

∫
R

∫
γ

g(z, y)dzdy (203)

(b)
= 0, (204)

where (a) follows from Fubini’s theorem and our assumption on g, and (b) follows since g(·, z) is analytic and from Cauchy’s
integral theorem. Therefore, f satisfies the condition of Morera’s theorem and is analytic.

APPENDIX C
AUXILIARY RESULTS

We gather here essential technical tools to prove the achievability and converse results. To begin with, we bound the PDF
of the output distributions of the channels wY |X and wZ|X for an arbitrary input distribution µ.

Proposition C.1. For any probability measure µ on X with Eµ(X) <∞ and all y ∈ Y, z ∈ Z , we have

−θ2
mEµ(X)− y 6 log((wY |X ◦ µ)(y)) 6 0, (205)
−Eµ(X)− z 6 log((wZ|X ◦ µ)(z)) 6 0, (206)

EwY |X◦µ(Y ) = 1 + θ2
mEµ(X), (207)

EwZ|X◦µ(Z) = 1 + Eµ(X). (208)
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Proof. We only prove (205) and (207), from which (206) and (208) follow by setting θm = 1. To obtain (205), observe that
for any x ∈ X , we have px(y) , 1

1+θ2
mx
e
− y

1+θ2mx 6 1, and

log
(
(wY |X ◦ µ)(y)

)
= log (Eµ(pX(y))) (209)
(a)

> Eµ(log (pX(y))) (210)

= Eµ
(
− log

(
1 + θ2

mX
)
− y

1 + θ2
mX

)
(211)

(b)

> Eµ
(
−θ2

mX −
y

1 + θ2
mX

)
(212)

(c)

> Eµ
(
−θ2

mX − y
)

(213)

= −θ2
mEµ(X)− y, (214)

where (a) follows from Jensen’s inequality, (b) follows from log(1+x) 6 x for x > −1, and (c) follows from Pµ(X > 0) = 1.
To obtain (207), note that

EwY |X◦µ(Y ) =

∫ ∞
0

y(wY |X ◦ µ)(y)dy (215)

=

∫ ∞
0

y

(∫
X
px(y)dµ

)
dy (216)

(a)
=

∫
X

(∫ ∞
0

ypx(y)dy

)
dµ (217)

=

∫
X

(1 + θ2
mx)dµ (218)

= 1 + θ2
mEµ(X), (219)

where (a) follows from Fubini’s theorem and the fact that for all x, y, ypx(y) > 0.

Lemma C.1. Let µ be a probability measure over X . If D
(
wZ|X ◦ µ‖q0

)
exists and is finite, then Eµ(X) <∞.

Proof. We proceed by contradiction. Consider a positive real number γ1 and let 2ε , µ([γ1,∞). We have ε > 0, because
otherwise Eµ(X) 6 γ1 <∞. By the continuity of a probability, we have

lim
γ→∞

µ([γ1, γ]) = 2ε. (220)

Therefore, there exists γ2 > γ1 such that µ([γ1, γ2]) > ε. We then have

(wZ|X ◦ µ)(z) >
εe−

z
1+γ1

1 + γ2
. (221)

This implies that (wZ|X ◦ µ)(z) > q0(z) = e−z for all z > z0 , 1+γ1

γ1
log 1+γ2

ε > 0. Since D
(
wZ|X ◦ µ‖q0

)
<∞, we have

∞ >

∫ ∞
z0

(wZ|X ◦ µ)(z) log
(wZ|X ◦ µ)(z)

q0(z)
dz (222)

>
∫ ∞
z0

(wZ|X ◦ µ)(z) log

εe
− z

1+γ1

1+γ2

e−z
dz (223)

> log
ε

1 + γ2
+

γ1

1 + γ1

∫ ∞
z0

(wZ|X ◦ µ)(z)zdz (224)

= log
ε

1 + γ2
+

γ1

1 + γ1

∫ ∞
z0

∫
X

e−
z

1+x

1 + x
dµzdz (225)

= log
ε

1 + γ2
+

γ1

1 + γ1

∫
X

∫ ∞
z0

e−
z

1+x

1 + x
zdzdµ (226)

= log
ε

1 + γ2
+

γ1

1 + γ1

∫
X

(1 + x)

(
1 +

z0

1 + x

)
e−

z0
1+x dµ (227)

> log
ε

1 + γ2
+

γ1

1 + γ1

∫
X

(1 + x)e−z0dµ (228)

> log
ε

1 + γ2
+

γ1

1 + γ1
(Eµ(X) + 1) e−z0 , (229)
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which implies that Eµ(X) <∞.

The next result shows that an upper-bound on D
(
wZ|X ◦ µ‖q0

)
leads to an upper-bound on Eµ(X).

Lemma C.2. For any ν > 0 and for any probability measure µ on X , D
(
wZ|X ◦ µ‖q0

)
6 ν implies that Eµ(X) 6 2

√
ν + ν.

Proof. For any x ∈ R+, we first consider the relative entropy D
(
wZ|X ◦ µ‖qx

)
and show that it exists. By (206) in Proposi-

tion C.1 applied to a distribution with a single mass point at x, | log qx(z)| 6 x+z. We thus have
∫∞

0
(wZ|X◦µ)(z) |log qx(z)| dz 6

x+EwZ|X◦µ(Z) = x+ 1 +Eµ(X), which is finite by Lemma C.1. Consequently,
∫∞

0
(wZ|X ◦ µ)(z) log qx(z)dz is finite, and

therefore by [26, Lemma 8.3.1], the relative entropy D
(
wZ|X ◦ µ‖qx

)
exists and is finite. Accordingly, we have

0 > −
∫ ∞

0

(wZ|X ◦ µ)(z) log
(wZ|X ◦ µ)(z)

qx(z)
dz (230)

=

∫ ∞
0

(wZ|X ◦ µ)(z)

(
− log((wZ|X ◦ µ)(z))− log(1 + x)− z

1 + x

)
dz. (231)

Furthermore, by our assumption that D
(
wZ|X ◦ µ‖q0

)
6 ν, we have

ν >
∫ ∞

0

(wZ|X ◦ µ)(z) log
(wZ|X ◦ µ)(z)

q0(z)
dz (232)

=

∫ ∞
0

(wZ|X ◦ µ)(z)
(
log((wZ|X ◦ µ)(z)) + z

)
dz. (233)

Adding the inequalities in (231) and (233), we obtain

ν >
∫ ∞

0

(wZ|X ◦ µ)(z)

(
− log(1 + x) +

xz

1 + x

)
dz (234)

= − log(1 + x) +
x

1 + x
EwZ|X◦µ(Z) (235)

(a)
= − log(1 + x) +

x

1 + x
(Eµ(X) + 1) , (236)

where (a) follows from (208). Hence, we have

Eµ(X) 6 (ν + log(1 + x))
1 + x

x
− 1 (237)

6 (ν + x)
1 + x

x
− 1. (238)

Choosing x =
√
ν, we obtain the desired upper-bound.

Lemma C.3. For any probability measure µ on X with Eµ(X) <∞, I(µ,wY |X) is well-defined and finite, and

I(µ,wY |X) = −
∫ ∞

0

(wY |X ◦ µ)(y) log((wY |X ◦ µ)(y))dy − Eµ
(
log
(
1 + θ2

mX
))
− 1. (239)

Proof. To check that I(µ,wY |X) is well-defined and finite, it is enough to show that
∫ ∣∣∣log px(y)

(wY |X◦µ)(y)

∣∣∣ d(wY |X × µ) <∞,

which holds since∫ ∣∣∣∣log
px(y)

(wY |X ◦ µ)(y)

∣∣∣∣ d(wY |X × µ) 6
∫ (
| log px(y)|+ | log((wY |X ◦ µ)(y))|

)
d(wY |X × µ) (240)

(a)

6
∫ (

θ2
m(x+ Eµ(X)) + 2y

)
d(wY |X × µ) (241)

= 2θ2
mEµ(X) + 2EwY |X◦µ(Y ) (242)

(b)
= 4θ2

mEµ(X) + 2 <∞, (243)

where (a) follows from (205), and (b) follows from (207). Note next that

I(µ,wY |X) = EwY |X×µ
(

log
pX(Y )

(wY |X ◦ µ)(Y )

)
(244)

= EwY |X×µ
(
− log(1 + θ2

mX)− Y

1 + θ2
mX

− log((wY |X ◦ µ)(Y ))

)
. (245)
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Moreover, E
(
log(1 + θ2

mX)
)
6 θ2

mE(X) < ∞ and E
(

Y
1+θ2

mX

)
6 E(Y ) < ∞, and therefore, we can use the linearity of

expectation to write

EwY |X×µ
(
− log(1 + θ2

mX)− Y

1 + θ2
mX

− log
(
(wY |X ◦ µ)(Y )

))
(246)

= −E
(
log(1 + θ2

mX)
)
− E

(
Y

1 + θ2
mX

)
− E

(
log
(
(wY |X ◦ µ)(Y )

))
(247)

= −E
(
log(1 + θ2

mX)
)
− E

(
E
(

Y

1 + θ2
mX

∣∣∣∣X))− E
(
log
(
(wY |X ◦ µ)(Y )

))
(248)

= −E
(
log(1 + θ2

mX)
)
− E

(
1 + θ2

mX

1 + θ2
mX

)
− E

(
log
(
(wY |X ◦ µ)(Y )

))
(249)

= −E
(
log(1 + θ2

mX)
)
− 1− E

(
log
(
(wY |X ◦ µ)(Y )

))
, (250)

which completes the proof of (239).

Lemma C.4. Suppose that D
(
wZ|X ◦ µ1‖q0

)
and D

(
wZ|X ◦ µ2‖q0

)
exist and are finite for two probability measures µ1 and

µ2 on X . Then, the cross entropy
∫∞

0
(wZ|X ◦ µ1)(z) log(wZ|X ◦ µ2(z))dz exists and is finite.

Proof. We shall show that
∫∞

0
(wZ|X ◦ µ1)(z)| log((wZ|X ◦ µ2)(z))|dz < ∞. By Lemma C.2, we know that Eµ1

(X) and
Eµ2(X) are finite. Therefore, we have∫ ∞

0

(wZ|X ◦ µ1)(z)| log(wZ|X ◦ µ2(z))|dz
(a)

6
∫ ∞

0

(wZ|X ◦ µ1)(z) (Eµ2
(X) + z) dz (251)

= Eµ2
(X) + EwZ|X◦µ1

(Z) (252)
(b)
= Eµ2

(X) + 1 + Eµ1
(X) <∞ (253)

where (a) follows from (206), and (b) follows from (208).

Lemma C.5. Let µ be a probability measure over X such that sup(support (µ)) <∞. We then have

I(µ,wY |X) = Eµ
(
θ2
mX − log(1 + θ2

mX)
)
− D

(
wY |X ◦ µ‖p0

)
. (254)

Furthermore, if we have sup(support (µ)) < 1, then

χ2(wZ|X ◦ µ‖q0) = Eµ◦µ
(

X1X2

1−X1X2

)
. (255)

Proof. We have

I(µ,wY |X) =

∫
log

pX(Y )

(wY |X ◦ µ)(Y )
d(wY |X × µ) (256)

=

∫
log

pX(Y )

p0(Y )
d(wY |X × µ) +

∫
log

p0(Y )

(wY |X ◦ µ)(Y )
d(wY |X × µ) (257)

= Eµ(D(pX‖p0))− D
(
wY |X ◦ µ‖p0

)
(258)

(a)
= Eµ

(
θ2
mX − log(1 + θ2

mX)
)
− D

(
wY |X ◦ µ‖p0

)
, (259)

where (a) follows from the straightforward calculation of the relative entropy between two exponential distribution. Additionally,
we have

χ2(wZ|X ◦ µ‖q0) =

∫ ∞
0

(wZ|X ◦ µ)(z)2

q0(z)
dz − 1 (260)

=

∫ ∞
0

Eµ⊗µ
(

1

(1 +X1)(1 +X2)
e
z
(

1− 1
1+X1

− 1
1+X2

))
dz − 1 (261)

(a)
= Eµ⊗µ

(∫ ∞
0

1

(1 +X1)(1 +X2)
e
z
(

1− 1
1+X1

− 1
1+X2

)
dz

)
− 1 (262)

= Eµ⊗µ
(

1

1−X1X2

)
− 1 (263)

= Eµ⊗µ
(

X1X2

1−X1X2

)
, (264)

where (a) follows from Fubini theorem and 1
(1+X1)(1+X2)e

z
(

1− 1
1+X1

− 1
1+X2

)
> 0 almost surely.
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Lemma C.6. If a > 1 and β > 0 is small enough, then

D(βqa + (1− β)q0‖q0) =

β1+ 1
a (1 + a)

−1− 1
a

(
1 +

1

a

)(
Γ
(
− 1
a

)
Γ
(
2 + 1

a

)(
1 + 1

a

)2 + a2Γ

(
1− 1

a

)
Γ

(
1 +

1

a

))
+O(β2), (265)

where Γ(x) ,
∫∞

0
yx−1e−ydy.

If a < 1 and β > 0 is small enough, then

D(βqa + (1− β)q0‖q0) =
a2

2(1− a2)
β2 + o(β2). (266)

Proof. We only consider the case where a > 1 and the other case follows from similar approach. By definition, we have

D(βqa + (1− β)q0‖q0) =

∫ ∞
0

(βqa(z) + (1− β)q0(z)) log

(
βqa(z) + (1− β)q0(z)

q0(z)

)
dz (267)

=

∫ ∞
0

(
β
e−

z
1+a

1 + a
+ (1− β)e−z

)
log

(
1− β +

β

1 + a
e
az

1+a

)
dz (268)

= log(1− β) +

∫ ∞
0

(
β
e−

z
1+a

1 + a
+ (1− β)e−z

)
log

(
1 +

β

(1− β)(1 + a)
e
az

1+a

)
dz. (269)

By substitution u , e
az

1+a in the above integral, we obtain∫ ∞
0

(
β
e−

z
1+a

1 + a
+ (1− β)e−z

)
log

(
1 +

β

(1− β)(1 + a)
e
az

1+a

)
dz =(

1 +
1

a

)∫ ∞
1

(
(1− β)u−2− 1

a +
β

1 + a
u−1− 1

a

)
log

(
1 +

β

(1− β)(1 + a)
u

)
du (270)

Note next that for all real numbers λ1, λ2, a primitive function of uλ1 log (1 + λ2u) is∫
uλ1 log (1 + λ2u) du =

uλ1+1 (2F1(1, λ1 + 1;λ1 + 2;−λ2u) + (λ1 + 1) log(λ2u+ 1)− 1)

(λ1 + 1)2
+ constant, (271)

where 2F1(a, b; c;x) is the hypergeometric function. Additionally, for λ1 < −1, the limit of this primitive function at u =∞
is

λ−λ1−1
2 Γ(2 + λ1)Γ(−λ1)

(λ1 + 1)2
. (272)

Therefore, if we define λ , β
(1−β)(1+a) , by linearity of integral, we have∫ ∞

1

(
(1− β)u−2− 1

a +
βu−

1
a

1 + a

)
log

(
1 +

β

(1− β)(1 + a)
u

)
du (273)

= (1− β)

(
λ1+ 1

aΓ
(
− 1
a

)
Γ
(
2 + 1

a

)(
1 + 1

a

)2 − 2F1

(
1,−1− 1

a ;− 1
a ;−λ

)
− (1 + 1

a ) log(λ+ 1)− 1(
1 + 1

a

)2
)

+ (274)

β

1 + a

(
λ

1
aΓ
(
1− 1

a

)
Γ
(
1 + 1

a

)(
1
a

)2 − 2F1

(
1,− 1

a ; 1− 1
a ;−λ

)
− ( 1

a ) log(λ+ 1)− 1(
1
a

)2
)

(275)

(a)
= (1− β)

λ1+ 1
aΓ
(
− 1
a

)
Γ
(
2 + 1

a

)(
1 + 1

a

)2 −

(
1 +

λ(1+ 1
a )

− 1
a

)
− (1 + 1

a )λ− 1 +O(β2)(
1 + 1

a

)2
+ (276)

β

1 + a

λ 1
aΓ
(
1− 1

a

)
Γ
(
1 + 1

a

)(
1
a

)2 −

(
1 +

λ 1
a

1− 1
a

)
− ( 1

a )λ+O(β2)− 1(
1
a

)2
 (277)

= (1− β)

λ−1− 1
aΓ
(
− 1
a

)
Γ
(
2 + 1

a

)(
1 + 1

a

)2 −
λ(1+ 1

a )
− 1
a

− (1 + 1
a )λ+O(β2)(

1 + 1
a

)2
+ (278)
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λ(1− β)

λ− 1
aΓ
(
1− 1

a

)
Γ
(
1 + 1

a

)(
1
a

)2 −
λ 1
a

1− 1
a

− ( 1
a )λ+O(β2)(

1
a

)2
 , (279)

where (a) follows since for x going to zero 2F1(a, b; c;x) = 1 + abx/c + O(x2) and log(1 + x) = x + O(x2) by Taylor’s
expansion. By rearranging the terms in above expression and disregarding the higher order terms, we obtain

λ1+ 1
a (1− β)

(
Γ
(
− 1
a

)
Γ
(
2 + 1

a

)(
1 + 1

a

)2 +
Γ
(
1− 1

a

)
Γ
(
1 + 1

a

)(
1
a

)2
)

+ λ
1 + a

1 + 1
a

(1− β) +O(β2) (280)

= β1+ 1
a

(
1

(1− β)(1 + a)

)1+ 1
a

(1− β)

(
Γ
(
− 1
a

)
Γ
(
2 + 1

a

)(
1 + 1

a

)2 +
Γ
(
1− 1

a

)
Γ
(
1 + 1

a

)(
1
a

)2
)

+
β

1 + 1
a

+O(β2). (281)

Combining (269), (270), and (281), we have

D(βqa + (1− β)q0‖q0) (282)

= β1+ 1
a

(
1

(1− β)(1 + a)

)1+ 1
a

(1− β)(1 +
1

a
)

(
Γ
(
− 1
a

)
Γ
(
2 + 1

a

)(
1 + 1

a

)2 +
Γ
(
1− 1

a

)
Γ
(
1 + 1

a

)(
1
a

)2
)

+O(β2). (283)

APPENDIX D
ERROR EXPONENTS ANALYSIS

Lemma D.1. For a probability measure on X , µ, for which we have max(support (µ)) , xmax <∞ and D
(
wZ|X ◦ µ‖q0

)
6 ν

and for any A > 0, it holds that

EwY |X×µ
(

log2

(
pX(Y )

(wY |X ◦ µ)(Y )

))
6 2(3 + xmax)(2

√
ν + ν)(1 + θ2

mxmax)4
(
eAxmaxA+ θ2

m

)2
e2A + 20

(
(1 + θ2

mxmax) +A
)2
e−A. (284)

Proof. We first define f(x) ,
∫∞

0
px(y) log2

(
px(y)

(wY |X◦µ)(y)

)
dy for which we have

f(x) =

∫ A

0

px(y) log2

(
px(y)

(wY |X ◦ µ)(y)

)
dy +

∫ ∞
A

px(y) log2

(
px(y)

(wY |X ◦ µ)(y)

)
dy, (285)

for any A > 0. To upper-bound the first term, we note that∣∣∣∣ (wY |X ◦ µ)(y)

px(y)
− 1

∣∣∣∣ =

∣∣∣∣∣∣∣
Eµ
(

1

1+θ2
mX̃

e
− y

1+θ2mX̃

)
px(y)

− 1

∣∣∣∣∣∣∣ (286)

=

∣∣∣∣∣Eµ
(

1 + θ2
mx

1 + θ2
mX̃

e
y(x−X̃)

(1+θ2mX̃)(1+θ2mx) − 1

)∣∣∣∣∣ (287)

6 Eµ

(∣∣∣∣∣ 1 + θ2
mx

1 + θ2
mX̃

e
y(x−X̃)

(1+θ2mX̃)(1+θ2mx) − 1

∣∣∣∣∣
)

(288)

6 Eµ

(∣∣∣∣∣ 1 + θ2
mx

1 + θ2
mX̃

(
e

y(x−X̃)

(1+θ2mX̃)(1+θ2mx) − 1

)∣∣∣∣∣
)

+ Eµ

(∣∣∣∣∣ 1 + θ2
mx

1 + θ2
mX̃

− 1

∣∣∣∣∣
)
. (289)

Considering each term separately in the above expression, we have

Eµ

(∣∣∣∣∣ 1 + θ2
mx

1 + θ2
mX̃

(
e

y(x−X̃)

(1+θ2mX̃)(1+θ2mx) − 1

)∣∣∣∣∣
)

6 (1 + θ2
mxmax)Eµ

(∣∣∣∣e y(x−X̃)

(1+θ2mX̃)(1+θ2mx) − 1

∣∣∣∣) (290)

(a)

6 (1 + θ2
mxmax)eyxmaxEµ

(∣∣∣∣∣ y(x− X̃)

(1 + θ2
mX̃)(1 + θ2

mx)

∣∣∣∣∣
)

(291)

6 (1 + θ2
mxmax)eyxmaxy

(
x+ Eµ

(
X̃
))

, (292)
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where (a) follows from the mean value theorem and an upper-bound on derivative. For the next term in (289), we have

Eµ

(∣∣∣∣∣ 1 + θ2
mx

1 + θ2
mX̃

− 1

∣∣∣∣∣
)

= θ2
mEµ

(∣∣∣∣∣ x− X̃
1 + θ2

mX̃

∣∣∣∣∣
)

(293)

6 θ2
mEµ

(
|x− X̃|

)
(294)

6 θ2
m

(
x+ Eµ

(
X̃
))

. (295)

Combining these two inequalities, we obtain∣∣∣∣ (wY |X ◦ µ)(y)

px(y)
− 1

∣∣∣∣ 6 (x+ Eµ
(
X̃
)) (

(1 + θ2
mxmax)eyxmaxy + θ2

m

)
. (296)

Hence, using the inequalities log2(x) 6 (1− x)2(1 + x−2) for x > −1 and px(y)
(wY |X◦µ)(y) 6 (1 + θ2

mxmax)ey , we have

log2

(
px(y)

(wY |X ◦ µ)(y)

)
6
((
x+ Eµ

(
X̃
)) (

(1 + θ2
mxmax)eyxmaxy + θ2

m

))2 (
1 +

(
(1 + θ2

mxmax)ey
)2)

. (297)

This yields that ∫ A

0

px(y) log2

(
px(y)

(wY |X ◦ µ)(y)

)
dy (298)

6 sup
y∈[0,A]

((
x+ Eµ

(
X̃
)) (

(1 + θ2
mxmax)eyxmaxy + θ2

m

))2 (
1 +

(
(1 + θ2

mxmax)ey
)2)

(299)

=
(
x+ Eµ

(
X̃
))2 (

(1 + θ2
mxmax)eAxmaxA+ θ2

m

)2 (
1 +

(
(1 + θ2

mxmax)eA
)2)

(300)

6 2
(
x+ Eµ

(
X̃
))2

(1 + θ2
mxmax)4

(
eAxmaxA+ θ2

m

)2
e2A. (301)

For the second term in (285), if x 6 xmax, then we have∫ ∞
A

px(y) log2

(
px(y)

(wY |X ◦ µ)(y)

)
dy (302)

6 4

∫ ∞
A

px(y)
(
log(1 + θ2

mxmax) + y
)2
dy (303)

= 4
(
−
(
log2(1 + θ2

mxmax) + 2 log(1 + θ2
mxmax)

(
y + 1 + θ2

mx
)

+
(
y2 + 2(1 + θ2

mx)y + 2(1 + θ2
mx)2

))
e
− y

1+θ2mx

) ∣∣∣∣∞
A
(304)

= 4
(
log2(1 + θ2

mxmax) + 2 log(1 + θ2
mxmax)

(
A+ 1 + θ2

mx
)

+
(
A2 + 2(1 + θ2

mx)A+ 2(1 + θ2
mx)2

))
e
− A

1+θ2mx (305)

6 20
(
(1 + θ2

mxmax) +A
)2
e−A. (306)

Therefore, for all x ∈ X , it holds that

f(x) 6 2
(
x+ Eµ

(
X̃
))2

(1 + θ2
mxmax)4

(
eAxmaxA+ θ2

m

)2
e2A + 20

(
(1 + θ2

mxmax) +A
)2
e−A, (307)

which implies that

EwY |X×µ
(

log2

(
pX(Y )

(wY |X ◦ µ)(Y )

))
(308)

= Eµ(f(X)) (309)

6 2Eµ
((

X + Eµ
(
X̃
))2

)
(1 + θ2

mxmax)4
(
eAxmaxA+ θ2

m

)2
e2A + 20

(
(1 + θ2

mxmax) +A
)2
e−A. (310)

Finally, by Lemma C.2, Eµ
((

X + Eµ
(
X̃
))2

)
= Eµ

(
X2
)

+ 3 (Eµ(X))
2 6 (3 + xmax) (ν + 2

√
ν) which completes the

proof.

Proof of Lemma IV.1. We fix µ with sup(support (µ)) , x̃ <∞ and use Theorem A.1 along with induction to show that for
a small neighborhood around zero and all i > 0, we have

∂ig

∂si
(s, µ) = EwY |X×µ

(
logi

(
pX(Y )

(wY |X ◦ µ)(Y )

)(
pX(Y )

(wY |X ◦ µ)(Y )

)s)
, (311)



25

where

g(s, µ) , EwY |X×µ
((

pX(Y )

(wY |X ◦ µ)(Y )

)s)
. (312)

The statement is true for i = 0 by definition. For i > 0, we take O = [0, s̃], Ω = (X × Y, wY |X × µ), and f(s, x, y) =

logi−1
(

px(y)
(wY |X◦µ)(y)

)(
px(y)

(wY |X◦µ)(y)

)s
and check the three conditions in Theorem A.1:

1) For x 6 x̃, we have

|f(s, x, y)| =
∣∣∣∣logi−1

(
px(y)

(wY |X ◦ µ)(y)

)(
px(y)

(wY |X ◦ µ)(y)

)s∣∣∣∣ (313)

(a)

6

∣∣∣∣(θ2
m (Eµ(X) + x) + 2y

)i−1
(

px(y)

(wY |X ◦ µ)(y)

)s∣∣∣∣ (314)

6

∣∣∣∣(2θ2
mx̃+ 2y

)i−1
(

px(y)

(wY |X ◦ µ)(y)

)s∣∣∣∣ (315)

6
∣∣(2θ2

mx̃+ 2y
)∣∣i−1

(1 + x̃)se
sx̃y
1+x̃ , (316)

where (a) follows from Proposition C.1. Because the above upper-bound does not depend on x, we can write

EwY |X×µ(|f(s,X, Y )|) 6 EwY |X◦µ
(∣∣(2θ2

mx̃+ 2Y
)∣∣i−1

(1 + x̃)se
sx̃Y
1+x̃

)
. (317)

Moreover, note that the moment generating function of a random variable with exponential distribution and mean λ exists
in [0, λ), which implies that the moment generating function of distribution wY |X ◦ µ exists in [0, 1/(1 + x̃)). Hence,
there exists s̃ depending on x̃ such that

EwY |X◦µ
(∣∣(2θ2

mx̃+ 2Y
)∣∣i−1

(1 + x̃)se
sx̃Y
1+x̃

)
<∞. (318)

2) Since for all (x, y) ∈ X × Y , it holds that 0 < px(y)
(wY |X◦µ)(y) <∞, ∂f∂s exists, and we have

∂f

∂s
(s, x, y) = logi

(
px(y)

(wY |X ◦ µ)(y)

)(
px(y)

(wY |X ◦ µ)(y)

)s
. (319)

3) Similar to the first part, we can upper-bound the partial derivative as∣∣∣∣∂f∂s (s, x, y)

∣∣∣∣ =

∣∣∣∣logi
(

px(y)

(wY |X ◦ µ)(y)

)(
px(y)

(wY |X ◦ µ)(y)

)s∣∣∣∣ (320)

6
∣∣(2θ2

mx̃+ 2y
)∣∣i (1 + x̃)se

sx̃y
1+x̃ (321)

The above bound is increasing in s. Thus, by choosing s̃ small enough such that the expectation is finite for s = s̃, we
can choose

θ(x, y) ,
∣∣(2θ2

mx̃+ 2y
)∣∣i (1 + x̃)s̃e

s̃x̃y
1+x̃ . (322)

Then, EwY |X×µ(θ(X,Y )) <∞ and for all s 6 s̃, we have
∣∣∣∂f∂s (s, x, y)

∣∣∣ 6 θ(x, y).

We can now use Theorem A.1 and obtain

∂

∂s
EwY |X×µ

(
logi−1

(
pX(Y )

(wY |X ◦ µ)(Y )

)(
pX(Y )

(wY |X ◦ µ)(Y )

)s)
(323)

=
∂

∂s
EwY |X×µ(f(s,X, Y )) (324)

= EwY |X×µ
(
∂

∂s
f(s,X, Y )

)
(325)

= EwY |X×µ
(

logi
(

pX(Y )

(wY |X ◦ µ)(Y )

)(
pX(Y )

(wY |X ◦ µ)(Y )

)s)
. (326)

Therefore, the induction hypothesis implies (311). By the chain rule, φrel(s, µ) is also a smooth function on an interval [0, s̃]
for all µ with sup(support (µ)) 6 x̃. Hence, we can use Taylor’s theorem to obtain

φ(s, µ) = φrel(0, µ) +
∂φrel

∂s
(0, µ)s+

∂2φrel

∂s2
(0, µ)

s2

2
+
∂3φrel

∂s3
(η, µ)

s3

6
, (327)
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for some η ∈ [0, s̃]. The derivatives of φrel would be

φrel(0, µ) = − log(g(0, µ)) = 0 (328)

∂φrel

∂s
(0, µ) = −

∂g
∂s (0, µ)

g(0, µ)
= −EwY |X×µ

(
log

pX(Y )

(wY |X ◦ µ)(Y )

)
= −I(µ,wY |X) (329)

∂2φrel

∂s2
(0, µ) = −

g(0, µ)∂
2g
∂s2 (0, µ)−

(
∂g
∂s (0, µ)

)2

g(0, µ)
= −EwY |X×µ

(
log2 pX(Y )

(wY |X ◦ µ)(Y )

)
+ I(µ,wY |X)2. (330)

Moreover, Lemma D.1 yields that

∂2φrel

∂s2
(0, µ) > −2(3 + x̃)(2

√
ν + ν)(1 + θ2

mx̃)4
(
eAx̃A+ θ2

m

)2

e2A + 20
(
(1 + θ2

mx̃) +A
)2
e−A (331)

> −B1

(
(2
√
ν + ν)e2Ax̃+2AA2 +A2e−A

)
, (332)

for some B1 depending on θ2
m and x̃. With similar arguments as we had to check the third condition of Theorem A.1, we can

prove that there exists B2 depending on x̃, such that for all η ∈ [0, s̃], we have∣∣∣∣∂3φrel

∂s3
(η, µ)

∣∣∣∣ 6 B2. (333)

Choosing B = max(B1/2, B2/6) completes the proof.

APPENDIX E
PROOF OF LEMMA IV.11 AND IV.2

We first introduce some notation and facts, which will be useful in both proofs. Let f(z) , (wZ|X ◦ µ)(z) and φ(z) ,

f(z)/q0(z)− 1. Defining PX as the associated PMF of µ, we can write φ(z) =
∑
x PX(x) e

xz
1+x

1+x − 1, which is increasing and

φ(z) > φ(0) = Eµ
(

1

1 +X

)
− 1 > −Eµ(X) > −2

√
ν − ν > −0.5. (334)

Furthermore, there exists a unique M0 such that φ(z) 6 0 if and only if z 6M0.

Proof of Lemma IV.2. Using the bound log(1 + x) 6 x− x2/2 + x3/3 for x > −1, we obtain

D
(
wZ|X ◦ µ‖q0

)
=

∫ ∞
0

q0(1 + φ) log(1 + φ) (335)

6
∫ M

0

q0φ+
1

2

∫ M

0

q0φ
2 − 1

6

∫ M

0

q0φ
3 +

1

3

∫ M

0

q0φ
4 +

∫ ∞
M

f log(f/q0). (336)

We consider each term separately.
1) We have

∫ M

0

q0φ =

∫ M

0

f −
∫ M

0

q0 (337)

= e−M −
∑
x

PX(x)e−
M

1+x (338)

6 0. (339)

2) We have

1

2

∫ M

0

q0φ
2 6

1

2

∫ ∞
0

q0φ
2 (340)

=
1

2
χ2(wZ|X ◦ µ‖q0). (341)

3) We have

−1

6

∫ M

0

q0φ
3 6 −1

6

∫ M0

0

q0φ
3 (342)

6
1

6
M0(Eµ(X))3 (343)

(a)

6
1

3
(Eµ(X))3, (344)
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where (a) follows since M0 6 2 by the argument in the proof of Lemma IV.11.
4) We have ∫ M

0

q0φ
4 =

∫ M0

0

q0φ
4 +

∫ M

M0

q0φ
4 (345)

6M0(Eµ(X))4 +

∫ M

M0

e−z
(
Eµ(X)e

az
1+a
)4
dz (346)

= (Eµ(X))4

(
2 +

∫ M

0

ez(−1+ 4a
1+a )dz

)
. (347)

5) We have ∫ ∞
M

f log(f/q0) 6
a

1 + a

∫ ∞
M

f(z)zdz (348)

6
a

1 + a

(∫ ∞
M

e−
z

1+ε zdz +
1

Eµ(X) + ε

∫ ∞
M

e−
z

1+a dz

)
. (349)

Lemma IV.11. We use the notations introduced in the beginning of Appendix E. Since we have log(1 + x) > x − x2/2 +
1{x 6 0} 2x3/3 for x > −0.5, we have for all z ∈ Z ,

f(z) log(φ(z) + 1) > f(z)
(
φ(z)− φ2(z)/21{φ(z) 6 0} 2φ(z)3/3

)
. (350)

We therefore obtain

D(f‖q0) =

∫ ∞
0

f log(φ+ 1) (351)

>
∫ M

0

f
(
φ− φ2/2

)
+

∫ M0

0

2fφ3/3 +

∫ ∞
M

f log (f/q0) . (352)

We consider each term separately in the following.
1) We have ∫ M

0

f
(
φ− φ2/2

)
=

∫ M

0

q0(φ+ 1)
(
φ− φ2/2

)
(353)

=

∫ M

0

q0φ
2/2 +

∫ M

0

q0φ−
∫ M

0

q0φ
3/2 (354)

=

∫ ∞
0

q0φ
2/2 +

∫ M

0

q0φ−
∫ M

0

q0φ
3/2−

∫ ∞
M

q0φ
2/2. (355)

We again separately lower-bound each term in the above expression.
a) We have by definition,

∫ ∞
0

q0φ
2/2 =

1

2
χ2(f‖q0). (356)

b) We have ∫ M

0

q0φ =

∫ M

0

(f − q0) (357)

> −
∫ ∞
M

f. (358)
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c) To lower-bound −
∫M

0
q0φ

3/2, we first upper-bound φ as follows.

φ(z) =
∑
x

PX(x)
e
xz

1+x

1 + x
− 1 (359)

6
∑
x

PX(x)e
xz

1+a − 1 (360)

(a)

6
∑
x

PX(x)
(
1 +

(
e
az

1+a − 1
)
x
)
− 1 (361)

=
(
e
az

1+a − 1
)
Eµ(X) (362)

= e
az

1+aEµ(X), (363)

where (a) follows since e
xz

1+a 6 1 +
(
e
az

1+a − 1
)
x for x ∈ [0, a]. Since q0 > 0 and x 7→ x3 is increasing, we have∫ M

0

q0φ
3 6

∫ M

0

e−z
(
e
az

1+aEµ(X)
)3
dz (364)

= (Eµ(X))3

∫ M

0

ez(−1+ 3a
1+a )dz. (365)

d) Since φ(z) > 0 for z >M >M0 and x 7→ x2 is increasing for x > 0, we have∫ ∞
M

q0φ
2 6

∫ ∞
M

e−z
(
e
az

1+aEµ(X)
)2
dz (366)

= (Eµ(X))2

∫ M

0

ez(−1+ 2a
1+a )dz. (367)

As a conclusion, we obtain that∫ M

0

f
(
φ− φ2/2

)
>

1

2
χ2(f‖q0)− 1

2
(Eµ(X))2

∫ M

0

ez(−1+ 2a
1+a )dz − 1

2
(Eµ(X))3

∫ M

0

ez(−1+ 3a
1+a )dz −

∫ ∞
M

f. (368)

2) Using |f(z)| 6 1 for all z ∈ Z and 0 > φ(z) > −Eµ(X) for all 0 6 z 6M0, we have

∫ M0

0

fφ3 > −M0 (Eµ(X))
3
. (369)

We now show that M0 6 2, for which it is enough to show that f(2) > q0(2). Note that

log f(2)
(a)

>
∑
x

PX(x) log qx(2) (370)

= −Eµ(log (1 +X))− 2Eµ
(

1

1 +X

)
(371)

> Eµ(X)− 2 + 2Eµ
(

X

1 +X

)
(372)

> Eµ(X)− 2 + 2Eµ
(

X

1 + a

)
(373)

> −2 = log q0(2). (374)

3) By our assumption that f(M)/q0(M) > e, we have∫ ∞
M

f log f/q0 >
∫ ∞
M

f. (375)

Combining the bounds in the above three parts, we obtain the desired result.

APPENDIX F
OPTIMIZATION PROBLEM IN (82)

A. Prokhorov’s Theorem

Theorem F.1. Let {µn} be a sequence of tight probability measures on R, i.e., for all ε > 0, there exists a compact set K ⊂ R
such that for all n > 1, µn(R \K) 6 ε. Then, there exists a sub-sequence {µnk}k>1 and another probability measure µ on
R such that {µnk}k>1 converges weakly to µ.
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B. Convex Optimization for General Vector Spaces

Theorem F.2. ([27, Theorem 1, Page 217]). Let V be a vector space, Ω ⊂ V a convex set, U be a normed vector space, and
P ⊂ U be a positive cone, i.e., for all u1, u2 ∈ U and all α, β > 0, we have αu1 + βu2 ∈ P . Suppose the interior of P is
non-empty, and φ : Ω → R and G : Ω → U are convex functions such that there exists ω1 ∈ Ω for which G(ω1) ≺P 0 and
A , infω∈Ω:G(ω)�P0 φ(ω) > −∞. Then, there exists u∗0 �P∗ 0 in U∗ such that A = infω∈Ω φ(ω) + 〈G(ω), u∗0〉. Moreover, if
ω0 is a solution to the first optimization problem, the infimum of the second optimization problem is also achieved by ω0 and
〈G(ω0), u∗0〉 = 0.

We next recall a result from [16] to find an expression for the KKT conditions of an abstract convex optimization. To this
end, we introduce the notation of weak differentiablity for a function f : Ω→ R where Ω is convex. We say that f ′ω0

: Ω→ R
is the weak derivative of f at ω0, if

f ′ω0
(ω) = lim

θ→0+

f(θω + (1− θ)ω0)

θ
. (376)

Theorem F.3 ([16]). Let V be a linear space, Ω ⊂ V be convex, and f : Ω→ R be convex and have weak derivative for all
ω ∈ Ω. f(ω∗) = infω∈Ω f(ω) if and only if for all ω ∈ Ω, we have f ′ω∗(ω) > 0.

C. Technical Results

Lemma F.1. A(ν) defined in (82) satisfies the following properties.
1) It is concave and non-decreasing on [0,∞).
2) It is continuous on [0,∞).
3) The one-sided derivatives,

A′(ν+) , lim
h→0+

A(ν + h)−A(ν)

h
and A′(ν−) , lim

h→0+

A(ν)−A(ν − h)

h
, (377)

exist for all ν > 0, and for all 0 < ν1 < ν2, we have A′(ν−1 ) > A′(ν+
1 ) > A′(ν−2 ) > A′(ν+

2 ).
4) There exist constants ν0 > 0 and C > 0 such that for all 0 < ν 6 ν0, we have A(ν) > C

√
ν.

5) We have limν→0+ A′(ν+) = limν→0+ A′(ν−) =∞.

Proof. 1) By definition of A(ν), it follows that A(ν) is non-decreasing. To check concavity, we take any ν1, ν2 > 0,
µ1, µ2 ∈ Ω with D

(
wZ|X ◦ µ1‖q0

)
6 ν1 and D

(
wZ|X ◦ µ2‖q0

)
6 ν2, and λ ∈ [0, 1]. By convexity of the relative entropy,

we have

D
(
wZ|X ◦ (λµ1 + (1− λ)µ2) ‖q0

)
6 λν1 + (1− λ)ν2. (378)

Therefore, by concavity of the mutual information,

A(λν1 + (1− λ)ν2) > I(λµ∗ν1
+ (1− λ)µ∗ν2

, wY |X) (379)
> λI(µ1, wY |X) + (1− λ)I(µ2, wY |X). (380)

Hence, by definition of supremum, we have

A(λν1 + (1− λ)ν2) > sup
µ1,µ2∈Ω:D(wZ|X◦µ1‖q0)6ν1,D(wZ|X◦µ2‖q0)6ν2

λI(µ1, wY |X) + (1− λ)I(µ2, wY |X) (381)

= λ sup
µ1∈Ω:D(wZ|X◦µ1‖q0)6ν1

I(µ1, wY |X) + (1− λ) sup
µ2∈Ω:D(wZ|X◦µ2‖q0)6ν2

I(µ2, wY |X) (382)

= λA(ν1) + (1− λ)A(ν2). (383)

2) Since A(ν) is concave on [0,∞), it is continuous on (0,∞) [28, Page 153, Problem 4]. To check the continuity at 0, we
consider ν > 0 and µ ∈ Ω with D

(
wZ|X ◦ µ‖q0

)
6 ν. Using (239), we have

I(µ,wY |X) = −
∫ ∞

0

(wY |X ◦ µ)(y) log(wY |X ◦ µ)(y)dy − Eµ
(
log(1 + θ2

mX)
)
− 1. (384)

Furthermore, since EwY |X◦µ(Y ) = 1 + θ2
mEµ(X) by (207) and the support of wY |X ◦ µ is included in [0,∞), the

differential entropy of wY |X ◦µ is upper-bounded by the differential entropy of an exponential distribution with the same
mean [29]. Therefore, we have

I(µ,wY |X) 6 1 + log(1 + θ2
mEµ(X))− Eµ

(
log(1 + θ2

mX)
)
− 1 (385)

6 θ2
mEµ(X). (386)
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Furthermore, we have

ν > D
(
wZ|X ◦ µ‖q0

)
(387)

=

∫ ∞
0

(wZ|X ◦ µ)(z) log
(wZ|X ◦ µ)(z)

q0(z)
dz (388)

(a)
=

∫ ∞
0

(wZ|X ◦ µ)(z) log((wZ|X ◦ µ)(z))dz + EwZ|X◦µ(Z) (389)

> −1− log(EwZ|X◦µ(Z)) + EwZ|X◦µ(Z) (390)
(b)
= − log(1 + Eµ(X)) + Eµ(X) (391)
(c)

>
1

2
Eµ(X)

2 − 1

3
Eµ(X)

3 (392)

(d)

>
1

2
Eµ(X)

2

(
1− 2

3

(
2
√
ν + ν

))
(393)

where (a) follows since log q0(z) = −z and EwZ|X◦µ(Z) < ∞ by Lemma C.1 and (208), (b) follows from (208), (c)
follows from log(1 + x) 6 x− x2/2 + x3/3 for x > −1, and (d) follows from Lemma C.2. We obtain for ν < 1/4 that
Eν(X) 6

√
2ν

1−(2/3)(2
√
ν+
√
ν)

6
√

2ν
1−2
√
ν

, and hence,

I(µ,wY |X) 6
θ2
m

√
2ν

1− 2
√
ν
. (394)

Additionally, since A(ν) is non-decreasing and non-negative, we have

|A(ν)−A(0)| = A(ν)−A(0) 6 A(ν) 6
θ2
m

√
2ν

1− 2ν
, (395)

which implies that A(ν) is continuous at zero.
3) Follows from [28, Page 153, Problem 4] and concavity of A(ν).
4) For ν > 0 small enough, it is enough to find a probability measure µ satisfying D

(
wZ|X ◦ µ‖q0

)
6 ν and I(µ,wY |X) >

C
√
ν. Let µ be a discrete probability measure on X with two mass points at 0 and x̃ with probabilities 1 − α and α,

respectively, such that x̃ < min(1, 1/θ2
m). Then, by Lemma C.6,

D
(
wZ|X ◦ µ‖q0

)
=

α2x̃2

2(1− x̃2)
+ o(α2). (396)

Similarly, we can obtain D
(
wY |X ◦ µ‖p0

)
6 α2θ2

mx̃
2/(2(1− θ2

mx̃
2)) + o(α2). Therefore, we can lower-bound the mutual

information by

I(µ,wY |X) = αD(px̃‖p0)− D
(
wY |X ◦ µ‖p0

)
(397)

> αD(px̃‖p0)− α2θ2
mx̃

2

2(1− θ2
mx̃

2)
− o(α2) (398)

= α
(
θ2
mx̃− log(1 + θ2

mx̃)
)
− α2θ2

mx̃
2

2(1− θ2
mx̃

2)
− o(α2). (399)

Hence, by choosing α = x̃−1
√

2(1− x̃2)D
(
wZ|X ◦ µ‖q0

)
= x̃−1

√
2(1− x̃2)ν(1− o(1)), we have D

(
wZ|X ◦ µ‖q0

)
6 ν

and

I(µ,wY |X) >
√
ν(1− o(1))

(
x̃−1

√
2(1− x̃2)

(
θ2
mx̃− log(1 + θ2

mx̃)
)
−
√
ν

1− x̃2

1− θ2
mx̃

2

)
. (400)

Choosing ν0 > 0 such that

x̃−1
√

2(1− x̃2)
(
θ2
mx̃− log(1 + θ2

mx̃)
)
> 2
√
ν0

1− x̃2

1− θ2
mx̃

2
, (401)

the claim of the lemma holds for

C =
1

2
x̃−1

√
2(1− x̃2)

(
θ2
mx̃− log(1 + θ2

mx̃)
)
. (402)

5) Since A′(ν+) 6 A′(ν−), we only need to compute limν→0+ A′(ν+). Since A(ν) is concave A′(ν+) is decreasing, and
therefore, it is enough to show that for any L > 0 there exists some ν > 0 with A′(ν+) > L. To this end, we fix some
ν̃ > 0 and define B(ν) , A(ν)− A(ν̃)

ν̃ ν. B(ν) is continuous on [0, ν̃] and therefore it achieves its maximum and minimum



31

on [0, ν̃]. Hence, either we have B(ν) = 0 for all ν ∈ [0, ν̃] or there exists a ν ∈ (0, ν̃) such that B(ν) achieves its
maximum or minimum at ν. Then, we should have B′(ν−) = A′(ν−)−A(ν̃)/ν̃ > 0 or B′(ν+) = A′(ν+)−A(ν̃)/ν̃ > 0.
In both cases, we have A′

(
ν
2

+
)
> A(ν̃)

ν̃ . However, by Lemma F.1, A′
(
ν
2

+
)
> C/

√
ν̃, if ν̃ 6 ν0. Since ν̃ is arbitrary, we

can choose it such that C/
√
ν̃ > L.

Proof of Lemma IV.3. We only prove the existence of a solution and the uniqueness follows from strict concavity of the mutual
information [18]. Consider a sequence {µn}n>1 in Ω such that D

(
wZ|X ◦ µn‖q0

)
6 ν and limn→∞ I(µn, wY |X) = A(ν). To

use F.1, we first check that this sequence is tight. For any ε > 0, we have

Pµn
(
X /∈ [0, (2

√
ν + ν)/ε]

) (a)

6
Eµn(X)ε

2
√
ν + ν

(403)

(b)

6 ε, (404)

where (a) follows from applying Markov’s inequality to the almost surely non-negative random variable X , and (b) follows
from Lemma C.2. Since [0, (2

√
ν + ν)/ε] is compact, the sequence {µn}n>1 is tight. Therefore, we are permitted to use

Theorem F.1 that shows the existence of a subsequence {µnk}k>1 and probability measure µ on R such that {µnk}k>1

converges weakly to µ. We claim that µ∗ν is indeed µ and prove it in three steps.
Step 1: Theorem F.1 only guarantees the existence of a probability measure on R which can possibly have positive measure

on negative numbers. In this step, we show that this is not the case. By the Portmanteau theorem, the weak convergence of
{µnk}k>1 to µ implies that lim infk→∞ µnk(U) > µ(U) for any open set U ⊂ R. Taking U =]−∞, 0[, we obtain that

0 = lim inf
k→∞

µnk(]−∞, 0[) > µ(]−∞, 0[) > 0, (405)

which means that µ(]−∞, 0[) = 0.
Step 2: In this step we prove that µ satisfies the optimization constraint, i.e., D

(
wZ|X ◦ µ‖q0

)
6 ν. Let us define fk(z) ,

(wZ|X ◦ µnk)(z) and f(z) , (wZ|X ◦ µ)(z). Since for any z ∈ Z , qx(z) = e−z/(1+x)/(1 + x) is a continuous and bounded
function in x, by weak convergence definition, we have

fk(z) = Eµnk (qX(z))→ Eµ(qX(z)) = f(z). (406)

In the next lemma, we show that |fk(z) log fk(z)| is uniformly upper-bounded by an integrable function.

Lemma F.2. There exists some z̃ such that for all k,

|fk(z) log fk(z)| 6 g(z) ,

{
e−1 z ∈ [0, z̃],

2
√
ν+ν

e(z
3
2−z

1
2 )

+ z−
1
2 e−

√
z z ∈ [z̃,∞[,

(407)

and
∫∞

0
|g(z)|dz <∞.

Proof. Note first that for all x ∈ [0, 1], we have |x log x| 6 e−1, and for all x ∈ [0, e−1], we have |x log x| 6 |x|. Thus, it is
enough to show that there exist z̃ such that for all k > 1 and z > z̃,

fk(z) 6
2
√
ν + ν

e(z
3
2 − z 1

2 )
+ z−

1
2 e−

√
z. (408)

By law of total probability, for all λ > 0, we have

fk(z) , Eµnk (qX(z)) (409)

= Eµnk (qX(z)|X > λ)Pµnk (X > λ) + Eµnk (qX(z)|X < λ)Pµnk (X < λ) (410)
(a)

6 Eµnk (qX(z)|X > λ)
Eµnk (X)

λ
+ Eµnk (qX(z)|X < λ) (411)

(b)

6 Eµnk (qX(z)|X > λ)
2
√
ν + ν

λ
+ Eµnk (qX(z)|X < λ), (412)

where (a) follows from Markov’s inequality, and (b) follows from Lemma C.2. We also have for all z > 1, qx(z) 6 (ze)−1,
and for all 0 6 x 6 λ 6 z − 1, qx(z) 6 e−

z
1+λ /(1 + λ). Substituting these upper-bounds in (412) for λ = z

1
2 − 1, which is

less than z − 1 for z > 1, we obtain

fk(z) 6
1

ze

2
√
ν + ν

z
1
2 − 1

+
1

z
1
2

e−z
1
2 (413)

=
2
√
ν + ν

e(z
3
2 − z 1

2 )
+ z−

1
2 e−

√
z. (414)
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We are now eligible to use dominated convergence theorem and exchange limit and integral to obtain

lim
k→∞

∫ ∞
0

fk(z) log fk(z)dz =

∫ ∞
0

lim
k→∞

fk(z) log fk(z)dz (415)

=

∫ ∞
0

f(z) log f(z)dz. (416)

Since fk(z)z > 0 for all z ∈ Z and k > 1, Fatou’s lemma yields that∫ ∞
0

f(z)zdz =

∫ ∞
0

lim inf
k→∞

fk(z)zdz (417)

6 lim inf
k→∞

∫ ∞
0

fk(z)zdz. (418)

Combing (416) and (418), we have

D
(
wZ|X ◦ µ‖q0

)
=

∫ ∞
0

f(z) (z + log f(z)) dz (419)

6 lim inf
k→∞

∫ ∞
0

fk(z) (z + log fk(z)) dz = lim inf
k→∞

D
(
wZ|X ◦ µnk‖q0

)
6 ν. (420)

Step 3: It remains to show that I(µ,wY |X) > A(ν). We again define hk(z) , (wY |X ◦ µnk)(z) and h(z) , (wY |X ◦ µ)(z).
With the same argument of the previous step, we can prove that

lim
k→∞

∫ ∞
0

hk(z) log hk(z)dz =

∫ ∞
0

h(z) log h(z)dz. (421)

Furthermore, by [30, Page 86], we have

lim inf
k→∞

Eµnk
(
1 + log(1 + θ2

mX)
)
> Eµ

(
1 + log(1 + θ2

mX)
)
. (422)

Hence, (239) implies that I(µ,wY |X) > A(ν).

Proof of Theorem IV.1. We prove all four statements in order. The proof heavily relies on results from convex optimization
for general vector spaces and properties of the optimization problem in (83), which we have gathered in Appendix F for the
reader’s convenience.

1) In Theorem F.2, taking Ω as the set of all probability measures µ on X with D
(
wZ|X ◦ µ‖q0

)
< ∞, U = R, P = R+,

φ(µ) = −I(µ,wY |X), G(µ) = D
(
wZ|X ◦ µ‖q0

)
− ν, we note that

−∞ < −A(ν) = − sup
µ∈Ω:G(µ)60

−φ(µ) (423)

= inf
µ∈Ω:G(µ)60

φ(µ). (424)

By convexity of the relative entropy and concavity of mutual information in the input distribution, φ and G are convex
functions, with µ1 the deterministic probability measure with all mass point at zero, we also have G(µ1) = −ν < 0.
Therefore, we can apply Theorem F.2 to show the existence of γ(ν) > 0 such that

inf
µ∈Ω:G(µ)60

φ(µ) = inf
µ∈Ω

[φ(µ) + γ(ν)G(µ)] (425)

= − sup
µ∈Ω

[
I(µ,wY |X)− γ(ν)

(
D
(
wZ|X ◦ µ‖q0

)
− ν
)]
, (426)

which results in the unconstrained reformulation of A(ν) as supµ∈Ω

[
I(µ,wY |X)− γ(ν)

(
D
(
wZ|X ◦ µ‖q0

)
− ν
)]

. Theo-
rem F.2 also implies that µ∗ν is a solution to this new optimization problem, and since I(µ,wY |X)−γ(ν)

(
D
(
wZ|X ◦ µ‖q0

)
− ν
)

is strictly concave [18, Appendix I.B], the solution is unique.
2) With the help of Lemma F.3 in Appendix C to show the existence of weak derivatives (defined in (376)), we use

Theorem F.3 with f(µ) = I(µ,wY |X)−γ(ν)
(
D
(
wZ|X ◦ µ‖q0

)
− ν
)

to obtain that µ1 = µ∗ν if and only if for any µ ∈ Ω,

0 > f ′µ1
(µ) (427)

= EwY |X×µ
(

log
pX(Y )

(wY |X ◦ µ1)(Y )

)
− I(µ1, wY |X)

− γ(ν)

(
EwZ|X◦µ

(
log

(wZ|X ◦ µ1)(Z)

q0(Z)

)
− D

(
wZ|X ◦ µ1‖q0

))
(428)
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= EwY |X×µ
(

log
pX(Y )

(wY |X ◦ µ1)(Y )

)
− γ(ν)

(
EwZ|X◦µ

(
log

(wZ|X ◦ µ1)(Z)

q0(Z)

)
− ν
)
− f(µ1) (429)

= Eµ(w(X,µ1, ν))− f(µ1). (430)

This implies that µ1 = µ∗ν if and only if for all µ ∈ Ω, we have f(µ1) > Eµ(w(X,µ1, ν)). Since A(ν) = supµ∈Ω f(µ) >
f(µ1), if µ1 = µ∗ν , then for all µ ∈ Ω, we have A(ν) > f(µ1) > Eµ(w(X,µ1, ν)).

3) Assume (87) is true, we take the expectation and obtain (85). We now show the opposite direction and prove that if (85)
holds, we have (87) and (88). Applying (85) with µ a deterministic probability measure with all mass point at x, we
obtain

A(ν) > Eµ(w(X,µ1, ν)) = w(x, µ1, ν). (431)

Furthermore, for any x ∈ support (µ1), we prove that w(x, µ1, ν) = A(ν) by contradiction. If A(ν)−w(x, µ1, ν) , δ > 0,
by continuity of A(ν) − w(x, µ1, ν) in x, there exists a neighborhood N of x such that for all x′ ∈ N , we have
A(ν)− w(x′, µ1, ν) > δ/2. Also, since x ∈ support (µ1), we know that Pµ1

(X ∈ N ) = ε > 0. Therefore, we obtain

A(ν) = Eµ1
(w(X,µ1, ν)) = Eµ1

(w(X,µ1, ν)1{X ∈ N}) + Eµ1
(w(X,µ1, ν)1{X /∈ N}) (432)

6 (1− ε)A(ν) + ε

(
A(ν)− δ

2

)
(433)

= A(ν)− δε

2
< A(ν), (434)

which is a contradiction.
4) To prove that limν→0+ γ(ν) =∞, we prove that γ(ν) > A′(ν+), and the result will follow from limν→0+ A′(ν+) =∞

as shown in Lemma F.1. Consider any ν1, ν2 > 0, and similar to the sensitivity analysis in [19, Section 5.6], note that

A(ν1) = I(µ∗ν1
, wY |X)− γ(ν1)(D

(
wZ|X ◦ µ∗ν1

‖q0

)
− ν1) (435)

(a)

> I(µ∗ν2
, wY |X)− γ(ν1)(D

(
wZ|X ◦ µ∗ν2

‖q0

)
− ν1) (436)

= I(µ∗ν2
, wY |X)− γ(ν1)(D

(
wZ|X ◦ µ∗ν2

‖q0

)
− ν2) + γ(ν1)(ν1 − ν2) (437)

(b)

> I(µ∗ν2
, wY |X) + γ(ν1)(ν1 − ν2), (438)

where (a) follows since µ∗ν1
is the maximizer of supµ I(µ,wY |X)− γ(ν1)(D

(
wZ|X ◦ µ‖q0

)
− ν1), and (b) follows since

γ(ν1) > 0. Thus, for any ν > 0 and ν > h > 0, we have

A(ν)−A(ν − h)

h
> γ(ν) and

A(ν + h)−A(ν)

h
6 γ(ν). (439)

Taking the limit h→ 0+, we obtain A′(ν+) 6 γ(ν) 6 A′(ν−).
To prove that limν→0+ γ(ν)ν = 0, note that for all ν > 0,

γ(ν)ν 6 A′(ν−)ν (440)
(a)

6
A(ν)

ν
ν = A(ν), (441)

where (a) follows from concavity of A. In the proof of Lemma F.1, we show that limν→0+ A(ν) = 0, which yields the
result.

Lemma F.3. f(µ) , I(µ,wY |X)− γ(ν)
(
D
(
wZ|X ◦ µ‖q0

)
− ν
)

is weakly differentiable, and

f ′µ1
(µ) = EwY |X×µ

(
log

pX(Y )

(wY |X ◦ µ1)(Y )

)
−

I(µ1, wY |X)− γ(ν)

(
EwZ|X◦µ

(
log

(wZ|X ◦ µ1)(Z)

q0(Z)

)
− D

(
wZ|X ◦ µ1‖q0

))
. (442)

Proof. In [18, Equation (63)], the weak derivative of I(µ,wY |X) at µ1 is proved to be

EwY |X×µ
(

log
pX(Y )

(wY |X ◦ µ1)(Y )

)
− I(µ1, wY |X). (443)



34

Thus, we only check the weak differentiability of G(µ) , D
(
wZ|X ◦ µ‖q0

)
− ν. Let µ1, µ ∈ Ω, and define

µθ , (1− θ)µ1 + θµ (444)

f1(z) , (wZ|X ◦ µ1)(z) (445)

f(z) , (wZ|X ◦ µ)(z) (446)

fθ(z) , (wZ|X ◦ µθ)(z). (447)

Then, we have

G(µθ)−G(µ1) (448)
= D(fθ‖q0)− D(f1‖q0) (449)

=

∫ ∞
0

fθ(z) log
fθ(z)

q0(z)
dz −

∫ ∞
0

f1(z) log
f1(z)

q0(z)
dz (450)

(a)
=

∫ ∞
0

fθ(z) log
fθ(z)

q0(z)
dz −

∫ ∞
0

fθ(z) log
f1(z)

q0(z)
dz +

∫ ∞
0

fθ(z) log
f1(z)

q0(z)
dz −

∫ ∞
0

f1(z) log
f1(z)

q0(z)
dz (451)

=

∫ ∞
0

fθ(z) log
fθ(z)

f1(z)
dz +

∫ ∞
0

fθ(z) log
f1(z)

q0(z)
dz −

∫ ∞
0

f1(z) log
f1(z)

q0(z)
dz (452)

(b)
=

∫ ∞
0

fθ(z) log
fθ(z)

f1(z)
dz + θ

(∫ ∞
0

f(z) log
f1(z)

q0(z)
dz −

∫ ∞
0

f1(z) log
f1(z)

q0(z)
dz

)
, (453)

where (a) holds since by Lemma C.4,
∫∞

0
fθ(z) log f1(z)

q0(z)dz < ∞, and (b) follows from fθ = (1 − θ)f1 + θf . The second
term in (453) is differentiable with respect to θ, and the derivative is∫ ∞

0

f(z) log
f1(z)

q0(z)
dz −

∫ ∞
0

f1(z) log
f1(z)

q0(z)
dz. (454)

To take derivative from the first term in (453), we use Theorem A.1. Note that by Lemma C.4,
∫∞

0
fθ(z)

∣∣∣log fθ(z)
f1(z)

∣∣∣ dz <∞,
and also, for all z and θ,

∂

∂θ

(
fθ(z) log

fθ(z)

f1(z)

)
= −(f1(z)− f(z))

(
1 + log

fθ(z)

f1(z)

)
. (455)

Additionally, for all θ ∈ [0, 1], if we apply (206), we obtain

|fθ(z) log
fθ(z)

f1(z)
|6|f1(z) + f(z)| (| log f1(z)|+ log(1 + Eµθ (X)) + z) (456)

6 |f1(z) + f(z)| (| log f1(z)|+ log(1 + Eµ1(X) + Eµ(X)) + z) , (457)

which is a integrable function with respect to Lebesgue measure on Z by Lemma C.4 and does not depend on θ. Hence, all
condition in Theorem A.1 hold, and we have

∂

∂θ

(∫ ∞
0

fθ(z) log
fθ(z)

f1(z)
dz

)
=

∫ ∞
0

∂

∂θ

(
fθ(z) log

fθ(z)

f1(z)

)
dz (458)

=

∫ ∞
0

−(f1(z)− f(z))

(
1 + log

fθ(z)

f1(z)

)
dz (459)

=

∫ ∞
0

−(f1(z)− f(z)) log
fθ(z)

f1(z)
dz, (460)

which vanishes at θ = 0. Therefore, G is weakly differentiable at µ1 and

G′µ1
(µ) =

∫ ∞
0

f(z) log
f1(z)

q0(z)
dz −

∫ ∞
0

f1(z) log
f1(z)

q0(z)
dz. (461)

Since the mutual information and the divergence are weakly differentiable, so is I(µ,wY |X)−γ(ν)
(
D
(
wZ|X ◦ µ‖q0

)
− ν
)
.
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