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Covert Capacity of Non-Coherent Rayleigh-Fading Channels

The covert capacity is characterized for a non-coherent fast Rayleigh-fading wireless channel, in which a legitimate user wishes to communicate reliably with a legitimate receiver while escaping detection from a warden. It is shown that the covert capacity is achieved with an amplitude-constrained input distribution that consists of a finite number of mass points including one at zero and numerically tractable bounds are provided. It is also conjectured that distributions with two mass points in fixed locations are optimal.

I. INTRODUCTION

In cognitive radio networks or adversarial communication settings, situations arise in which legitimate users may attempt to communicate covertly, in the sense of achieving a low probability of detection. Motivated by such applications, [START_REF] Bash | Limits of reliable communication with low probability of detection on AWGN channels[END_REF] proposed an information-theoretic model to study the throughput at which two users could reliably and covertly communicate over an Additive White Gaussian Noise (AWGN) channel in the presence of an adversary who observes the transmission through another noisy channel. The optimal covert communication throughput has been shown to satisfy a square root law, by which the maximum number of bits is on the order of √ n bits over n uses of the channel. The square root law was subsequently established for some quantum channels [START_REF] Bash | Quantum-secure covert communication on bosonic channels[END_REF] and proved to hold without requiring secret keys for binary symmetric channels under some channel conditions [START_REF] Che | Reliable deniable communication: Hiding messages in noise[END_REF]. The exact pre-constant associated to the square root law, which plays the role of a covert capacity, has since been nearly completely characterized for point-to-point discrete and AWGN classical channels [START_REF] Wang | Fundamental limits of communication with low probability of detection[END_REF], [START_REF] Bloch | Covert communication over noisy channels: A resolvability perspective[END_REF], [START_REF] Tahmasbi | First-and second-order asymptotics in covert communication[END_REF], as well as some classical-quantum channels [START_REF] Wang | Optimal throughput for covert communication over a classical-quantum channel[END_REF], [START_REF] Sheikholeslami | Covert communication over classical-quantum channels[END_REF]. With the notable exception of [START_REF] Tahmasbi | First-and second-order asymptotics in covert communication[END_REF], the covert capacity is typically derived when using the relative entropy as a proxy metric for covertness. Recent results [START_REF] Yan | Gaussian signalling for covert communications[END_REF] offer a more nuanced perspective and show that the optimal signaling scheme for covert communication over AWGN channels at finite length is metric-dependent; nevertheless, the present work still uses relative entropy to characterize covert capacity because of its convenient mathematical properties.

For Discrete Memoryless Channels (DMCs), the covert-capacity achieving input distribution takes the form of sparse signalling corresponding to those symbols that might arouse suspicion if transmitted, are used a fraction 1/ √ n of the time if n is the block length. Perhaps surprisingly, sparse signalling does not achieve the covert-capacity of AWGN channels [START_REF] Kadampot | Codes for covert communication over additive white gaussian noise channels[END_REF], as the optimal coding scheme exploits instead Gaussian or Binary Phase-Shift Keying (BPSK) [START_REF] Wang | Fundamental limits of communication with low probability of detection[END_REF] signaling with an average power vanishing as O (1/n). In other words, encoding information in the phase of modulation symbols together with a diffuse power is crucial for optimality. Gaussian signaling has therefore been used to further study covertness over Gaussian and wireless channels, as in [START_REF] Sobers | Covert communication in the presence of an uninformed jammer[END_REF], [START_REF]Covert communications on continuous-time channels in the presence of jamming[END_REF] to show the benefits of uninformed jammers, in [START_REF] Bash | Covert communication gains from adversary's ignorance of transmission time[END_REF] to analyze the role of randomized timing, in [START_REF] Yan | Delay-intolerant covert communications with either fixed or random transmit power[END_REF] to study the effect of randomized power allocation, and in [START_REF] Hu | Covert communication achieved by a greedy relay in wireless networks[END_REF] to analyze covert relaying strategies. We note that all aforementioned works exploit random Gaussian codebooks, which simplifies the covertness analysis by reducing the optimal attack to a radiometer. In contrast, we analyze covertness with non-random codebooks using the conceptual approach laid out in [START_REF] Bloch | Covert communication over noisy channels: A resolvability perspective[END_REF].

While Gaussian codebooks provides valuable insight into the properties of coding schemes for covert communications over AWGN channels, operating in the vanishing-power regime as suggested by the results might prove challenging. In particular, not only may phase-lock loops fail to properly track the phase of the transmitted signals but symbols with low amplitude may also be severely affected by phase noise, resulting in a significant degradation of the transmission reliability. These effects are also likely to be amplified by the presence of fading in wireless links. The objective of the present paper is to develop insight into this problem by characterizing the covert capacity of non-coherent fast Rayleigh-fading channels (Theorem III.1 in Section III), in which the phase is uniformly distributed over [0; 2π[; although no channel state information is available to the transmitter and receivers, some symbol-level synchronization is assumed.

Our analysis of the covert capacity for non-coherent channels builds upon the ideas initially developed in [START_REF] Smith | On the information capacity of peak and average power constrained gaussian channels[END_REF], [START_REF]The information capacity of amplitude and variance-constrained scalar gaussian channels[END_REF] for amplitude constrained channels and extended to [START_REF] Abou-Faycal | The capacity of discrete-time memoryless rayleigh-fading channels[END_REF] for memoryless non-coherent Rayleigh fading channels under an average power constraint. In particular we show that an optimal covert capacity achieving input distribution is discrete, with one mass point located at zero and subject to an amplitude constraint. While the discrete nature of the distribution may not be a surprise, the fact that the location of the mass points is bounded results from the specific nature of the covertness constraint. We also conjecture that two mass points in fixed locations is actually optimal, which is supported by numerical results although we do not have a formal proof. Overall, our results suggest that, in the presence of phase uncertainty, sparse signaling might be an efficient modulation scheme for covert communication.

Our proof technique follows for the most part the high-level approach outlined in [START_REF] Smith | On the information capacity of peak and average power constrained gaussian channels[END_REF], [START_REF]The information capacity of amplitude and variance-constrained scalar gaussian channels[END_REF], [START_REF] Abou-Faycal | The capacity of discrete-time memoryless rayleigh-fading channels[END_REF]; however, the covert communication constraint makes the analysis more intricate as the optimal capacity-achieving input distribution turns out depend on the block length. In particular, the converse arguments for single-letterization lead to a parameter-dependent constrained optimization problem, in which the parameter should be taken to zero as the blocklength goes to infinity (see the statement of Theorem III.1 and (82) in Section IV-B). This requires us to analyze the fine dependence of the objective function and the Lagrange multipliers as a function of a parameter using ideas from sensitivity analysis [START_REF] Boyd | Convex optimization[END_REF].

The rest of the paper is organized as follows. In Section III, we introduce the precise model for covert communication over non-coherent Rayleigh-fading channels and discuss our characterization of the covert capacity. In Section IV, we develop the proof of our main result, with the achievability proof in Section IV-A and the converse proof in Section IV-B. II. NOTATION AND CONVENTIONS Let (S, F) be a measurable space. When S is a subset of R, we always consider the σ-algebra induced by Borel sets, which converts S to a measurable space. Let f : S → R be measurable and µ be a measure over S ⊂ R. We call f integrable if S |f |dµ < ∞. We then denote the Lebesgue's integral by S f (x)dµ. If S =]a, b[ and µ is the Lebesgue's measure over S, we denote S f (x)dµ = b a f (x)dx = b a f . If µ is a probability measure, X : S → R is a random variable, and A is an event, we use P µ (A) and E µ (X) to denote µ(A) and S X(s)dµ, respectively. When the probability measure µ is discrete, it can be characterized with a Probability Mass Function (PMF) P : S → [0, 1] satisfying µ(A) = s∈A P (s). When the probability measure µ is continuous, it can be characterized with a Probability Density Function (PDF) f : S → [0, ∞[ satisfying µ(A) = A f (s)ds. We do not distinguish between a probability measure and its PMF or PDF (if they exist). The product of two measures µ and µ is defined in the standard way and is denoted by µ ⊗ µ . We define the relative entropy between two probability measures µ and µ as D(µ µ ) E µ log dµ dµ , where dµ dµ is the Radon-Nikodym derivative. We also

define the χ 2 divergence as χ 2 (µ µ ) E µ dµ dµ 2 -1. We define I(X; Y ) D(µ XY µ X ⊗ µ Y ) where µ XY , µ X and
µ Y denote the probability measures associated to (X, Y ), X, and Y , respectively. Let X and Y be two subsets of

R. A channel w Y |X from X to Y is a mapping x → µ x where µ x is a probability measure on Y. If µ x is always continuous, we write w Y |X (y|x) to denote the PDF of µ x . If µ is a probability measure on X and w Y |X : x → µ x is a channel from X to Y, we define a joint probability measure w Y |X × µ on X × Y as (µ × w Y |X )(E) µ x (E x )dµ, (1) 
where 

E x {( x,

III. SYSTEM MODEL AND NOTATIONS

We consider the fast Rayleigh-fading wireless channel illustrated in Fig. 1, in which at every time instant, the input-output relationships are given by

exp - y θ 2 m x + 1 and q x (z) w Z|X (z|x) = 1 x + 1 exp - z x + 1 . ( 4 
)
Although the input and output sets of the channels are all equal to [0, ∞[, we distinguish them with the labels X , Y, and Z for the input set, the output of main channel, and the output of the warden's channel, respectively. We next formally describe the covert communication problem in the wireless setting; as depicted in Fig. 1, the transmitter aims to communicate a message W ∈ 1, M n by encoding it into a sequence X = (X 1 , • • • , X n ) of n symbols using a publicly known coding scheme. Upon observing the corresponding noisy sequence Y = (Y 1 , • • • , Y n ), the receiver forms an estimate W of W . The encoding and decoding may also use a pre-shared secret key S with an arbitrary distribution over a measurable space. 2 The objective of the warden is to detect the presence of a transmission based on its noisy observation

Z = (Z 1 , • • • , Z n ).
The requirements for reliable and covert communication may be formalized as follows. We let q Z denote the output distribution induced by the coding scheme and q ⊗n 0 the product output distribution expected in the absence of communication when the channel input is set to x = 0. The performance of an (M n , n) code transmitting one of M n message over n channel uses is then measured in terms of the average probability of error P( W = W ) and in terms of the relative entropy D( q Z q ⊗n 0 ). 34 Let δ > 0. We say that a covert throughput R is δ-achievable if there exist (M n , n) codes of increasing block length n such that

log M n = ω(log n), lim n→∞ P( W = W ) = 0, lim sup n→∞ D( q Z q ⊗n 0 ) δ, lim inf n→∞ log M n nD( q Z q ⊗n 0 ) R. (5) 
The covert capacity, C no-CSI (δ), is defined as the supremum of all δ-achievable covert throughputs. Note that we do not specify δ in our terminology of achievable throughput, since it turns out that the normalization of log M n in (5) removes the dependence on δ.

Theorem III.1. Let Ω >0 be the set of discrete probability measures over ]0, 1[ with a finite number of mass points. C no-CSI (δ) is independently of δ equal to

sup µ∈ Ω >0 √ 2 E µ θ 2 m X -log 1 + θ 2 m X E µ⊗µ X1X2 1-X1X2 . ( 6 
)
In addition, the following simple bounds hold:

max x∈]0,1] x -1 2(1 -x 2 ) θ 2 m x -log(1 + θ 2 m x) C no-CSI (δ) √ 2θ 2 m . (7) 
Theorem III.1 provides useful insight into the problem of covert communication over non-coherent channels in several regards. First, a straightforward calculation shows that D(p 6) is therefore a counterpart of [START_REF] Bloch | Covert communication over noisy channels: A resolvability perspective[END_REF]Corollary 3] and [START_REF] Wang | Fundamental limits of communication with low probability of detection[END_REF]Eq. (28)]. Second, Theorem III.1 shows that we may restrict the signaling schemes for covert communications to finite and amplitude bounded constellations; while the finite nature of the constellation was somewhat expected from the non-coherent nature of the channel, the bound on the amplitude of the points is perhaps more surprising as it was not imposed a priori. We numerically evaluate and plot in Fig. 2 (6) when 2 We show in our achievability proof that a key uniformly distributed over a discrete set with size O(Mn) is sufficient to achieve the covert capacity. 3 The constraint D( q Z q ⊗n 0 ) δ ensures that, regardless of the test performed by the adversary, the sum of the probability of missed detection and false alarm is lower-bounded by 1 -√ δ. Please refer to [5, Appendix A] for a detailed discussion of the operational meaning of an upper-bound on the relative entropy. 4 The choice of this specific relative entropy to measure covertness is driven in part by the ease of analysis using channel resolvability techniques. One could of course consider alternative metrics, such as variational distance or a relative entropy with a reversed order of arguments, as discussed in [START_REF] Bloch | Covert communication over noisy channels: A resolvability perspective[END_REF], [START_REF] Tahmasbi | First-and second-order asymptotics in covert communication[END_REF]. While the operational meaning of these other metrics remains the same, the analysis and the exact dependence on the constraint δ is metric-specific.

x p 0 ) = θ 2 m x -log(1 + θ 2 m x) and χ 2 (w Z|X • µ q 0 ) = E µ⊗µ X1X2 1-X1X2 . The expression in (
the number of mass points in µ is fixed using a brute-force search. Based on our numerical results, we conjecture that two mass points and On-Off Keying (OOK) signaling is optimal for covert communication. 

IV. PROOF OF THEOREM III.1 A. Achievability proof

We prove the achievability result in two steps. 1) Let {µ n } n 1 be a sequence of probability measures over X such that for all n, (i) for some x > 0, sup(support (µ n )) x;

and, (ii) lim sup n→∞ nD w Z|X • µ n q 0 = δ. (iii) nI(µ n , w Y |X ) = ω(log n). We then show for all ζ > 0 that the cover throughput

(1 -ζ) lim inf n→∞ I(µ n , w Y |X ) D w Z|X • µ n q 0 (8) is δ-achievable. 2) Let µ ∈ Ω >0 . We construct for an arbitrary δ > 0, a sequence {µ n } n 1 satisfying lim inf n→∞ I(µ n , w Y |X ) D w Z|X • µ n q 0 = √ 2 E µ θ 2 m X -log 1 + θ 2 m X E µ⊗µ X1X2 1-X1X2 , (9) 
in addition to the conditions of step 1.

1)

Step one: a random coding argument: Although we pursue the same approach as in [START_REF] Bloch | Covert communication over noisy channels: A resolvability perspective[END_REF], [START_REF] Wang | Limits of low-probability-of-detection communication over a discrete memoryless channel[END_REF] in this step, the result requires a proof of its own because of the continuous nature of the channels. Let {µ n } n 1 be a sequence of probability measures as described earlier, i.e., for all n, (i) for some x > 0, sup(support (µ n )) x; and, (ii) lim sup n→∞ nD w Z|X • µ n q 0 = δ. with the relative entropy constraint δ. We use a random coding argument and in particular, fix some n, and consider a random encoder F : 1, K n × 1, M n → X n whose codewords are independent and identically distributed (i.i.d.) according to µ ⊗n n . The transmitter uses the message W and the shared key S together with the encoder F to obtain the codeword F (S, W ) that is transmitted through the channel. By [START_REF] Polyanskiy | Channel coding rate in the finite blocklength regime[END_REF], for any γ > 0, we upper-bound the expected value with respect to random coding of the probability of error of an optimal decoder by

E F P W = W P w ⊗n Y |X ×µ ⊗n n log w ⊗n Y |X (Y|X) (w ⊗n Y |X • µ ⊗n n )(Y) γ + M n e -γ . (10) 
Applying a Chernoff bound to the first term of the right hand side of the above inequality, for all s > 0, we obtain

P w ⊗n Y |X ×µ ⊗n n log w ⊗n Y |X (Y|X) (w ⊗n Y |X • µ ⊗n n )(Y) γ E w Y |X ×µn p X (Y ) (w Y |X • µ n )(Y ) s n exp (-sγ) . (11) 
For any probability measure µ on X , upon defining

φ rel (s, µ) -log E w Y |X ×µ p X (Y ) (w Y |X • µ)(Y ) s , (12) 
we can re-write the right-hand side of [START_REF] Sobers | Covert communication in the presence of an uninformed jammer[END_REF] as

exp (-nφ rel (s, µ n ) -sγ) . (13) 
To upper-bound the above expression, we need the following technical lemma describing the behavior of φ rel (s, µ) for small s.

Lemma IV.1. For all x > 0, there exist constants B > 0, s > 0, and A > 0, such that for all probability measures µ and ν > 0 with sup(support (µ)) x and D w Z|X • µ q 0 ν, all s ∈]0, s], and all A ∈ [ A, ∞), we have

φ rel (s, µ) -sI(µ, w Y |X ) -B (2 √ ν + ν)e 2A x+2A A 2 + A 2 e -A s 2 + s 3 . ( 14 
)
Proof. See Appendix D.

Applying Lemma IV.1 to (13), we upper-bound [START_REF] Sobers | Covert communication in the presence of an uninformed jammer[END_REF] by

exp -n -sI(µ n , w Y |X ) -B 2 δ n + δ n e 2A x+2A A 2 + A 2 e -A s 2 + s 3 -sγ . (15) 
For n large enough, we then set A = log n/(2(4 x + 1)) to ensure

B 2 δ n + δ n e 2A x+2A A 2 + A 2 e -A = O A 2 n -1 2 e 2A x+2A e -A (16) 
= O log 2 n n -1 2 + 2 x+2 2(4 x+1) + n -1 2(4 x+1) (17) = O n -1 2(4 x+1) log 2 n , (18) 
where the constant hidden in O (•) depends on x, δ, and the channel. Therefore, we have for s = n -β ,

B 2 δ n + δ n e 2A x+2A A 2 + A 2 e -A s 2 + s 3 (a) = O n -1 2(4 x+1) log 2 ns 2 + s 3 (19) = O n -1 2(4 x+1) -2β log 2 n + n -3β (20) 
= O n -min(3β,2β+1/(2(4 x+1))) log 2 n , (21) 
where (a) follows from [START_REF] Abou-Faycal | The capacity of discrete-time memoryless rayleigh-fading channels[END_REF]. The expression in (21) will be o(sI

(µ n , w Y |X )) when I(µ n , w Y |X ) = Ω n -1 2
and max(1/4, 1/2-1/(2(4 x + 1))) < β. Moreover, if we choose β < 1/2, which is feasible with the previous constraint, we guarantee that snI(µ n , w Y |X ) n c for some c > 0 and n large enough. Finally, for γ = (1

-ζ/2)I(µ n , w Y |X )n and log M n = (1 -ζ)I(µ n , w Y |X
)n, we have by ( 10)

E F P W = W exp -(1 + o(1)) ζ 2 sI(µ n , w Y |X )n + exp - ζ 2 I(µ n , w Y |X )n (22) 
2 exp (-ζn c ) .

This completes the reliability part of the proof. We now proceed to the resolvability part. Recall that we denote the induced distribution at the output of the warden's channel by p Z 1 MnKn Kn s=1 Mn w=1 w ⊗n Z|X (z|F (s, w)), where M n and K n are the message size and the key size, respectively. By a modification of [START_REF] Hayashi | Quantum wiretap channel with non-uniform random number and its exponent and equivocation rate of leaked information[END_REF]Equation (194)], we know that for all s ∈ [0, 1],

E F D p Z w Z|X • µ n ⊗n 1 s exp (-s log(M n K n ) -nφ res (s, µ n )) , (24) 
where

φ res (s, µ) -log E w Z|X ×µ q X (Z) (w Z|X • µ)(Z) s . ( 25 
)
Since the above function is the same as φ rel except that w Y |X is replaced by w Z|X , w Z|X is a special case of w Y |X for θ m = 1, and we choose s in the reliability part so that log 1 s = O(log n), we can follow the same approach to obtain for some c > 0,

E F D p Z w Z|X • µ n ⊗n 2 exp -n c , (26) 
if log M n + log K n (1 + ζ)I(µ n , w Z|X )n. Therefore, the expected value of the covertness of the random code is

E F (D( p Z q ⊗n 0 )) = E F R n p Z (z) log p Z (z) q ⊗n 0 (z) dz (27) = E F R n p Z (z) log p Z (z) (w Z|X • µ n ) ⊗n (z) dz + R n p Z (z) log (w Z|X • µ n ) ⊗n (z) q ⊗n 0 (z) dz (28) = E F D p Z w Z|X • µ n ⊗n + E F R n p Z (z) log (w Z|X • µ n ) ⊗n (z) q ⊗n 0 (z) dz ( 29 
)
2 exp -n c + E F R n p Z (z) log (w Z|X • µ n ) ⊗n (z) q ⊗n 0 (z) dz ( 30 
) (a) = 2 exp -n c + R n E F ( p Z (z)) log (w Z|X • µ n ) ⊗n (z) q ⊗n 0 (z) dz (31) = 2 exp -n c + R n (w Z|X • µ n ) ⊗n (z) log (w Z|X • µ n ) ⊗n (z) q ⊗n 0 (z) dz (32) = 2 exp -n c + nD w Z|X • µ n q 0 , (33) 
where (a) follows from Fubini's theorem and

E F R n p Z (z) log (w Z|X •µn) ⊗n (z) q ⊗n 0 (z)
dz < ∞ by Lemma C.4. Applying Markov's inequality, for large n, we obtain

P F D( p Z q ⊗n 0 ) n + 1 n 2 exp -n c + nD w Z|X • µ n q 0 , P W = W 4n exp (-n c ) (34) 1 -P F D( p Z q ⊗n 0 ) n + 1 n 2 exp -n c + nD w Z|X • µ n q 0 -P F P W = W 4n exp (-n c ) (35) 1 - E F (D( p Z q ⊗n 0 )) n+1 n 2 exp (-n c ) + nD w Z|X • µ n q 0 - E F P W = W 4n exp (-n c ) (36) 1 - 2 exp -n c + nD w Z|X • µ n q 0 n+1 n 2 exp (-n c ) + nD w Z|X • µ n q 0 - 2 exp (-n c ) 4n exp (-n c ) (37) = 1 - n n + 1 - 1 2n > 0. (38) 
This implies that there exists a sequence of codes

{C n } n 1 such that C n satisfies log M n = (1 -ζ)I(µ n , w Y |X )n = ω(log n), ( 39 
) log M n + log K n =(1 + ζ)I(µ n , w Z|X )n, ( 40 
) P e 4n exp (-n c ) , (41) 
D( p Z q ⊗n 0 ) n + 1 n 2 exp -n c + nD w Z|X • µ n q 0 . (42) 
The covert throughput would be then

lim inf n→∞ log M n nD( p Z q ⊗n 0 ) = lim inf n→∞ (1 -ζ)I(µ n , w Y |X )n nD( p Z q ⊗n 0 ) (43) lim inf n→∞ (1 -ζ)I(µ n , w Y |X )n n n+1 n 2 exp (-n c ) + nD w Z|X • µ n q 0 (44) = lim inf n→∞ (1 -ζ)I(µ n , w Y |X ) D w Z|X • µ n q 0 . ( 45 
)
Since lim sup n→∞ nD w Z|X • µ n q 0 δ by our assumption, we have

lim sup n→∞ D( p Z q ⊗n 0 ) lim sup n→∞ n + 1 n 2 exp -n c + nD w Z|X • µ n q 0 δ. (46) 
2)

Step two: obtaining the bound in Theorem III.1: Let µ ∈ Ω >0 and µ 0 be the probability measure with a single mass point at zero. We define α n δ nχ2(w Z|X •µ q0) and µ n α n µ+(1-α n )µ 0 . We have max(support (µ n )) = max(support (µ)) a < 1 by definition of Ω >0 . Hence, it is enough to check that

nI(µ n , w Y |X ) = ω(log n), ( 47 
) lim sup n→∞ nD w Z|X • µ n q 0 δ, (48) 
lim inf n→∞ I(µ n , w Y |X ) D w Z|X • µ n q 0 √ 2 E µ θ 2 m X -log 1 + θ 2 m X E µ⊗µ X1X2 1-X1X2 . ( 49 
)
We next state a lemma providing a general upper-bound for the relative entropy in terms of the χ 2 divergence.

Lemma IV.2. Let µ ∈ Ω 0 with max(support (µ)) a < 1. Let M > 0 and > 0. We have

D w Z|X • µ q 0 1 2 χ 2 w Z|X • µ q 0 + (E µ (X)) 3 + (E µ (X)) 4 M 0 e z(-1+ 4a 1+a ) dz + ∞ M e -z 1+ zdz + E µ (X) ∞ M e -z 1+a zdz (50) Proof. See Appendix E.
Applying Lemma IV.2 to µ n with some M n and , we obtain

D w Z|X • µ n q 0 1 2 χ 2 w Z|X • µ n q 0 + (E µn (X)) 3 + (E µn (X)) 4 Mn 0 e z(-1+ 4a 1+a ) dz + ∞ Mn e -z 1+ zdz + 1 E µn (X) ∞ Mn e -z 1+a zdz, (51) 
where a = max(support (µ)). We will prove for appropriately chosen M n and that

(E µn (X)) 3 + (E µn (X)) 4 Mn 0 e z(-1+ 4a 1+a ) dz + ∞ Mn e -z 1+ zdz + 1 E µn (X) ∞ Mn e -z 1+a zdz = o(α 2 n ) (52) 
Note that E µn (X) = α n E µ (X), and therefore, (E µn (X)

) 3 = O(α 3 n ) = o(α 2 n ). We choose M n = B log 1 αn
, where B is a constant independent of n specified later. We then have

(E µn (X)) 4 Mn 0 e z(-1+ 4a 1+a ) dz O α 4 n M n e Mn(-1+ 4a 1+a ) a > 1/3 O α 4 n M n a 1/3 (53) =      O α 4-B 3a-1 a+1 n log 1 αn a > 1/3 O α 4 n log 1 αn a 1/3 ( 54 
) (a) = o(α 2 n ), (55) 
where (a) requires that B < 2 1+a 3a-1 when a > 1/3. We further have

∞ Mn e -z 1+ zdz = (1 + ) 2 e -Mn 1+ M n 1 + + 1 (56) = (1 + ) 2 α B 1+ n B log 1 αn 1 + + 1 ( 57 
) (a) = o(α 2 n ), (58) 
where (a) requires that B > 2(1 + ). Finally, we have

1 E µn (X) ∞ Mn e -z 1+a zdz = 1 E µn (X)(1 + a) 2 e -Mn 1+a M n 1 + a + 1 (59) = 1 E µn (X)(1 + a) 2 α B 1+a n B log 1 αn 1 + a + 1 (60) (a) = o(α 2 n ), (61) 
where (a) requires that B > 1 + a. If a 1/3, we only need to choose B and such that B > max(2(1 + ), 1 + a). For a > 1/3, we choose 0 < < 1+a 3a-1 -1 so that max(2(1+ ), 1+a) < 2 1+a 3a-1 . We then choose B such that max(2(1+ ), 1+a) < B < 2 1+a 3a-1 . This complete the proof of (52). Note next that by Lemma C.5

χ 2 (w Z|X • µ n q 0 ) = E µn⊗µn X 1 X 2 1 -X 1 X 2 (62) = E µn⊗µn X 1 X 2 1 -X 1 X 2 |X 1 > 0, X 2 > 0 P µn⊗µn (X 1 > 0, X 2 > 0) ( 63 
) (a) = α 2 n E µ⊗µ X 1 X 2 1 -X 1 X 2 (64) = α 2 n χ 2 (w Z|X • µ q 0 ) ( 65 
) (b) = δ n , (66) 
where (a) follows from the definition of µ n and (b) follows from the definition of α n . We therefore have

lim sup n→∞ nD w Z|X • µ n q 0 δ. (67) 
Following the same reasoning, one can show that

D w Y |X • µ n p 0 = O(α 2 n ). Finally, we have I(µ n , w Y |X ) = E µn θ 2 m X -log(1 + θ 2 m X) -D w Y |X • µ n p 0 (68) = E µn θ 2 m X -log(1 + θ 2 m X) -O(α 2 n ) (69) = α n E µ θ 2 m X -log(1 + θ 2 m X) -O(α 2 n ) (70) = Ω(n -1 2 ) (71) = ω log n n , (72) 
which yields that

lim inf n→∞ I(µ n , w Y |X ) D w Z|X • µ n q 0 √ 2 E µ θ 2 m X -log 1 + θ 2 m X E µ⊗µ X1X2 1-X1X2 . ( 73 
)
To obtain the lower-bound in [START_REF] Wang | Optimal throughput for covert communication over a classical-quantum channel[END_REF], we choose µ to be a probability measure with a single mass point at

x ∈]0, 1[. We then have √ 2 E µ θ 2 m X -log 1 + θ 2 m X E µ⊗µ X1X2 1-X1X2 = x -1 2(1 -x) θ 2 m x -log(1 + θ 2 m x) . (74) 

B. Converse proof

Before delving into the detailed proofs, we first provide the sketch of the various steps of the converse proof. 1) We first follow the reasoning of the converse proof of [START_REF] Bloch | Covert communication over noisy channels: A resolvability perspective[END_REF] to show that if R is a δ-achievable rate, then there exists a sequence of probability measures {µ n } n over X such that D w Z|X • µ n q 0 δ/n for n and

R lim inf n→∞ I(µ n , w Y |X ) D w Z|X • µ n q 0 . ( 75 
)
2) We show that the probability measure µ n can be further restricted to be discrete with a finite number of mass points and a mass point at zero. This is achieved by investigating the optimization problem

sup µ:D(w Z|X •µ q0) ν I(µ, w Y |X ), (76) 
and adapting some techniques developed in [START_REF] Abou-Faycal | The capacity of discrete-time memoryless rayleigh-fading channels[END_REF]. 3) We prove that we can still upper-bound a covert throughput even if we constraint the amplitude of µ n as max(support (µ n ))

1 + ζ for any ζ > 0. 4) Let {µ n } n n 1 be a sequence of probability measures such that µ n has a finite number of mass and max(support

(µ n )) 1 + ζ. We show that lim inf n→∞ I(µ n , w Y |X ) D w Z|X • µ n q 0 sup µ∈ Ω >0 √ 2 E µ θ 2 m X -log 1 + θ 2 m X E µ⊗µ X1X2 1-X1X2
.

(77)

1)
Step one: a general converse for covert communication: We consider a sequence of code {C n } n 1 where each code C n can transmit log M n bits with probability of error n and relative entropy at most δ n , and we have lim n→∞ n = 0 and lim sup n→∞ δ n δ. If (X, Y, Z) denotes the input and the output of the channels when C n is used and p XYZ denotes the joint distribution, a standard application of Fano's inequality yields

log M n I(X; Y) + H b ( n ) 1 -n I(X; Y) + 1 1 -n , (78) 
where

H b (x) -x log(x) -(1 -x) log(1 -x).
One can then upper-bound the mutual information I(X; Y) using standard techniques [START_REF] Cover | Elements of Information Theory[END_REF] to obtain

I(X; Y) n i=1 I(X i ; Y i ) nI( X n ; Y n ), (79) 
where the random variables X n and Y n are distributed according to p Xn (x)

1 n n i=1 p Xi (x) and p Xn Yn (x, y) p Xn (x)p x (y). Note that lim n→∞ nI( X n ; Y n ) = ∞ since we assumed that log M n = ω(log n).
Following [START_REF] Hou | Coding for relay networks and effective secrecy for wire-tap channels[END_REF], [START_REF] Wang | Fundamental limits of communication with low probability of detection[END_REF], one can also lower-bound the relative entropy as

δ n D( p Z q ⊗n 0 ) n i=1 D( p Zi q 0 ) nD(p Zn ||q 0 ), (80) 
where Z n is distributed according to p Zn (z)

1 n n i=1 p Zi (z). Consequently, C no-CSI lim inf n→∞ I( X n ; Y n ) (1 -n ) D(p Zn q 0 ) 1 + 1 nI( X n ; Y n ) = lim inf n→∞ I( X n ; Y n ) D(p Zn q 0 ) (81) 
where the sequence of distributions {p Xn Yn Zn } n 0 is subject to the constraint D(p Zn q 0 ) δn n . This completes the first step of the converse proof.

2)

Step two: discreteness of the optimal distribution: We define the optimization problem

A(ν) sup µ∈Ω:D(w Z|X •µ q0) ν I(µ, w Y |X ), ( 82 
)
where Ω is the set of all probability measures over X such as µ such that D w Z|X • µ q 0 < ∞. The next lemma shows that there exists a unique maximizer to the above problem.

Lemma IV.3. Let ν > 0. There exists a unique probability measure

µ * ν ∈ Ω such that D w Z|X • µ * ν q 0 ν and I(µ * ν , w Y |X ) = A(ν). Proof. See Appendix F.
We next characterize the unconstrained form of the optimization in (82).

Theorem IV.1. Let ν > 0. There exists γ(ν) 0 such that the following holds.

1) We have

A(ν) = max µ∈Ω I(µ, w Y |X ) -γ(ν) D w Z|X • µ q 0 -ν , (83) 
and µ * ν is the unique maximizer of the above optimization.

2) Define

w(x, µ 1 , ν) ∞ 0 p x (y) log p x (y) (w Y |X • µ 1 )(y) dy -γ(ν) ∞ 0 q x (z) log (w Z|X • µ 1 )(z) q 0 (z) dz -ν . ( 84 
)
For all µ ∈ Ω, we have

A(ν) E µ (w(X, µ * ν , ν)). (85) 
3) Given µ 1 ∈ Ω, we have for all µ ∈ Ω,

A(ν) E µ (w(X, µ 1 , ν)). ( 86 
)
if and only if

w(x, µ 1 , ν) A(ν) ∀x ∈ X , (87) w(x, µ 1 , ν) = A(ν) ∀x ∈ support (µ 1 ).
(88)

4) We have lim ν→0 + γ(ν) = ∞ and lim ν→0 + γ(ν)ν = 0.
Proof. See Appendix F.

Lemma IV.4. There exists ν 0 > 0 such that for all 0 < ν ν 0 , support (µ * ν ) is discrete with a finite number of points in any bounded interval.

Proof. Fix some ν > 0, and define r(y)

(w Y |X • µ * ν )(y) and f (z) (w Z|X • µ * ν )(z).
We assume that there exists an interval with an infinite number of points in support (µ * ν ) and obtain a contradiction for ν small enough in four steps.

Step 1: We first use the argument in [START_REF] Abou-Faycal | The capacity of discrete-time memoryless rayleigh-fading channels[END_REF] to show that the KKT condition in (88) holds for all x 0. By the Bolzano-Weierstrass theorem, there exists a convergent sequence {x i } i 1 in support (µ * ν ). Moreover, by (88), for any x ∈ support (µ * ν ), we have

φ ν (x) w(x, µ * ν , ν) -A(ν) (89) = ∞ 0 p x (y) log p x (y) r(y) dy -γ(ν) ∞ 0 q x (z) log f (z) q 0 (z) dz -A(ν) + γ(ν)ν = 0. (90) 
We now show that φ ν (x) is analytic in x over the domain D {x : R(x) > 0}. Note that ∞ 0 p x (y) log p x (y)dy = -log(1 + θ m x) -1 and ∞ 0 q x (z) log q 0 (z)dz = -1 -x, which are analytic over D. We furthermore have

|p x (y)| = 1 |1 + θ 2 m x| e - y 1+θ 2 m x ( 91 
) (a) = 1 |1 + θ 2 m x| e - y ( θ 2 m R(x)+1 ) |1+θ 2 m x| 2 , (92) 
where (a) follows from |e z | = e R(z) . This implies that One can similarly argue that ∞ 0 q x (z) log f (z)dx is also analytic over D and therefore φ ν is analytic. Since φ ν (x) is an analytic function over D, and φ ν (x) = 0 over a set with a limit point in D, the identity theorem [START_REF] Ablowitz | Complex variables: introduction and applications[END_REF] states that φ ν (x) = 0 for all x ∈ D. Thus, φ ν (x) = 0 holds over the entire real line. Using ∞ 0 p x (y) log p x (y)dy = -log(1 + θ m x) -1 and ∞ 0 q x (z) log q 0 (z)dz = -1 -x, we can re-write

∞ 0 |p x (y) log r(y)|dy (a) ∞ 0 |p x (y)| θ 2 m E µ * ν (X) + y dy (93) (b) ∞ 0 |p x (y)| θ 2 m 2 √ ν + ν + y dy ( 94 
) (c) = θ 2 m 2 √ ν + ν |1 + θ 2 m x| θ 2 m R(x) + 1 + |1 + θ 2 m x| 3 (θ 2 m R(x) + 1) 2 , (95) 
0 = φ ν (x) = -log(θ 2 m x + 1) -1 -γ(ν)(1 + x) -A(ν) + γ(ν)ν - ∞ 0 p x (y) log r(y)dy -γ(ν) ∞ 0 q x (z) log f (z)dz. ( 96 
)
To obtain a contradiction, we cannot use the Laplace transform approach of [START_REF] Abou-Faycal | The capacity of discrete-time memoryless rayleigh-fading channels[END_REF] because there are two integrals in (96), which is therefore the sum of two Laplace transforms with different arguments. Hence, we continue the proof with another approach.

Step 2: In this step, we shall find the supremum of the support of µ * ν in terms of γ(ν). We first consider any non-zero point x ∈ support (µ * ν ) and any ∆ ∈]0; x[. Since x ∈ support (µ * ν ), there exists δ > 0 with µ * ν (] x -∆, x + ∆[) = δ. Thus, for any y, by definition of r(y) and the law of total probability, we lower-bound r(y) by

r(y) = E µ * ν 1 1 + θ 2 m X e - y 1+θ 2 m X (97) E µ * ν 1 1 + θ 2 m X e - y 1+θ 2 m X X ∈] x -∆, x + ∆[ µ * ν (] x -∆, x + ∆[) (98) 
δ 1 + θ 2 m ( x + ∆) e - y 1+θ 2 m ( x-∆) , (99) 
and similarly, lower-bound f (z) by

f (z) δ 1 + x + ∆ e -z 1+ x-∆ . ( 100 
)
Substituting these bounds in (96), we obtain

0 -log(θ 2 m x + 1) -1 -γ(ν)(1 + x) -A(ν) + γ(ν)ν - ∞ 0 p x (y) log δ 1 + θ 2 m ( x + ∆) e - y 1+θ 2 m ( x-∆) dy -γ(ν) ∞ 0 q x (z) log δ 1 + x + ∆ e -y 1+ x-∆ dz (101) = -log(θ 2 m x + 1) -1 -γ(ν)(1 + x) -A(ν) + γ(ν)ν -log δ 1 + θ 2 m ( x + ∆) + 1 + θ 2 m x 1 + θ 2 m ( x -∆) -γ(ν) log δ 1 + x + ∆ - 1 + x 1 + x -∆ (102) = κ -log(θ 2 m x + 1) -x γ(ν) x -∆ 1 + x -∆ - θ 2 m 1 + θ 2 m ( x -∆) , ( 103 
)
where κ is a constant not depending on x. Since (103) holds for all x, by taking the limit x → ∞, we should have

γ(ν) x -∆ 1 + x -∆ - θ 2 m 1 + θ 2 m ( x -∆) 0. (104) 
Moreover, by letting ∆ tend to zero, we obtain

γ(ν) x 1 + x - θ 2 m 1 + θ 2 m x 0, (105) 
which implies that x * sup(support (µ * ν )) < ∞. Furthermore, upon finiteness of x * , we have

r(y) e - y 1+θ 2 m x * , (106) 
and

f (z) e -z 1+x * . (107) 
Replacing these upper-bounds in (96), we obtain

0 -log(θ 2 m x + 1) -1 -γ(ν)(1 + x) -A(ν) + γ(ν)ν - ∞ 0 p x (y) log e - y 1+θ 2 m x * dy -γ(ν) ∞ 0 q x (z) log e -z 1+x * dz (108) = -log(θ 2 m x + 1) -1 -γ(ν)(1 + x) -A(ν) + γ(ν)ν + 1 + θ 2 m x 1 + θ 2 m x * + γ(ν) 1 + x 1 + x * (109) = κ -log(θ 2 m x + 1) -x γ(ν) x * 1 + x * - θ 2 m 1 + θ 2 m x * , ( 110 
)
where κ is a constant not depending on x. Since (110) holds for all x, we have

γ(ν) x * 1 + x * - θ 2 m 1 + θ 2 m x * 0. ( 111 
)
By definition of the support of a distribution, it should be closed, and therefore, x * ∈ support (µ * ν ). Since (105) holds for all points in the support, we can set x = x * and obtain

γ(ν) x * 1 + x * - θ 2 m 1 + θ 2 m x * = 0. ( 112 
)
Step 3: Using the equality for x * in (112), we derive an upper-bound on A(ν) depending on γ(ν) and ν. By definition of µ * ν , it holds that

A(ν) = I(µ * ν , w Y |X ) (113) = E w Y |X ×µ * ν log p X (Y ) r(Y ) (114) = E w Y |X ×µ * ν log p X (Y )p 0 (Y ) r(Y )p 0 (Y ) (115) = E w Y |X ×µ * ν log p X (Y ) p 0 (Y ) -E w Y |X •µ * ν log r(Y ) p 0 (Y ) (116) = E w Y |X ×µ * ν log p X (Y ) p 0 (Y ) -D(r p 0 ) (117) 
E w Y |X ×µ * ν log p X (Y ) p 0 (Y ) (118) = E µ * ν θ 2 m X -log(1 + θ 2 m X) ( 119 
) (a) E µ * ν 1 2 θ 4 m X 2 (120) 1 2 θ 4 m x * E(X) (121) (b) 1 2 θ 4 m x * 2 √ ν + ν , (122) 
where (a) follows from log(1 + x) x -x 2 /2 for x 0, and (b) follows from Lemma C.2. Therefore, we can use (112) to obtain

A(ν) 1 2 θ 4 m θ 4 m (1 + x * ) γ(ν)(1 + θ 4 m x * ) 2 √ ν + ν (123) 2 √ ν + ν γ(ν) 1 2 θ 4 m (1 + |1 -θ 4 m |) . (124) 
Step 4: We complete the proof by obtaining a contradiction. Lemma F.1 part 4 implies that there exists ν 0 > 0 and C > 0 such that A(ν) C √ ν for all 0 < ν ν 0 . By Theorem IV.1 part 4, we can choose ν 0 small such that

γ(ν) > 3 C 1 2 θ 4 m (1 + |1 -θ 4 m |) in addition to A(ν) C
√ ν for all 0 < ν ν 0 . Since by decreasing ν 0 , the statement would be weaker, we can always assume that ν 0 < 1. Thus,

C √ ν A(ν) (125) 2 √ ν + ν γ(ν) 1 2 θ 4 m (1 + |1 -θ 4 m |) (126) 
< 2 √ ν + ν 3 C 1 2 θ 4 m (1 + |1 -θ 4 m |) 1 2 θ 4 m (1 + |1 -θ 4 m |) (127) 
C √ ν. ( 128 
)
Lemma IV.5. There exists ν 0 > 0 such that for any ν 0 > ν > 0, the support of µ * ν has a finite number of points. Proof. We proceed by contradiction. Assume that the support of µ * ν has infinitely many points {x i } ∞ i=1 in increasing order with probabilities {α i } ∞ i=1 . Since we proved that in any bounded interval, we can only have a finite number of points, lim i→∞ x i = ∞. Note that for any j 1, we have

(w Y |X • µ * ν )(y) = ∞ i=1 α i p xi (y) (129) 
α j p xj (y), (130) 
and

(w Z|X • µ * ν ) (z) α j q xj (z) . (131) 
Therefore, for all j 1, we can upper-bound φ ν (x) defined in (89) as

φ ν (x) = ∞ 0 p x (y) log p x (y) (w Y |X • µ * ν )(y) dy -γ(ν) ∞ 0 q x (z) log (w Z|X • µ * ν )(z) q 0 (z) dz -A(ν) + γ(ν)ν (132) ∞ 0 p x (y) log p x (y) α j p xj (y) dy -γ(ν) ∞ 0 q x (z) log α j q xj (z) q 0 (z) dz -A(ν) + γ(ν)ν (133) = log(θ 2 m x + 1) -1 -log α j 1 + θ 2 m x j + 1 + θ 2 m x 1 + θ 2 m x j -γ(ν) 1 + x -log α j 1 + x j + 1 + x 1 + x j -A(ν) + γ(ν)ν (134) = κ + log(θ 2 m x + 1) + -γ(ν) + γ(ν) 1 + x j + θ 2 m 1 + θ 2 m x j x, ( 135 
)
where κ is a constant not depending on x. Furthermore, the KKT condition in (88) implies that (135) is non-negative for all x i , and since x i can be large enough, we should have

-γ(ν) + γ(ν) 1 + x j + θ 2 m 1 + θ 2 m x j 0. (136) 
Because x j can be large enough, we have -γ(ν) 0. This cannot be true for small ν since lim ν→0 + γ(ν) = ∞ by Theorem IV.1.

Lemma IV.6. There exists ν 0 > 0 such that for all ν 0 > ν > 0, µ * ν has a mass point at 0. The proof of Lemma IV.6 will require the following technical result which is a modification of [18, Lemma 1].

Lemma IV.7. Let f (z) be a PDF with mean m and g(z) be a strictly monotonically increasing function, then (zm)f (z)g(z)dz > 0.

Proof. (z -m)(g(z) -g(m)) is always positive as either the product of two negative terms if z < m or two positive terms if

z > m. Thus, (z -m)g(z) > (z -m)g(m) and (z -m)g(z)f (z)dz > (z -m)g(m)f (z)dz = 0.
Proof of Lemma IV.6. Let ν 0 be as in Lemma IV.5 so that µ * ν has finite number of mass points for all 0 < ν ν 0 . For the sake of a contradiction, assume that µ * ν is a discrete probability measure over X with k mass points 0 < x 1 < • • • < x k with corresponding probabilities α 1 , • • • , α k . In [START_REF] Abou-Faycal | The capacity of discrete-time memoryless rayleigh-fading channels[END_REF], it is proved that reducing x 1 increases the mutual information I(µ, w Y |X ). Therefore, to complete the proof, it is enough to show that

∂D(w Z|X •µ q0) ∂x1 > 0. Defining f (x 1 , z) (w Z|X • µ)(z) log (w Z|X •µ)(z) q0(z)
, we have

∂D w Z|X • µ q 0 ∂x 1 = ∂ ∂x 1 Z f (x 1 , z)dz. (137) 
By Lemma C.4, Z |f (x 1 , z)|dz < ∞, and we have

∂f ∂x 1 (x 1 , z) = α 1 (1 + x 1 ) 2 q x1 (z) z -E qx 1 (Z) log (w Z|X • µ)(z) q 0 (z) + 1 , (138) 
which satisfies that ∂f ∂x 1 (x 1 , z) e -z 1+x 1 (z + x 1 + 1) (2z + E µ (X) + 1) . ( 139 
)
The right hand side of (139), is bounded with an integrable function of

z independent of x 1 , if x 1 is bounded. Hence, Theorem A.1 implies that ∂D w Z|X • µ q 0 ∂x 1 = α 1 1 (1 + x 1 ) 2 ∞ 0 (z -E qx 1 (Z))q x1 (z) log (w Z|X • µ)(z) q 0 (z) + 1 dz. ( 140 
) Note that log (w Z|X • µ)(z) q 0 (z) = log k i=1 α i 1 xi+1 e -z x i +1 e -z (141) = log k i=1 α i 1 x i + 1 e z x i x i +1 . ( 142 
) Since 1 > 1 x1+1 > • • • > 1 x k +1 , log (w Z|X •µ)(z) q0(z)
+1 is strictly monotonically increasing in z. Using Lemma IV.7,

∂D(w Z|X •µ q0) ∂x1
> 0, and hence, by decreasing x 1 , the constraint D w Z|X • µ q 0 ν still holds and I(µ, w Y |X ) is increased. This contradicts with the definition of µ * ν , and therefore, there exists a mass point at zero.

3)

Step three: an amplitude constraint: For a probability measure µ on X and a > 0, we define C a [µ] as a new probability measure µ on X such that

µ(] -∞, x[) = µ(] -∞, x[) x < a, 1 x a. (143) 
Intuitively, µ is obtained by moving all probability of ]a, ∞[ in µ to a mass point at a.

Theorem IV.2. Let {ν n } n 1 be o(1). For all a > 1, if n is large enough, we have C a [µ * νn ] ∈ Ω a (ν n ) and lim inf n→∞ I(µ * νn , w Y |X ) D w Z|X • µ * νn q 0 lim inf n→∞ I(C a [µ * νn ], w Y |X ) D w Z|X • C a [µ * νn ] q 0 . ( 144 
)
To prove this result, we need the following lemmas.

Lemma IV.8. If µ is a discrete probability measure on X with finite number of mass points

x 1 < • • • < x k and corresponding probabilities α 1 , • • • , α k , then D w Z|X • C a [µ] q 0 D W Z|X • µ q 0 , (145) 
I(C a [µ], w Y |X ) I(µ, w Y |X ) -θ 2 m max(support (µ))µ(]a, ∞[). (146) 
Proof. Similar to (140), for all i ∈ 1, k , we have

∂ ∂x i D w Z|X • µ q 0 = α i 1 (1 + x i ) 2 ∞ 0 (z -E qx i (Z))q xi (z) log (w Z|X • µ)(z) q 0 (z) dz 0. (147) 
Hence, by moving all mass points located in ]a, ∞[ to a to obtain C a [µ], we decrease the relative entropy. Applying the same argument to the channel w Y |X , we have

D w Y |X • C a [µ] p 0 D w Y |X • µ p 0 .
Additionally, we have

I(µ, w Y |X ) = k i=1 α i D(p xi p 0 ) -D w Y |X • µ p 0 (148) = k i=1 α i θ 2 m x i -log(1 + θ 2 m x i ) -D w Y |X • µ p 0 , (149) 
which implies that

I(µ, w Y |X ) -I(C a [µ], w Y |X ) (150) 
= i:xi>a α i θ 2 m x i -log(1 + θ 2 m x i ) -µ(]a, ∞[) θ 2 m a -log(1 + θ 2 m a) + -D w Y |X • µ p 0 + D w Y |X • C a [µ] p 0 ( 151 
) i:xi>a α i θ 2 m x i -log(1 + θ 2 m x i ) -µ(]a, ∞[) θ 2 m a -log(1 + θ 2 m a) (152) 
i:xi>a

α i θ 2 m x i -log(1 + θ 2 m x i ) (153) 
θ 2 m max(support (µ))µ(]a, ∞[). ( 154 
)
Lemma IV.9. For all a > 0, there exist ν 0 > 0, x ∈ X , and ξ > 0 such that for all 0 < ν ν 0 , if max(support

(µ * v )) x, then µ * v (]a, ∞[) 2 -ξmax(support(µ * v )) .
Proof. Fix ν > 0 small enough and suppose that µ µ * ν has mass points

x 1 < • • • < x k with corresponding probabilities α 1 , • • • , α k . Let r(y) (w Y |X • µ)(z) and f (z) (w Z|X • µ)(z). Substituting the lower-bounds r(y) µ(]a, ∞[) 1 + θ 2 m x k e - y 1+θ 2 m a , and f (z) µ(]a, ∞[) 1 + x k e -z 1+a , (155) 
in the KKT condition (88) for the point x = x k , we obtain

0 -log(θ 2 m x k + 1) -1 -γ(ν)(1 + x k ) -A(ν) + γ(ν)ν- log µ(]a, ∞[) 1 + θ 2 m x k + 1 + θ 2 m x k 1 + θ 2 m a + γ(ν) -log µ(]a, ∞[) 1 + x k + 1 + x k 1 + a . (156) 
Since lim ν→0 + γ(ν)ν = 0, for small ν, -1 -A(ν) + γ(ν)ν 0, and therefore, (156) implies that

0 -γ(ν)(1 + x k ) a 1 + a + γ(ν) log(1 + x k ) + 1 + θ 2 m x k 1 + θ 2 m a -(1 + γ(ν)) log(µ(]a, ∞[)). (157) Furthermore, if x k is large enough, we have log(1 + x k ) (1+x k )a 4(1+a)
, and if ν is small enough and x k is large enough, by Theorem IV.1 part 4, we have

1+θ 2 m x k 1+θ 2 m a γ(ν)(1 + x k ) a 4(1+a)
. Hence, there exist ν 0 > 0 and x > 0 such that if ν ν 0 and x k x, we have

0 - 1 2 γ(ν)(1 + x k ) a 1 + a -(1 + γ(ν)) log(µ(]a, ∞[)), (158) 
which yields that

µ(]a, ∞[) exp - 1 2 γ(ν) 1 + γ(ν) (1 + x k ) a 1 + a . ( 159 
)
Since lim ν→0 + γ(ν) = ∞, there exists ν 0 > 0 such that inf ν∈]0,ν0] γ(ν) 1+γ(ν) 1 2 . Hence, for ξ a 4(1+a) and all 0 < ν < ν 0 , we have µ(]a, ∞[) 2 -ξx k .

We are now ready to establish the upper bound in [START_REF] Wang | Optimal throughput for covert communication over a classical-quantum channel[END_REF] 

I(C a [µ * νn ], w Y |X ) D w Z|X • C a [µ * νn ] q 0 I(µ * νn , w Y |X ) -θ 2 m x * n µ * νn (]a, ∞[) D w Z|X • µ * νn q 0 . ( 160 
)
Therefore, it is enough to show that

x * n µ * νn (]a, ∞[) = o D w Z|X • µ * νn q 0 = o ( √ ν n ) . (161) 
To do so, we consider ν 0 , x, and ξ from Lemma IV.9. For n large enough such that 2 ξ log

1 νn > x, if x * n 2 ξ log 1 νn , then x * n µ * νn (]a, ∞[) x * n 2 -ξx * n , (162) 
which is less than 2 -1 2 ξx * n for large enough n. Thus, x * n 2 ξ log 1 νn implies that x * n µ * νn (]a, ∞[)

1
νn . For the other case when x * n < 2 ξ log 1 νn , let µ be a probability distribution on X with two mass points at 0 and a with probabilities 1 -µ * νn (]a, ∞[) and µ * νn (]a, ∞[), respectively. Then, we have

ν n = D w Z|X • µ * νn q 0 (a) D w Z|X • µ q 0 (b) K µ * νn (]a, ∞[) a+1 a , (163) 
where (a) follows from the same argument as in the proof of Lemma IV.8, and (b) follows from Lemma C.6 for a constant K depending on a. Therefore, we have

x * n µ * νn (]a, ∞[) 2 ξ log 1 ν n ν n K a a+1 . (164) 
Since both 1 νn and 2 ξ log 1 νn νn K a a+1 are o( √ ν n ), we have (161).

4)

Step four: obtaining the bound in Theorem III.1: We first prove a lemma that relates the constraint on the relative entropy to χ 2 divergence. Let Ω 0 be the set of discrete probability measures over [0, 1[ with finite number of mass points.

Lemma IV.10. Let > 0 be small enough and {ν n } n be a sequence of real numbers such that lim n→∞ ν n = 0 and 2 √ ν n + ν n 0.5 for all n. There exists a sequence of probability measures {λ n } n 1 such that λ n ∈ Ω 0 and 

lim sup n→∞ A(ν n ) √ ν n lim sup n→∞ I(λ n , w Y |X ) 1 2 χ 2 (w Z|X • λ n q 0 ) + . ( 165 
µ n C 1+ζ [µ n ] (167) 
µ n C an [µ n ], (168) 
where a n inf a:µn(]a,∞[) ν . We next use the following lemma to upper-bound χ 2 (w Z|X • µ n q 0 ). Lemma IV.11. Let µ ∈ Ω 0 such that D w Z|X • µ q 0 ν and max (support (µ)) a < 1. If 2 √ ν + ν < 1/2 and for some M > 0, we have (w Z|X • µ)(M )/q 0 (M ) e, then

1 2 χ 2 (w Z|X • µ q 0 ) D w Z|X • µ q 0 + 1 2 (E µ (X)) 3 M 0 e z(-1+ 3a 1+a ) dz + 1 2 (E µ (X)) 2 ∞ M e z(-1+ 2a 1+a ) dz + 2(E µ (X)) 3 . (169) 
Proof. See Appendix E.

We first establish a lower-bound on (w Z|X • µ n (z))/q 0 (z) to use Lemma IV.11. Since a n a n , we have

µ n ([a n , ∞[) µ n ([a n , ∞[) ν 1 2 +ξ n , (170) 
which yields that ∞ Mn e z(-1+ 2an 1+an ) dz + 27ν

(w Z|X • µ n )(z) q 0 (z) ν 1 2 +ξ n e an 1+an z 1 + a n . ( 171 
) Choosing M n = 1+an an 2 + 1 2 + ζ log 1 νn , we have (w Z|X • µ n )(M n )/q 0 (M n ) e. Therefore, Lemma IV.11 implies that 1 2 χ 2 (w Z|X • µ n q 0 ) (172) D w Z|X • µ n q 0 + 1 2 (E µ n (X)) 3 Mn 0 e z(-1+ 3an 1+an ) dz + 1 2 (E µ n (X)) 2 ∞ Mn e z(-1+ 2an 1+an ) dz + 2(E µ n (X)) 3 (173) (a) 
ν n + 1 2 (E µ n (X)) 3 Mn 0 e z(-1+ 3an 1+an ) dz + 1 2 (E µ n (X)) 2 ∞ Mn e z(-1+ 2an 1+an ) dz + 2(E µ n (X)) 3 (174) 
1 2 n , (175) 
where (a) follows since by Lemma IV.8 ) dz = 0. The third limit in (177) follows since lim n→∞ ν n = 0. We thus obtain (177), which together with (175) results in

D w Z|X • µ n q 0 D w Z|X • µ n q 0 D w Z|X • µ n q 0 ν n , (176) 
lim sup n→∞ 1 2 χ 2 (w Z|X • µ n q 0 ) ν n 1. (186) 
We now consider I(µ n , w Y |X ) and show that it is close to

I(µ n , w Y |X ) = A(ν n ). If a n = 1 -ζ,
then by a modification of Lemma IV.8

I(µ n , w Z|X ) I(µ n , w Z|X ) -2ζµ n (]1 -ζ, ∞[) (187) = I(µ n , w Z|X ) -2ζµ n (]1 -ζ, ∞[) (188) 
I(µ n , w Z|X ) -2ζ E µn (X) 1 -ζ (189) 
I(µ n , w Z|X ) -6ζ √ ν n 1 -ζ . ( 190 
)
If a n = a n , by Lemma IV.8

I(µ n , w Z|X ) I(µ n , w Z|X ) -2(1 + ζ)µ n (]a n , ∞[) (191) = I(µ n , w Z|X ) -2(1 + ζ)ν 1 2 +ζ n . (192) 
Therefore,

I(µ n , w Z|X ) I(µ n , w Z|X ) -max 6ζ √ ν n 1 -ζ , 2(1 + ζ)ν 1 2 +ζ n ( 193 
) (a) I(µ n , w Z|X ) -max 6ζ √ ν n 1 -ζ , 2(1 + ζ)ν 1 2 +ζ n -o(ν 1 2 n ), (194) 
where (a) follows from the argument of Theorem IV.2. Taking λ n = µ n ∈ Ω 0 , by ( 194) and (186), we have (165) for

= 6ζ 1-ζ .
Let µ ∈ Ω 0 . We claim that

I(µ, w Y |X ) χ 2 (w Z|X • µ q 0 ) sup µ∈ Ω >0 E µ θ 2 m X -log 1 + θ 2 m X E µ⊗ µ X1X2 1-X1X2 . ( 195 
)
Let us define µ as

µ(A) µ(A∩]0, 1[) µ(]0, 1[) . ( 196 
)
In other words, µ is the probability measure µ conditioned to the event ]0, 1[. We have

I(µ, w Y |X ) E µ θ 2 m X -log 1 + θ 2 m X (a) = µ(]0, 1[)E µ θ 2 m X -log 1 + θ 2 m X , (197) 
where (a) follows since θ 2 m x -log(1 + θ 2 m x) = 0 for x = 0. Moreover,

χ 2 (w Z|X • µ q 0 ) = E µ•µ X 1 X 2 1 -X 1 X 2 = µ(]0, 1[) 2 E µ• µ X 1 X 2 1 -X 1 X 2 (198)
Therefore,

I(µ, w Y |X ) 1 2 χ 2 (w Z|X • µ q 0 ) √ 2 E µ θ 2 m X -log 1 + θ 2 m X E µ⊗ µ X1X2 1-X1X2 . ( 199 
)
Furthermore, with the help of Lemma F.1, Eq. ( 394), we have that

lim sup ν→0 + A(ν) √ ν √ 2θ 2 m . (200) 
Therefore, we obtain the upper-bound in [START_REF] Wang | Optimal throughput for covert communication over a classical-quantum channel[END_REF].

V. CONCLUSION

For covert communications over non-coherent wireless channels, we showed that discrete constellations with an amplitude constraint are optimal. This differs from the results for coherent Gaussian channels in which using the phase is required to achieve the covert capacity. Supported by numerical results, we also conjectured that the optimal number of points is two and that their positions are fixed.

APPENDIX A LEIBNIZ INTEGRAL RULE

For a reader's convenience, we recall Leibniz integral rule here as it is used extensively throughout the paper. Then, for all x ∈ O, we have Proof. The proof is a straightforward application of Fubini's theorem and Morera's theorem. Fixing any closed piecewise C 1 curve γ in D, we have

d dx f (x, ω)dω = ∂f ∂x (x, ω)dω (201) 
γ f (z)dz = γ R g(z, y)dydz ( 202 
) (a) = R γ g(z, y)dzdy ( 203 
) (b) = 0, (204) 
where (a) follows from Fubini's theorem and our assumption on g, and (b) follows since g(•, z) is analytic and from Cauchy's integral theorem. Therefore, f satisfies the condition of Morera's theorem and is analytic.

APPENDIX C AUXILIARY RESULTS

We gather here essential technical tools to prove the achievability and converse results. To begin with, we bound the PDF of the output distributions of the channels w Y |X and w Z|X for an arbitrary input distribution µ.

Proposition C.1. For any probability measure µ on X with E µ (X) < ∞ and all y ∈ Y, z ∈ Z, we have

-θ 2 m E µ (X) -y log((w Y |X • µ)(y)) 0, (205) -E µ (X) -z log((w Z|X • µ)(z)) 0, (206) 
E w Y |X •µ (Y ) = 1 + θ 2 m E µ (X), (207) 
E w Z|X •µ (Z) = 1 + E µ (X). ( 208 
)
Proof. We only prove ( 205) and ( 207), from which ( 206) and ( 208) follow by setting θ m = 1. To obtain (205), observe that for any x ∈ X , we have p x (y)

1 1+θ 2 m x e - y 1+θ 2 m x
1, and

log (w Y |X • µ)(y) = log (E µ (p X (y))) (209) (a) E µ (log (p X (y))) (210) = E µ -log 1 + θ 2 m X - y 1 + θ 2 m X (211) (b) E µ -θ 2 m X - y 1 + θ 2 m X (212) (c) E µ -θ 2 m X -y (213) = -θ 2 m E µ (X) -y, (214) 
where (a) follows from Jensen's inequality, (b) follows from log(1+x) x for x > -1, and (c) follows from P µ (X 0) = 1.

To obtain (207), note that

E w Y |X •µ (Y ) = ∞ 0 y(w Y |X • µ)(y)dy (215) = ∞ 0 y X p x (y)dµ dy (216) (a) = X ∞ 0 yp x (y)dy dµ (217) = X (1 + θ 2 m x)dµ (218) = 1 + θ 2 m E µ (X), (219) 
where (a) follows from Fubini's theorem and the fact that for all x, y, yp x (y) 0.

Lemma C.1. Let µ be a probability measure over X . If D w Z|X • µ q 0 exists and is finite, then E µ (X) < ∞.

Proof. We proceed by contradiction. Consider a positive real number γ 1 and let 2 µ([γ 1 , ∞). We have > 0, because otherwise E µ (X) γ 1 < ∞. By the continuity of a probability, we have

lim γ→∞ µ([γ 1 , γ]) = 2 . ( 220 
)
Therefore, there exists γ 2 γ 1 such that µ([γ 1 , γ 2 ]) . We then have

(w Z|X • µ)(z) e -z 1+γ 1 1 + γ 2 . ( 221 
)
This implies that (w Z|X • µ)(z) q 0 (z) = e -z for all z z 0 1+γ1

γ1 log 1+γ2 > 0. Since D w Z|X • µ q 0 < ∞, we have ∞ > ∞ z0 (w Z|X • µ)(z) log (w Z|X • µ)(z) q 0 (z) dz (222) ∞ z0 (w Z|X • µ)(z) log e -z 1+γ 1 1+γ2 e -z dz (223) log 1 + γ 2 + γ 1 1 + γ 1 ∞ z0 (w Z|X • µ)(z)zdz (224) = log 1 + γ 2 + γ 1 1 + γ 1 ∞ z0 X e -z 1+x 1 + x dµzdz (225) = log 1 + γ 2 + γ 1 1 + γ 1 X ∞ z0 e -z 1+x 1 + x zdzdµ (226) = log 1 + γ 2 + γ 1 1 + γ 1 X (1 + x) 1 + z 0 1 + x e -z 0 1+x dµ (227) log 1 + γ 2 + γ 1 1 + γ 1 X (1 + x)e -z0 dµ (228) log 1 + γ 2 + γ 1 1 + γ 1 (E µ (X) + 1) e -z0 , (229) 
which implies that E µ (X) < ∞.

The next result shows that an upper-bound on D w Z|X • µ q 0 leads to an upper-bound on E µ (X).

Lemma C.2. For any ν > 0 and for any probability measure µ on X , D w Z|X • µ q 0 ν implies that E µ (X) 2 √ ν + ν.

Proof. For any x ∈ R + , we first consider the relative entropy D w Z|X • µ q x and show that it exists. By (206) in Proposition C.1 applied to a distribution with a single mass point at x, | log q x (z)| x+z. We thus have

∞ 0 (w Z|X •µ)(z) |log q x (z)| dz x + E w Z|X •µ (Z) = x + 1 + E µ (X), which is finite by Lemma C.1. Consequently, ∞ 0 (w Z|X • µ)(z) log q x (
z)dz is finite, and therefore by [START_REF] Ash | Information Theory, ser. Interscience Tracts in Pure and Applied Mathematics[END_REF]Lemma 8.3.1], the relative entropy D w Z|X • µ q x exists and is finite. Accordingly, we have

0 - ∞ 0 (w Z|X • µ)(z) log (w Z|X • µ)(z) q x (z) dz (230) = ∞ 0 (w Z|X • µ)(z) -log((w Z|X • µ)(z)) -log(1 + x) - z 1 + x dz. (231) 
Furthermore, by our assumption that D w Z|X • µ q 0 ν, we have

ν ∞ 0 (w Z|X • µ)(z) log (w Z|X • µ)(z) q 0 (z) dz (232) = ∞ 0 (w Z|X • µ)(z) log((w Z|X • µ)(z)) + z dz. ( 233 
)
Adding the inequalities in ( 231) and ( 233), we obtain

ν ∞ 0 (w Z|X • µ)(z) -log(1 + x) + xz 1 + x dz (234) = -log(1 + x) + x 1 + x E w Z|X •µ (Z) (235) (a) 
= -log(1 + x) + x 1 + x (E µ (X) + 1) , (236) 
where (a) follows from (208). Hence, we have

E µ (X) (ν + log(1 + x)) 1 + x x -1 (237) 
(ν + x) 1 + x x -1. (238) 
Choosing x = √ ν, we obtain the desired upper-bound.

Lemma C.3. For any probability measure µ on X with E µ (X) < ∞, I(µ, w Y |X ) is well-defined and finite, and

I(µ, w Y |X ) = - ∞ 0 (w Y |X • µ)(y) log((w Y |X • µ)(y))dy -E µ log 1 + θ 2 m X -1. (239) 
Proof. To check that I(µ, w Y |X ) is well-defined and finite, it is enough to show that log px(y)

(w Y |X •µ)(y) d(w Y |X × µ) < ∞, which holds since log p x (y) (w Y |X • µ)(y) d(w Y |X × µ) | log p x (y)| + | log((w Y |X • µ)(y))| d(w Y |X × µ) (240) (a) 
θ 2 m (x + E µ (X)) + 2y d(w Y |X × µ) (241) = 2θ 2 m E µ (X) + 2E w Y |X •µ (Y ) ( 242 
) (b) = 4θ 2 m E µ (X) + 2 < ∞, (243) 
where (a) follows from (205), and (b) follows from (207). Note next that

I(µ, w Y |X ) = E w Y |X ×µ log p X (Y ) (w Y |X • µ)(Y ) (244) = E w Y |X ×µ -log(1 + θ 2 m X) - Y 1 + θ 2 m X -log((w Y |X • µ)(Y )) . (245) 
Moreover,

E log(1 + θ 2 m X) θ 2 m E(X) < ∞ and E Y 1+θ 2 m X E(Y ) < ∞,
and therefore, we can use the linearity of expectation to write

E w Y |X ×µ -log(1 + θ 2 m X) - Y 1 + θ 2 m X -log (w Y |X • µ)(Y ) (246) = -E log(1 + θ 2 m X) -E Y 1 + θ 2 m X -E log (w Y |X • µ)(Y ) (247) = -E log(1 + θ 2 m X) -E E Y 1 + θ 2 m X X -E log (w Y |X • µ)(Y ) (248) = -E log(1 + θ 2 m X) -E 1 + θ 2 m X 1 + θ 2 m X -E log (w Y |X • µ)(Y ) (249) = -E log(1 + θ 2 m X) -1 -E log (w Y |X • µ)(Y ) , (250) 
which completes the proof of (239).

Lemma C.4. Suppose that D w Z|X • µ 1 q 0 and D w Z|X • µ 2 q 0 exist and are finite for two probability measures µ 1 and µ 2 on X . Then, the cross entropy

∞ 0 (w Z|X • µ 1 )(z) log(w Z|X • µ 2 (z))dz exists and is finite. Proof. We shall show that ∞ 0 (w Z|X • µ 1 )(z)| log((w Z|X • µ 2 )(z))|dz < ∞. By Lemma C.2, we know that E µ1 (X) and E µ2 (X) are finite. Therefore, we have ∞ 0 (w Z|X • µ 1 )(z)| log(w Z|X • µ 2 (z))|dz (a) ∞ 0 (w Z|X • µ 1 )(z) (E µ2 (X) + z) dz (251) = E µ2 (X) + E w Z|X •µ1 (Z) (252) (b) 
= E µ2 (X) + 1 + E µ1 (X) < ∞ (253) 
where (a) follows from (206), and (b) follows from (208).

Lemma C.5. Let µ be a probability measure over X such that sup(support (µ)) < ∞. We then have

I(µ, w Y |X ) = E µ θ 2 m X -log(1 + θ 2 m X) -D w Y |X • µ p 0 . (254) 
Furthermore, if we have sup(support (µ)) < 1, then

χ 2 (w Z|X • µ q 0 ) = E µ•µ X 1 X 2 1 -X 1 X 2 . ( 255 
)
Proof. We have

I(µ, w Y |X ) = log p X (Y ) (w Y |X • µ)(Y ) d(w Y |X × µ) (256) = log p X (Y ) p 0 (Y ) d(w Y |X × µ) + log p 0 (Y ) (w Y |X • µ)(Y ) d(w Y |X × µ) (257) = E µ (D(p X p 0 )) -D w Y |X • µ p 0 ( 258 
) (a) = E µ θ 2 m X -log(1 + θ 2 m X) -D w Y |X • µ p 0 , (259) 
where (a) follows from the straightforward calculation of the relative entropy between two exponential distribution. Additionally, we have

χ 2 (w Z|X • µ q 0 ) = ∞ 0 (w Z|X • µ)(z) 2 q 0 (z) dz -1 (260) = ∞ 0 E µ⊗µ 1 (1 + X 1 )(1 + X 2 ) e z 1-1 1+X 1 -1 1+X 2 dz -1 (261) (a) = E µ⊗µ ∞ 0 1 (1 + X 1 )(1 + X 2 ) e z 1-1 1+X 1 -1 1+X 2 dz -1 (262) = E µ⊗µ 1 1 -X 1 X 2 -1 (263) = E µ⊗µ X 1 X 2 1 -X 1 X 2 , (264) 
where (a) follows from Fubini theorem and

1 (1+X1)(1+X2) e z 1-1 1+X 1 -1 1+X 2
0 almost surely.

Lemma C.6. If a > 1 and β > 0 is small enough, then

D(βq a + (1 -β)q 0 q 0 ) = β 1+ 1 a (1 + a) -1-1 a 1 + 1 a Γ -1 a Γ 2 + 1 a 1 + 1 a 2 + a 2 Γ 1 - 1 a Γ 1 + 1 a + O(β 2 ), (265) 
where Γ(x) ∞ 0 y x-1 e -y dy. If a < 1 and β > 0 is small enough, then

D(βq a + (1 -β)q 0 q 0 ) = a 2 2(1 -a 2 ) β 2 + o(β 2 ). (266) 
Proof. We only consider the case where a > 1 and the other case follows from similar approach. By definition, we have

D(βq a + (1 -β)q 0 q 0 ) = ∞ 0 (βq a (z) + (1 -β)q 0 (z)) log βq a (z) + (1 -β)q 0 (z) q 0 (z) dz (267) = ∞ 0 β e -z 1+a 1 + a + (1 -β)e -z log 1 -β + β 1 + a e az 1+a dz (268) = log(1 -β) + ∞ 0 β e -z 1+a 1 + a + (1 -β)e -z log 1 + β (1 -β)(1 + a) e az 1+a
dz.

By substitution u e az 1+a in the above integral, we obtain

∞ 0 β e -z 1+a 1 + a + (1 -β)e -z log 1 + β (1 -β)(1 + a) e az 1+a dz = 1 + 1 a ∞ 1 (1 -β)u -2-1 a + β 1 + a u -1-1 a log 1 + β (1 -β)(1 + a) u du (270) 
Note next that for all real numbers λ 1 , λ 2 , a primitive function of u λ1 log (1 + λ 2 u) is

u λ1 log (1 + λ 2 u) du = u λ1+1 ( 2 F 1 (1, λ 1 + 1; λ 1 + 2; -λ 2 u) + (λ 1 + 1) log(λ 2 u + 1) -1) (λ 1 + 1) 2 + constant, (271) 
where 2 F 1 (a, b; c; x) is the hypergeometric function. Additionally, for λ 1 < -1, the limit of this primitive function at u = ∞ is

λ -λ1-1 2 Γ(2 + λ 1 )Γ(-λ 1 ) (λ 1 + 1) 2 . (272) 
Therefore, if we define λ

β (1-β)(1+a)
, by linearity of integral, we have

∞ 1 (1 -β)u -2-1 a + βu -1 a 1 + a log 1 + β (1 -β)(1 + a) u du (273) = (1 -β) λ 1+ 1 a Γ -1 a Γ 2 + 1 a 1 + 1 a 2 - 2 F 1 1, -1 -1 a ; -1 a ; -λ -(1 + 1 a ) log(λ + 1) -1 1 + 1 a 2 + (274) 
β 1 + a λ 1 a Γ 1 -1 a Γ 1 + 1 a 1 a 2 - 2 F 1 1, -1 a ; 1 -1 a ; -λ -( 1 a ) log(λ + 1) -1 1 a 2 ( 275 
) (a) = (1 -β)     λ 1+ 1 a Γ -1 a Γ 2 + 1 a 1 + 1 a 2 - 1 + λ(1+ 1 a ) -1 a -(1 + 1 a )λ -1 + O(β 2 ) 1 + 1 a 2     + (276) 
β 1 + a   λ 1 a Γ 1 -1 a Γ 1 + 1 a 1 a 2 - 1 + λ 1 a 1-1 a -( 1 a )λ + O(β 2 ) -1 1 a 2   (277) = (1 -β)    λ -1-1 a Γ -1 a Γ 2 + 1 a 1 + 1 a 2 - λ(1+ 1 a ) -1 a -(1 + 1 a )λ + O(β 2 ) 1 + 1 a 2    + (278) λ(1 -β)   λ -1 a Γ 1 -1 a Γ 1 + 1 a 1 a 2 - λ 1 a 1-1 a -( 1 a )λ + O(β 2 ) 1 a 2   , (279) 
where (a) follows since for x going to zero 2 F 1 (a, b; c; x) = 1 + abx/c + O(x 2 ) and log(1 + x) = x + O(x 2 ) by Taylor's expansion. By rearranging the terms in above expression and disregarding the higher order terms, we obtain

λ 1+ 1 a (1 -β) Γ -1 a Γ 2 + 1 a 1 + 1 a 2 + Γ 1 -1 a Γ 1 + 1 a 1 a 2 + λ 1 + a 1 + 1 a (1 -β) + O(β 2 ) (280) = β 1+ 1 a 1 (1 -β)(1 + a) 1+ 1 a (1 -β) Γ -1 a Γ 2 + 1 a 1 + 1 a 2 + Γ 1 -1 a Γ 1 + 1 a 1 a 2 + β 1 + 1 a + O(β 2 ). (281) 
Combining ( 269), (270), and (281), we have

D(βq a + (1 -β)q 0 q 0 ) (282) = β 1+ 1 a 1 (1 -β)(1 + a) 1+ 1 a (1 -β)(1 + 1 a ) Γ -1 a Γ 2 + 1 a 1 + 1 a 2 + Γ 1 -1 a Γ 1 + 1 a 1 a 2 + O(β 2 ). (283) 
APPENDIX D ERROR EXPONENTS ANALYSIS Lemma D.1. For a probability measure on X , µ, for which we have max(support (µ)) x max < ∞ and D w Z|X • µ q 0 ν and for any A > 0, it holds that

E w Y |X ×µ log 2 p X (Y ) (w Y |X • µ)(Y ) 2(3 + x max )(2 √ ν + ν)(1 + θ 2 m x max ) 4 e Axmax A + θ 2 m 2 e 2A + 20 (1 + θ 2 m x max ) + A 2 e -A . (284) 
Proof. We first define f (x)

∞ 0 p x (y) log 2 px(y) (w Y |X •µ)(y)
dy for which we have

f (x) = A 0 p x (y) log 2 p x (y) (w Y |X • µ)(y) dy + ∞ A p x (y) log 2 p x (y) (w Y |X • µ)(y) dy, (285) 
for any A > 0. To upper-bound the first term, we note that

(w Y |X • µ)(y) p x (y) -1 = E µ 1 1+θ 2 m X e - y 1+θ 2 m X p x (y) -1 (286) = E µ 1 + θ 2 m x 1 + θ 2 m X e y(x-X) (1+θ 2 m X)(1+θ 2 m x) -1 (287) 
E µ 1 + θ 2 m x 1 + θ 2 m X e y(x-X) (1+θ 2 m X)(1+θ 2 m x) -1 (288) 
E µ 1 + θ 2 m x 1 + θ 2 m X e y(x-X) (1+θ 2 m X)(1+θ 2 m x) -1 + E µ 1 + θ 2 m x 1 + θ 2 m X -1 . ( 289 
)
Considering each term separately in the above expression, we have

E µ 1 + θ 2 m x 1 + θ 2 m X e y(x-X) (1+θ 2 m X)(1+θ 2 m x) -1 (1 + θ 2 m x max )E µ e y(x-X) (1+θ 2 m X)(1+θ 2 m x) -1 (290) (a) 
(1 + θ 2 m x max )e yxmax E µ y(x -X)

(1 + θ 2 m X)(1 + θ 2 m x) (291) 
(1 + θ 2 m x max )e yxmax y x + E µ X , (292) 
where (a) follows from the mean value theorem and an upper-bound on derivative. For the next term in (289), we have

E µ 1 + θ 2 m x 1 + θ 2 m X -1 = θ 2 m E µ x -X 1 + θ 2 m X (293) θ 2 m E µ |x -X| (294) θ 2 m x + E µ X . (295) 
Combining these two inequalities, we obtain

(w Y |X • µ)(y) p x (y) -1 x + E µ X (1 + θ 2 m x max )e yxmax y + θ 2 m . (296) 
Hence, using the inequalities log 2 (x) (1 -x) 2 (1 + x -2 ) for x > -1 and

px(y) (w Y |X •µ)(y)
(1 + θ 2 m x max )e y , we have

log 2 p x (y) (w Y |X • µ)(y) x + E µ X (1 + θ 2 m x max )e yxmax y + θ 2 m 2 1 + (1 + θ 2 m x max )e y 2 . (297) 
This yields that

A 0 p x (y) log 2 p x (y) (w Y |X • µ)(y) dy (298) sup y∈[0,A] x + E µ X (1 + θ 2 m x max )e yxmax y + θ 2 m 2 1 + (1 + θ 2 m x max )e y 2 (299) = x + E µ X 2 (1 + θ 2 m x max )e Axmax A + θ 2 m 2 1 + (1 + θ 2 m x max )e A 2 (300) 2 x + E µ X 2 (1 + θ 2 m x max ) 4 e Axmax A + θ 2 m 2 e 2A . (301) 
For the second term in (285), if x x max , then we have

∞ A p x (y) log 2 p x (y) (w Y |X • µ)(y) dy (302) 4 ∞ A p x (y) log(1 + θ 2 m x max ) + y 2 dy (303) = 4 -log 2 (1 + θ 2 m x max ) + 2 log(1 + θ 2 m x max ) y + 1 + θ 2 m x + y 2 + 2(1 + θ 2 m x)y + 2(1 + θ 2 m x) 2 e - y 1+θ 2 m x ∞ A (304) = 4 log 2 (1 + θ 2 m x max ) + 2 log(1 + θ 2 m x max ) A + 1 + θ 2 m x + A 2 + 2(1 + θ 2 m x)A + 2(1 + θ 2 m x) 2 e -A 1+θ 2 m x (305) 20 (1 + θ 2 m x max ) + A 2 e -A . (306) 
Therefore, for all x ∈ X , it holds that

f (x) 2 x + E µ X 2 (1 + θ 2 m x max ) 4 e Axmax A + θ 2 m 2 e 2A + 20 (1 + θ 2 m x max ) + A 2 e -A , (307) 
which implies that

E w Y |X ×µ log 2 p X (Y ) (w Y |X • µ)(Y ) (308) = E µ (f (X)) (309) 2E µ X + E µ X 2 (1 + θ 2 m x max ) 4 e Axmax A + θ 2 m 2 e 2A + 20 (1 + θ 2 m x max ) + A 2 e -A . (310) 
Finally, by Lemma C.2,

E µ X + E µ X 2 = E µ X 2 + 3 (E µ (X)) 2 (3 + x max ) (ν + 2 √ ν) which completes the proof.
Proof of Lemma IV.1. We fix µ with sup(support (µ)) x < ∞ and use Theorem A.1 along with induction to show that for a small neighborhood around zero and all i 0, we have

∂ i g ∂s i (s, µ) = E w Y |X ×µ log i p X (Y ) (w Y |X • µ)(Y ) p X (Y ) (w Y |X • µ)(Y ) s , (311) 
where

g(s, µ) E w Y |X ×µ p X (Y ) (w Y |X • µ)(Y ) s . ( 312 
)
The statement is true for i = 0 by definition. For i > 0, we take O = [0, s], Ω = (X × Y, w Y |X × µ), and f (s, x, y)

= log i-1 px(y) (w Y |X •µ)(y) px(y) (w Y |X •µ)(y)
s and check the three conditions in Theorem A.1: 1) For x x, we have

|f (s, x, y)| = log i-1 p x (y) (w Y |X • µ)(y) p x (y) (w Y |X • µ)(y) s (313) (a) θ 2 m (E µ (X) + x) + 2y i-1 p x (y) (w Y |X • µ)(y) s (314) 2θ 2 m x + 2y i-1 p x (y) (w Y |X • µ)(y) s (315) 2θ 2 m x + 2y i-1 (1 + x) s e s xy 1+ x , (316) 
where (a) follows from Proposition C.1. Because the above upper-bound does not depend on x, we can write

E w Y |X ×µ (|f (s, X, Y )|) E w Y |X •µ 2θ 2 m x + 2Y i-1 (1 + x) s e s xY 1+ x . (317) 
Moreover, note that the moment generating function of a random variable with exponential distribution and mean λ exists in [0, λ), which implies that the moment generating function of distribution w Y |X • µ exists in [0, 1/(1 + x)). Hence, there exists s depending on x such that

E w Y |X •µ 2θ 2 m x + 2Y i-1 (1 + x) s e s xY 1+ x < ∞. (318) 
2) Since for all (x, y) ∈ X × Y, it holds that 0 < px(y)

(w Y |X •µ)(y) < ∞, ∂f
∂s exists, and we have

∂f ∂s (s, x, y) = log i p x (y) (w Y |X • µ)(y) p x (y) (w Y |X • µ)(y) s . (319) 
3) Similar to the first part, we can upper-bound the partial derivative as

∂f ∂s (s, x, y) = log i p x (y) (w Y |X • µ)(y) p x (y) (w Y |X • µ)(y) s (320) 2θ 2 m x + 2y i (1 + x) s e s xy 1+ x (321) 
The above bound is increasing in s. Thus, by choosing s small enough such that the expectation is finite for s = s, we can choose θ(x, y)

2θ 2 m x + 2y i (1 + x) s e s xy 1+ x . (322) 
Then, E w Y |X ×µ (θ(X, Y )) < ∞ and for all s s, we have ∂f ∂s (s, x, y) θ(x, y).

We can now use Theorem A.1 and obtain

∂ ∂s E w Y |X ×µ log i-1 p X (Y ) (w Y |X • µ)(Y ) p X (Y ) (w Y |X • µ)(Y ) s (323) = ∂ ∂s E w Y |X ×µ (f (s, X, Y )) (324) = E w Y |X ×µ ∂ ∂s f (s, X, Y ) (325) = E w Y |X ×µ log i p X (Y ) (w Y |X • µ)(Y ) p X (Y ) (w Y |X • µ)(Y ) s . (326) 
Therefore, the induction hypothesis implies (311). By the chain rule, φ rel (s, µ) is also a smooth function on an interval [0, s] for all µ with sup(support (µ)) x. Hence, we can use Taylor's theorem to obtain φ(s, µ) = φ rel (0, µ) + ∂φ rel ∂s (0, µ)s + ∂ 2 φ rel ∂s 2 (0, µ)

s 2 2 + ∂ 3 φ rel ∂s 3 (η, µ) s 3 6 , (327) 
for some η ∈ [0, s]. The derivatives of φ rel would be φ rel (0, µ) = -log(g(0, µ)) = 0 (328)

∂φ rel ∂s (0, µ) = - ∂g ∂s (0, µ) g(0, µ) = -E w Y |X ×µ log p X (Y ) (w Y |X • µ)(Y ) = -I(µ, w Y |X ) (329) ∂ 2 φ rel ∂s 2 (0, µ) = - g(0, µ) ∂ 2 g ∂s 2 (0, µ) -∂g ∂s (0, µ) 2 g(0, µ) = -E w Y |X ×µ log 2 p X (Y ) (w Y |X • µ)(Y ) + I(µ, w Y |X ) 2 . (330) 
Moreover, Lemma D.1 yields that

∂ 2 φ rel ∂s 2 (0, µ) -2(3 + x)(2 √ ν + ν)(1 + θ 2 m x) 4 e A x A + θ 2 m 2 e 2A + 20 (1 + θ 2 m x) + A 2 e -A (331) 
-B 1 (2 √ ν + ν)e 2A x+2A A 2 + A 2 e -A , (332) 
for some B 1 depending on θ 2 m and x. With similar arguments as we had to check the third condition of Theorem A.1, we can prove that there exists B 2 depending on x, such that for all η ∈ [0, s], we have

∂ 3 φ rel ∂s 3 (η, µ) B 2 . (333) 
Choosing B = max(B 1 /2, B 2 /6) completes the proof.

c) To lower-bound -M 0 q 0 φ 3 /2, we first upper-bound φ as follows.

φ(z) = x P X (x) e xz 1+x 1 + x -1 (359) x P X (x)e xz 1+a -1 (360) (a) x P X (x) 1 + e az 1+a -1 x -1 (361) = e az 1+a -1 E µ (X) (362) = e az 1+a E µ (X), (363) 
where (a) follows since e xz 1+a

1 + e az 1+a -1 x for x ∈ [0, a]. Since q 0 > 0 and x → x 3 is increasing, we have

M 0 q 0 φ 3 M 0 e -z e az 1+a E µ (X) 3 dz (364) = (E µ (X)) 3 M 0 e z(-1+ 3a 1+a ) dz. (365) 
d) Since φ(z) 0 for z M M 0 and x → x 2 is increasing for x 0, we have

∞ M q 0 φ 2 ∞ M e -z e az 1+a E µ (X) 2 dz (366) = (E µ (X)) 2 M 0 e z(-1+ 2a 1+a ) dz. (367) 
As a conclusion, we obtain that

M 0 f φ -φ 2 /2 1 2 χ 2 (f q 0 ) - 1 2 (E µ (X)) 2 M 0 e z(-1+ 2a 1+a ) dz - 1 2 (E µ (X)) 3 M 0 e z(-1+ 3a 1+a ) dz - ∞ M f. (368) 
2) Using |f (z)| 1 for all z ∈ Z and 0 φ(z) -E µ (X) for all 0 z M 0 , we have

M0 0 f φ 3 -M 0 (E µ (X)) 3 . (369) 
We now show that M 0 2, for which it is enough to show that f (2) q 0 (2). Note that

log f (2) (a) x P X (x) log q x (2) (370) = -E µ (log (1 + X)) -2E µ 1 1 + X (371) E µ (X) -2 + 2E µ X 1 + X (372) E µ (X) -2 + 2E µ X 1 + a (373) -2 = log q 0 (2). (374) 
3) By our assumption that f (M )/q 0 (M ) e, we have

∞ M f log f /q 0 ∞ M f. (375) 
Combining the bounds in the above three parts, we obtain the desired result.

APPENDIX F OPTIMIZATION PROBLEM IN (82)

A. Prokhorov's Theorem Theorem F.1. Let {µ n } be a sequence of tight probability measures on R, i.e., for all > 0, there exists a compact set K ⊂ R such that for all n 1, µ n (R \ K)

. Then, there exists a sub-sequence {µ n k } k 1 and another probability measure µ on R such that {µ n k } k 1 converges weakly to µ.

Furthermore, we have

ν D w Z|X • µ q 0 (387) = ∞ 0 (w Z|X • µ)(z) log (w Z|X • µ)(z) q 0 (z) dz ( 388 
) (a) = ∞ 0 (w Z|X • µ)(z) log((w Z|X • µ)(z))dz + E w Z|X •µ (Z) (389) -1 -log(E w Z|X •µ (Z)) + E w Z|X •µ (Z) ( 390 
) (b) = -log(1 + E µ (X)) + E µ (X) (391) (c) 1 2 E µ (X) 2 - 1 3 E µ (X) 3 ( 392 
) (d) 1 2 E µ (X) 2 1 - 2 3 2 √ ν + ν (393) 
where (a) follows since log q 0 (z) = -z and E w Z|X •µ (Z) < ∞ by Lemma C.1 and ( 208), (b) follows from ( 208), (c) follows from log(1 + x) x -x 2 /2 + x 3 /3 for x > -1, and (d) follows from Lemma C.2. We obtain for ν < 1/4 that E ν (X)

√ 2ν 1-(2/3)(2 √ ν+ √ ν) √ 2ν 1-2 √
ν , and hence,

I(µ, w Y |X ) θ 2 m √ 2ν 1 -2 √ ν . (394) 
Additionally, since A(ν) is non-decreasing and non-negative, we have

|A(ν) -A(0)| = A(ν) -A(0) A(ν) θ 2 m √ 2ν 1 -2ν , (395) 
which implies that A(ν) is continuous at zero. 3) Follows from [28, Page 153, Problem 4] and concavity of A(ν). 4) For ν > 0 small enough, it is enough to find a probability measure µ satisfying D w Z|X • µ q 0 ν and I(µ, w Y |X ) C √ ν. Let µ be a discrete probability measure on X with two mass points at 0 and x with probabilities 1 -α and α, respectively, such that x < min(1, 1/θ 2 m ). Then, by Lemma C.6,

D w Z|X • µ q 0 = α 2 x 2 2(1 -x 2 ) + o(α 2 ). (396) 
Similarly, we can obtain

D w Y |X • µ p 0 α 2 θ 2 m x 2 /(2(1 -θ 2 m x 2 )) + o(α 2
). Therefore, we can lower-bound the mutual information by

I(µ, w Y |X ) = αD(p x p 0 ) -D w Y |X • µ p 0 (397) αD(p x p 0 ) - α 2 θ 2 m x 2 2(1 -θ 2 m x 2 ) -o(α 2 ) (398) = α θ 2 m x -log(1 + θ 2 m x) - α 2 θ 2 m x 2 2(1 -θ 2 m x 2 ) -o(α 2 ). (399) 
Hence, by choosing α

= x -1 2(1 -x 2 )D w Z|X • µ q 0 = x -1 2(1 -x 2 )ν(1 -o(1)), we have D w Z|X • µ q 0 ν and I(µ, w Y |X ) √ ν(1 -o(1)) x -1 2(1 -x 2 ) θ 2 m x -log(1 + θ 2 m x) - √ ν 1 -x 2 1 -θ 2 m x 2 . ( 400 
) Choosing ν 0 > 0 such that x -1 2(1 -x 2 ) θ 2 m x -log(1 + θ 2 m x) 2 √ ν 0 1 -x 2 1 -θ 2 m x 2 , (401) 
the claim of the lemma holds for

C = 1 2 x -1 2(1 -x 2 ) θ 2 m x -log(1 + θ 2 m x) . (402) 
5) Since A (ν + ) A (ν -), we only need to compute lim ν→0 + A (ν + ). Since A(ν) is concave A (ν + ) is decreasing, and therefore, it is enough to show that for any L > 0 there exists some ν > 0 with A (ν + ) L. To this end, we fix some ν > 0 and define B(ν) A(ν)-A( ν) ν ν. B(ν) is continuous on [0, ν] and therefore it achieves its maximum and minimum on [0, ν]. Hence, either we have B(ν) = 0 for all ν ∈ [0, ν] or there exists a ν ∈ (0, ν) such that B(ν) achieves its maximum or minimum at ν. Then, we should have

B (ν-) = A (ν -) -A( ν)/ ν 0 or B (ν + ) = A (ν + ) -A( ν)/ ν 0. In both cases, we have A ν 2 + A( ν) ν . However, by Lemma F.1, A ν 2 + C/ √ ν, if ν ν 0 . Since ν is arbitrary, we can choose it such that C/ √ ν > L.
Proof of Lemma IV.3. We only prove the existence of a solution and the uniqueness follows from strict concavity of the mutual information [START_REF] Abou-Faycal | The capacity of discrete-time memoryless rayleigh-fading channels[END_REF]. Consider a sequence {µ n } n 1 in Ω such that D w Z|X • µ n q 0 ν and lim n→∞ I(µ n , w Y |X ) = A(ν). To use F.1, we first check that this sequence is tight. For any > 0, we have

P µn X / ∈ [0, (2 √ ν + ν)/ ] (a) E µn (X) 2 √ ν + ν ( 403 
) (b) , (404) 
where (a) follows from applying Markov's inequality to the almost surely non-negative random variable X, and (b) follows from Lemma C.2. Since [0, (2 √ ν + ν)/ ] is compact, the sequence {µ n } n 1 is tight. Therefore, we are permitted to use Theorem F.1 that shows the existence of a subsequence {µ n k } k 1 and probability measure µ on R such that {µ n k } k 1 converges weakly to µ. We claim that µ * ν is indeed µ and prove it in three steps.

Step 1: Theorem F.1 only guarantees the existence of a probability measure on R which can possibly have positive measure on negative numbers. In this step, we show that this is not the case. By the Portmanteau theorem, the weak convergence of

{µ n k } k 1 to µ implies that lim inf k→∞ µ n k (U ) µ(U ) for any open set U ⊂ R. Taking U =] -∞, 0[, we obtain that 0 = lim inf k→∞ µ n k (] -∞, 0[) µ(] -∞, 0[) 0, (405) 
which means that µ(] -∞, 0[) = 0.

Step 2: In this step we prove that µ satisfies the optimization constraint, i.e., D w Z|X • µ q 0 ν. Let us define f k (z) (w Z|X • µ n k )(z) and f (z) (w Z|X • µ)(z). Since for any z ∈ Z, q x (z) = e -z/(1+x) /(1 + x) is a continuous and bounded function in x, by weak convergence definition, we have

f k (z) = E µn k (q X (z)) → E µ (q X (z)) = f (z). (406) 
In the next lemma, we show that |f k (z) log f k (z)| is uniformly upper-bounded by an integrable function.

Lemma F.2. There exists some z such that for all k, )

+ z -1 2 e - √ z . ( 408 
)
By law of total probability, for all λ > 0, we have

f k (z) E µn k (q X (z)) (409) 
= E µn k (q X (z)|X λ)P µn k (X λ) + E µn k (q X (z)|X < λ)P µn k (X < λ) (410)

(a) E µn k (q X (z)|X λ) E µn k (X) λ + E µn k (q X (z)|X < λ) (411) (b) 
E µn k (q X (z)|X λ)

2 √ ν + ν λ + E µn k (q X (z)|X < λ), (412) 
where (a) follows from Markov's inequality, and (b) follows from Lemma C.2. We also have for all z 1, q x (z) (ze) -1 , and for all 0 x λ z -1, q x (z) e -z 1+λ /(1 + λ). Substituting these upper-bounds in (412) for λ = z 

Hence, (239) implies that I(µ, w Y |X ) A(ν).

Proof of Theorem IV.1. We prove all four statements in order. The proof heavily relies on results from convex optimization for general vector spaces and properties of the optimization problem in (83), which we have gathered in Appendix F for the reader's convenience. -γ(ν) E w Z|X •µ log (w Z|X • µ 1 )(Z) q 0 (Z) -D w Z|X • µ 1 q 0 (428) Thus, we only check the weak differentiability of G(µ) D w Z|X • µ q 0 -ν. Let µ 1 , µ ∈ Ω, and define µ θ (1 -θ)µ 1 + θµ (444)

f 1 (z) (w Z|X • µ 1 )(z) (445) f (z) (w Z|X • µ)(z) (446) f θ (z) (w Z|X • µ θ )(z). (447) 
Then, we have

G(µ θ ) -G(µ 1 ) (448) = D(f θ q 0 ) -D(f 1 q 0 ) (449) = ∞ 0 f θ (z) log f θ (z) q 0 (z) dz - ∞ 0 f 1 (z) log f 1 (z) q 0 (z) dz ( 450 
) (a) = ∞ 0 f θ (z) log f θ (z) q 0 (z) dz - ∞ 0 f θ (z) log f 1 (z) q 0 (z) dz + ∞ 0 f θ (z) log f 1 (z) q 0 (z) dz - ∞ 0 f 1 (z) log f 1 (z) q 0 (z) dz (451) = ∞ 0 f θ (z) log f θ (z) f 1 (z) dz + ∞ 0 f θ (z) log f 1 (z) q 0 (z) dz - ∞ 0 f 1 (z) log f 1 (z) q 0 (z) dz ( 452 
) (b) = ∞ 0 f θ (z) log f θ (z) f 1 (z) dz + θ ∞ 0 f (z) log f 1 (z) q 0 (z) dz - ∞ 0 f 1 (z) log f 1 (z) q 0 (z) dz , (453) 
where (a) holds since by Lemma C.4, ∞ 0 f θ (z) log f1(z) q0(z) dz < ∞, and (b) follows from f θ = (1 -θ)f 1 + θf . The second term in (453) is differentiable with respect to θ, and the derivative is

∞ 0 f (z) log f 1 (z) q 0 (z) dz - ∞ 0 f 1 (z) log f 1 (z) q 0 (z) dz. (454) 
To take derivative from the first term in (453), we use Theorem A. 

which is a integrable function with respect to Lebesgue measure on Z by Lemma C.4 and does not depend on θ. Hence, all condition in Theorem A.1 hold, and we have

∂ ∂θ ∞ 0 f θ (z) log f θ (z) f 1 (z) dz = ∞ 0 ∂ ∂θ f θ (z) log f θ (z) f 1 (z) dz (458) = ∞ 0 -(f 1 (z) -f (z)) 1 + log f θ (z) f 1 (z) dz (459) = ∞ 0 -(f 1 (z) -f (z)) log f θ (z) f 1 (z) dz, (460) 
which vanishes at θ = 0. Therefore, G is weakly differentiable at µ 1 and

G µ1 (µ) = ∞ 0 f (z) log f 1 (z) q 0 (z) dz - ∞ 0 f 1 (z) log f 1 (z) q 0 (z) dz. (461) 
Since the mutual information and the divergence are weakly differentiable, so is I(µ, w Y |X )-γ(ν) D w Z|X • µ q 0 -ν .

  y) ∈ E : x = x}. We also define the marginal probability measure induced on Y by w Y |X • µ. If X and Y denote the joint random variables associated to the measure µ × w W |X , we allow ourselves to denote their mutual information by I(µ, w Y |X ) I(X; Y ). We shall use the standard asymptotic notations such as O(•), o(•), Ω(•), ω(•) and Θ(•).

Fig. 1 .

 1 Fig. 1. Covert Wireless Channel

4 Fig. 2 .

 42 Fig. 2. Numerical evaluation of bounds on covert capacity.

  (iii) I(µ n , w Y |X )n = ω(log n) For any ζ > 0, we shall prove the existence of a sequence of codes {C n } n 1 achieving the covert throughput (1-ζ) lim inf n→∞ I(µn,w Y |X ) D(w Z|X •µn q0)

  where (a) follows from (205), (b) follows from Lemma C.2, and (c) follows by (92). Therefore, ∞ 0 |p x (y) log r(y)|dy is uniformly bounded on any compact subset of D, and Theorem B.1 yields that ∞ 0 |p x (y) log r(y)|dy is analytic over D.

)

  Proof. Let ξ > 0 and ζ 6ξ 1-6ξ . Define µ n µ * νn (166)

Theorem A. 1 .

 1 Let O be an open subset of R and Ω be a measure space. Supposef : O × Ω → R satisfies the following conditions 1) f (x, w) is a Lebesgue-integrable function of ω for each x ∈ O 2)For almost all ω ∈ Ω, the derivative ∂f ∂x exists for all x ∈ O 3) There is an integrable function θ : Ω → R such that ∂f ∂x (x, ω) θ(ω) for all x ∈ O and almost every ω ∈ Ω.

1 .

 1 Let g : D × R → C be a function such that D is a simple connected subset of C, g(•, y) is analytic for all y ∈ R, and sup z∈C R |g(z, y)|dy < ∞ for all compact C ⊂ D. The function f : z → R g(z, y)dy is analytic over the domain D.

0

  |f k (z) log f k (z)| g(z) |g(z)|dz < ∞.Proof. Note first that for all x ∈ [0, 1], we have |x log x| e -1 , and for all x ∈ [0, e -1 ], we have |x log x| |x|. Thus, it is enough to show that there exist z such that for all k 1 and z z,

1 2 - 0 f 0 fStep 3 :

 2003 1, which is less than z -1 for z 1, we obtain f k (z) eligible to use dominated convergence theorem and exchange limit and integral to obtainlim k→∞ ∞ 0 f k (z) log f k (z)dz = ∞ 0 lim k→∞ f k (z) log f k (z)dz (415) = ∞ (z) log f (z)dz.(416)Since f k (z)z 0 for all z ∈ Z and k 1, Fatou's lemma yields that and (418), we haveD w Z|X • µ q 0 = ∞ (z) (z + log f (z)) dz (419) lim inf k→∞ ∞ 0 f k (z) (z + log f k (z)) dz = lim inf k→∞ D w Z|X • µ n k q 0 ν. (420) It remains to show that I(µ, w Y |X ) A(ν). We again define h k (z) (w Y |X • µ n k )(z) and h(z) (w Y |X • µ)(z).With the same argument of the previous step, we can prove thatlim k→∞ ∞ 0 h k (z) log h k (z)dz = ∞ 0 h(z) log h(z)dz.(421)Furthermore, by[30, Page 86], we havelim inf k→∞ E µn k 1 + log(1 + θ 2 m X) E µ 1 + log(1 + θ 2 m X) .

1 )-

 1 In Theorem F.2, taking Ω as the set of all probability measures µ on X with D w Z|X • µ q 0 < ∞, U = R,P = R + , φ(µ) = -I(µ, w Y |X ), G(µ) = D w Z|X • µ q 0 -ν, we note that -∞ < -A(ν) = -supµ∈Ω:G(µ) 0 the relative entropy and concavity of mutual information in the input distribution, φ and G are convex functions, with µ 1 the deterministic probability measure with all mass point at zero, we also have G(µ 1 ) = -ν < 0. Therefore, we can apply Theorem F.2 to show the existence of γ(ν) 0 such thatinf µ∈Ω:G(µ) 0 φ(µ) = inf µ∈Ω [φ(µ) + γ(ν)G(µ)] (425) = -sup µ∈Ω I(µ, w Y |X ) -γ(ν) D w Z|X • µ q 0 -ν ,(426)which results in the unconstrained reformulation of A(ν) as sup µ∈Ω I(µ, w Y |X ) -γ(ν) D w Z|X • µ q 0 -ν . Theorem F.2 also implies that µ * ν is a solution to this new optimization problem, and since I(µ, w Y |X )-γ(ν) D w Z|X • µ q 0 -ν is strictly concave [18, Appendix I.B], the solution is unique.2) With the help of Lemma F.3 in Appendix C to show the existence of weak derivatives (defined in (376)), we use Theorem F.3 with f (µ) = I(µ, w Y |X ) -γ(ν) D w Z|X • µ q 0 -ν to obtain that µ 1 = µ * ν if and only if for any µ ∈ Ω, 0 f µ1 (µ) (427) = E w Y |X ×µ log p X (Y ) (w Y |X • µ 1 )(Y ) -I(µ 1 , w Y |X )

1 .

 1 Note that by Lemma C.4,∞ 0 f θ (z) log f θ (z)f1(z) dz < ∞, and also, for all z and θ,∂ ∂θ f θ (z) log f θ (z) f 1 (z) = -(f 1 (z) -f (z)) 1 + log f θ (z) f 1 (z) .(455)Additionally, for all θ ∈ [0, 1], if we apply (206), we obtain|f θ (z) log f θ (z) f 1 (z) | |f 1 (z) + f (z)| (| log f 1 (z)| + log(1 + E µ θ (X)) + z) (456) |f 1 (z) + f (z)| (| log f 1 (z)| + log(1 + E µ1 (X) + E µ (X)) + z) ,

  of Theorem IV.2. By Lemma IV.5, if n is large enough µ * νn is a discrete probability measure with finite number of mass points, and so is C a [µ * νn ]. By Lemma IV.8, we have D w Z|X • C a [µ * νn ] q 0 D µ * νn q 0 = ν n , and

	Proof of Theorem IV.2. Let x * n	max(support µ * νn ).

  and a n min(1-ζ, a n ). Let {ν n } n be a sequence of real numbers such that lim n→∞ ν n = 0 and 2 √ ν n + ν n 0.5 for all n. By construction, we have µ n ([a n , ∞[) ν

	1 2 n	+ξ	1 2 +ξ n	and µ n (]a n , ∞[) ν n 1 2 +ξ

a

Note that θm in (3) is different from θm in (4).

APPENDIX E PROOF OF LEMMA IV.11 AND IV.2

We first introduce some notation and facts, which will be useful in both proofs. Let f (z) (w Z|X • µ)(z) and φ(z) f (z)/q 0 (z) -1. Defining P X as the associated PMF of µ, we can write φ(z)

1+x -1, which is increasing and

Furthermore, there exists a unique M 0 such that φ(z) 0 if and only if z M 0 .

Proof of Lemma IV.2. Using the bound log(1 + x) x -x 2 /2 + x 3 /3 for x > -1, we obtain

We consider each term separately. 1) We have

2) We have

3) We have

where (a) follows since M 0 2 by the argument in the proof of Lemma IV.11. 4) We have

Lemma IV.11. We use the notations introduced in the beginning of Appendix E. Since we have log(1 + x)

x -x 2 /2 + 1{x 0} 2x 3 /3 for x -0.5, we have for all z ∈ Z,

We therefore obtain

We consider each term separately in the following. 1) We have

We again separately lower-bound each term in the above expression. a) We have by definition,

B. Convex Optimization for General Vector Spaces Theorem F.2. ([27, Theorem 1, Page 217]). Let V be a vector space, Ω ⊂ V a convex set, U be a normed vector space, and P ⊂ U be a positive cone, i.e., for all u 1 , u 2 ∈ U and all α, β 0, we have αu 1 + βu 2 ∈ P. Suppose the interior of P is non-empty, and φ : Ω → R and G : Ω → U are convex functions such that there exists ω 1 ∈ Ω for which G(ω 1 ) ≺ P 0 and A inf ω∈Ω:G(ω) P 0 φ(ω) > -∞. Then, there exists u * 0 P * 0 in U * such that A = inf ω∈Ω φ(ω) + G(ω), u * 0 . Moreover, if ω 0 is a solution to the first optimization problem, the infimum of the second optimization problem is also achieved by ω 0 and G(ω 0 ), u * 0 = 0. We next recall a result from [START_REF] Smith | On the information capacity of peak and average power constrained gaussian channels[END_REF] to find an expression for the KKT conditions of an abstract convex optimization. To this end, we introduce the notation of weak differentiablity for a function f : Ω → R where Ω is convex. We say that f ω0 : Ω → R is the weak derivative of f at ω 0 , if

Theorem F. 3 ([16]). Let V be a linear space, Ω ⊂ V be convex, and f : Ω → R be convex and have weak derivative for all ω ∈ Ω. f (ω * ) = inf ω∈Ω f (ω) if and only if for all ω ∈ Ω, we have f ω * (ω) 0.

C. Technical Results

Lemma F.1. A(ν) defined in (82) satisfies the following properties.

1) It is concave and non-decreasing on [0, ∞).

2) It is continuous on [0, ∞).

3) The one-sided derivatives,

exist for all ν > 0, and for all 0 < ν 1 < ν 2 , we have

. 4) There exist constants ν 0 > 0 and C > 0 such that for all 0 < ν ν 0 , we have A(ν) C √ ν.

5) We have lim ν→0

Proof. 1) By definition of A(ν), it follows that A(ν) is non-decreasing. To check concavity, we take any ν 1 , ν 2 > 0, µ 1 , µ 2 ∈ Ω with D w Z|X • µ 1 q 0 ν 1 and D w Z|X • µ 2 q 0 ν 2 , and λ ∈ [0, 1]. By convexity of the relative entropy, we have

Therefore, by concavity of the mutual information,

Hence, by definition of supremum, we have

To check the continuity at 0, we consider ν > 0 and µ ∈ Ω with D w Z|X • µ q 0 ν. Using (239), we have 207) and the support of w Y |X • µ is included in [0, ∞), the differential entropy of w Y |X • µ is upper-bounded by the differential entropy of an exponential distribution with the same mean [START_REF] Park | Maximum entropy autoregressive conditional heteroskedasticity model[END_REF]. Therefore, we have

This implies that µ 1 = µ * ν if and only if for all µ ∈ Ω, we have f 87) is true, we take the expectation and obtain (85). We now show the opposite direction and prove that if (85) holds, we have (87) and (88). Applying (85) with µ a deterministic probability measure with all mass point at x, we obtain

Furthermore, for any x ∈ support (µ 1 ), we prove that w(x, µ 1 , ν) = A(ν) by contradiction. If A(ν)-w(x, µ 1 , ν) δ > 0, by continuity of A(ν) -w(x, µ 1 , ν) in x, there exists a neighborhood N of x such that for all x ∈ N , we have A(ν) -w(x , µ 1 , ν) δ/2. Also, since x ∈ support (µ 1 ), we know that P µ1 (X ∈ N ) = > 0. Therefore, we obtain

which is a contradiction. 4) To prove that lim ν→0 + γ(ν) = ∞, we prove that γ(ν) A (ν + ), and the result will follow from lim ν→0 + A (ν + ) = ∞ as shown in Lemma F.1. Consider any ν 1 , ν 2 > 0, and similar to the sensitivity analysis in [19, Section 5.6], note that

where (a) follows since µ * ν1 is the maximizer of sup µ I(µ, w Y |X ) -γ(ν 1 )(D w Z|X • µ q 0 -ν 1 ), and (b) follows since γ(ν 1 ) 0. Thus, for any ν > 0 and ν > h > 0, we have

Taking the limit h → 0 + , we obtain A (ν + ) γ(ν) A (ν -).

To prove that lim ν→0 + γ(ν)ν = 0, note that for all ν > 0,

where (a) follows from concavity of A. In the proof of Lemma F.1, we show that lim ν→0 + A(ν) = 0, which yields the result.

Lemma F.3. f (µ) I(µ, w Y |X ) -γ(ν) D w Z|X • µ q 0 -ν is weakly differentiable, and

Proof. In [START_REF] Abou-Faycal | The capacity of discrete-time memoryless rayleigh-fading channels[END_REF]Equation (63)], the weak derivative of I(µ, w Y |X ) at µ 1 is proved to be