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- A procedure to correct the effect of the electron beam scanning when using the eCHORD 11 

approach is proposed 12 

- The procedure is based on a rotation matrix applied on each pixel of the map. 13 

- It paves the way for centimetric orientation mapping in texture studies and geological 14 

studies 15 

Abstract 16 

eCHORD is an alternative method for orientation mapping in Scanning Electron Microscopy that 17 

involves channeling contrast observed in BSE images. The sample tilt being small (10°), eCHORD 18 

could be a promising method for large scale maps as it limits the image deformation sometimes 19 

observed with EBSD maps. However, when the magnification is low, the scan deflection of the 20 

beam becomes important, which may modify the channeling conditions of analyzed grains, 21 

leading to orientation errors.  A correction method for the resulting orientations is proposed and 22 

a resulting map on a Si single crystal is presented with an experimental misorientation of 0.12° 23 

across a field of view of 2.3x1.7mm2. 24 
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1. Introduction 1 

Orientation mapping brings crucial information to study the relationship between 2 

microstructure and properties in crystalline materials. For the study of textured materials, or large 3 

grain sized materials, large orientation maps are required. Particularly, mapping the orientations 4 

on large fields can be necessary, for instance when the texture of the material varies spatially on 5 

a large scale, or when the grain size is in the millimetric/centimetric range. This is the case for Al 6 

alloy [1,2], or geological materials [3,4]. In scanning electron microscopy (SEM), one of the 7 

conventional tools to obtain orientation maps is the Electron Back-Scattered Diffraction (EBSD) 8 

technique. Some experimental limitations are associated to the use of EBSD for large scale 9 

orientation mapping. The EBSD acquisition geometry is intrinsically a limit (70° tilt of the sample 10 

and short distance between the sample and the detector). Also, the large sample tilt leads also to 11 

anisotropy of the spatial resolution between lateral and transverse directions. The scan 12 

distortions are difficult to correct and complicate any comparison between different imaging 13 

modalities (EBSD and EDS mapping, BSE imaging)[5,6]. Mapping large areas using a sample tilted 14 

to 70° is also problematic because of the risk of the sample touching the SEM objective lens. It is 15 

the case when studying, for example, geological samples, for which the size of the grains can be 16 

in the centimeter range [7]. 17 

Another orientation mapping approach in a SEM has been proposed recently, exploiting 18 

the channeling contrast of the Back Scattered Electron (BSE) signal, and relying on a simpler 19 

acquisition geometry [8]. This method, called eCHORD, is based on the acquisition of multiple 20 

electron channeling contrast images acquired during a rotation of a tilted sample. From an image 21 
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series, intensity profiles are extracted on each position of the region of interest (ROI) and then 1 

compared to a theoretical database to retrieve the crystal orientations [9–11]. One of the 2 

advantages of eCHORD is that it requires a low sample tilt (typically 10°). Therefore, it may allow 3 

large fields of view mapping at the centimetric scale on large size samples. However, eCHORD is 4 

based on the channeling contrast evolution, which is directly dependent on the beam direction 5 

relative to the sample. To open eCHORD to large area mapping, it is necessary to well understand 6 

the influence of the beam scanning the surface, among other issues linked to the work at low 7 

magnification and particularly the spatial distortions due to the lens aberrations. Actually, to form 8 

the SEM image, the incident beam is deflected from the original incident beam direction, initially 9 

positioned at the center of the field of view. The effect of the beam scanning on the channeling 10 

phenomenon is particularly evidenced at low magnification (i.e., a large field of view) where 11 

Kikuchi bands are visible on a monocrystalline sample or even on a polycrystalline sample with 12 

large grain size [12]. This would have an impact on the angular precision of the eCHORD 13 

indexation results because, up to now, the eCHORD theoretical background makes the 14 

assumption that the angle between the electron beam and the rotation axis is always equal to 15 

the sample tilt, without considering the extra deflection of the beam when it scans the surface 16 

[8]. 17 

This problem is also present in EBSD. When scanning the surface of the sample, the beam 18 

deflection changes the pattern center on the Kikuchi pattern, and thus the orientations found are 19 

misoriented from the expected orientations. After calibration, the pattern center position is 20 

corrected depending on the deviation of the beam to obtain a more precise orientation [13]. A 21 

recent approach using pattern-matching refinement of the pattern center leads to a 22 
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misorientation error of only 0.09° across a field of view of 1mm [14]. In the eCHORD framework, 1 

understanding and correcting the effect of the beam deflection is a prerequisite in order to obtain 2 

reliable large orientation maps.  3 

In the present study, the eCHORD experimental set-up is first presented. Then, the 4 

geometry of acquisition is detailed in order to describe the beam deflection variation during the 5 

rotation of the tilted sample. In the following section, experimental intensity profiles extracted 6 

from a low magnification image series acquired on a Si single crystal are analyzed to determine 7 

the influence of the beam deflection during the scan. The procedure to correct for the scan 8 

influence is then presented, followed by a discussion. 9 

2. Experimental Set-Up 10 

All the experiments have been carried out on a silicon single crystal cut along a {001} plane. 11 

Image series were acquired on a Gemini I SEM (Carl Zeiss Microscopy GmbH, Oberkochen, 12 

Germany) operating at an acceleration voltage of 15kV, with an aperture size of 60�m and with 13 

the high current mode activated. A working distance of 7mm was used. A retractable standard 4 14 

Quadrant solid-state detector (namely 4Q-BSD) placed at the bottom of the objective lens was 15 

used. These parameters have been chosen in order to be identical to those used in the reference 16 

paper [8]. The high current mode is active as it reduces the beam divergence while increasing the 17 

signal on the BSE detector. The working distance has been set to 7 mm to collect a maximum of 18 

BSE on the detector. The 15kV with a 10° sample tilt allows obtaining detailed experimental 19 

profiles, which are easily indexable. A rotation from 0° to 360° was performed with a sample tilt 20 
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of 10° and a rotation step of 2°. The full rotation was done automatically with the sample placed 1 

on a piezo-controlled precision sub-stage (SmarAct GmbH, Germany) mounted on the top of the 2 

microscope goniometer allowing a precision of 1 micro-degree in rotation. The sub-stage has 3 

three degrees of freedom: two translations situated on top of a rotation. The sample is fixed on 4 

the translation part. Before the rotation, two operations have been performed: 1/ the axis of 5 

rotation of the substage has been set to coincide with the electron column optical axis by moving 6 

the substage using the X and Y translations of the SEM stage goniometer, and 2/ the sample ROI 7 

has been centered in the field of view using the X and Y translations of the substage.  The scan 8 

deflection, then, has been deliberately maximized by choosing the largest field of view. A field of 9 

view of 2.3x1.7 mm2 was scanned (magnification x50) with a pixel size of 4.49�m and image size 10 

equal to 512x384 pixels. Using a time per frame of 2.6 seconds, a full image series of 180 images 11 

was acquired in approximately 8 minutes. At each step of the rotation, the scanned area is 12 

automatically rotated to follow the rotation of the sample. As a consequence, the details in the 13 

image remain in the same orientation in the field of view during the rotation of the sample while 14 

the channeling contrast is varying. It is worth noting that the dedicated SmarAct stage is very 15 

convenient for the acquisition, but not strictly necessary. Particularly, if the rotation part of the 16 

built-in microscope goniometer is located under the translation part, the same procedure as the 17 

one described above can be used. In the case of a translation part located under the rotation part, 18 

three possibilities must be considered: 1/ a manual acquisition where at each rotation step the 19 

ROI is manually re-centered at the original position; 2/ a precise compucentric mode is available 20 

on the microscope and could be used to re-center the ROI automatically at each rotation step; 3/ 21 

the center of rotation of the goniometers could be placed in coincidence with the electron beam 22 
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optical axis using built-in X and Y translations, but in this case the only region that can be mapped 1 

is the one on top of the rotation axis. 2 

 An image denoising step using the VSNR algorithm [15] has been applied with a Dirac filter 3 

of parameters sigma 0.15 and 30 iterations.  4 

3. Details about acquisition geometry 5 

As electron channeling is highly dependent on the beam direction relative to the crystal, 6 

the most probable impact on the images would be due to the incident angle of the beam across 7 

the region of interest. The beam is controlled by deflectors located in the SEM column [16] that 8 

modify the electron beam direction using a pivot point located above the objective lens. The 9 

incident beam is then deviated from the original normal incidence to scan every (x,y) position of 10 

the ROI. 11 
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 1 

Figure 1: Geometry of acquisition. The sample is tilted to an angle � of 10° around 
x

e
r

  and rotated 2 

around the axis of rotation ωr . The incident beam is deflected from the pivot point P during the 3 

scan of the field of view. The angle between the electron beam and the local normal to the surface, 4 

as well as the working distance �� vary differently for each scanned point during the rotation. �� 5 

is the distance between pivot point P and C, the center of ROI. 6 

Fig 1 represents the experimental setup for a sample tilted by an angle � relative to 7 

the 
x

e
r

 axis and with a rotation of angle 
i

ω  around the axis of rotation ωr  (i.e. the normal of 8 

sample surface). �� is the distance between the pivot point and the center of the field of view. 9 
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Each scanned point is located at a coordinate (X, Y) from the center defined as ( ),
c c

x x y y− −  , 1 

with ( ),
c c

x y  the coordinates of the center. At the center of the field of view, the incident beam 2 

is traveling in the opposite direction of the axis 
z

e
r

 . Considering that the position of the point C at 3 

the center remains unchanged during the rotation, the angle between the incident beam and the 4 

sample normal as well as the working distance, are constant for point C. This is the perfect case 5 

for which the experimental eCHORD profile can be described by a perfect circular path in the 6 

corresponding Electron Channeling Pattern (ECP) with α   the radius of the circle [8]. For all other 7 

positions, the angle between the beam direction and the local sample normal as well as the 8 

working distance are a function of ( )( ), , , ,
i

WD X Yω α   and ( )( ), , ,
i

X Yω α  respectively, 9 

with 
i

ω   being the actual rotation angle around ωr . For these out-centered positions, one can 10 

wonder if the electron beam path in the ECP is still described by a circle as a given point is 11 

illuminated with different incidence conditions depending on the rotation angle.  12 

4. Results 13 

i. Indexation 14 

In order to observe the influence of the scan on the indexation, it is worth considering the 15 

experimental images together with the intensity profiles extracted from different positions.   16 
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 1 

Figure 2: a) BSE images extracted from the denoised image series for different rotation angles (0°, 2 

90°, 180°, 270°). b) Intensity profiles corresponding to three positions of the region of interest: at 3 

the center (C), at the upper left corner (A), and slightly deviated from the center (B). Raw profiles 4 

(dashed colored lines), profiles with background removed from FFT filter (lines), experimental 5 

background computed from FFT filter (black dashed lines). 6 

As an illustrating example, Fig 2.a) presents images extracted for different angles of 7 

rotation from the image series. Fig 2.b) presents the experimental intensity profiles 8 

corresponding to three positions of the ROI: A, B, C. The raw experimental profiles are 9 

represented with colored dashed lines. The profile at the center of the ROI is considered as the 10 

reference signature of the single crystal orientation. Indeed, for this point, the beam orientation 11 

relative to the sample remains unchanged along the rotation. Point A, in the upper left, is located 12 

at a distance of 1.3 mm from the center. It corresponds to the maximum beam deflection leading 13 

to a potential impact on profiles. Point B is located at an intermediate distance of 0.5 mm from 14 

the ROI center. When comparing the profile at the center with the two other profiles, differences 15 

in position and intensity of the peaks are observed. It seems that a global intensity variation in a 16 
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wave-like form appears on the profiles, particularly visible on the profile A. This variation is 1 

considered as a background signal that is likely due to the variations, during the rotation, of both 2 

the working distance and the angle between the electron beam and the sample normal direction, 3 

which may modify the angular backscattered electron distribution on the detector. The 4 

hypothesis made is that this variation corresponds to the lowest angular frequency signal on the 5 

experimental profiles in Fourier space. In Fig 2.b), the background for each of the three 6 

experimental profiles extracted from the FFT filter are shown in black dashed lines. The 7 

background differs in shape and amplitude depending on the position relative to the center. At 8 

the center, the background is almost not present whereas a medium background is computed for 9 

point B and a more significant background concerning the A point. Filtered profiles are presented 10 

with continuous lines in Fig 2.b). The global variation is reduced for the two profiles A and B, 11 

whereas there is almost no change concerning the reference profile C. After this filtering step, the 12 

positions of the peaks are still different for profiles A and B compared to C. This indicates that the 13 

crystallographic paths followed for those two points are not the same as the one for point C. 14 

 15 



11 

 

 1 

Figure 3: Simulated Electron Channeling Pattern using EMsoft [17], obtained from the Euler angles 2 

(38.77, 0.87, 85.6)° determined from profile C. Two experimental images with white square 3 

outlines are superimposed over the theoretical ECP. From the 13° known angular aperture of the 4 

theoretical ECP, an angular aperture of experimental images of 4.7° along the  i
r

  axis has been 5 

determined. Circles corresponding to the three references profile A, B, C are represented using the 6 

same color code as in Figure 2. 7 

The reference profile C is perfectly indexed from a theoretical database of 1M profiles, as 8 

there is no effect of beam deflection. An orientation of (38.77, 0.87, 85.6)° was found and the 9 

corresponding ECP was simulated. The crystallographic path corresponding to that position is a 10 

circle centered at the middle of the ECP, and with a radius of 10°. The two experimental images 11 
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of Fig 2.a) are superimposed over the simulated ECP in Fig 3. The experimental and theoretical 1 

Kikuchi bands are qualitatively fitting together, confirming the geometrical link between the 2 

experimental images and the simulated ECP. Here, the lens aberrations that certainly slightly 3 

modify the expected beam deflection are not visible due to the very small angular deflection 4 

associated to a pixel in the image, as demonstrated hereafter.  This superimposition is possible 5 

due to the tilt correction carried out after the acquisition (see Appendix A): a progression of one 6 

pixel in the x
r

  direction and a progression of one pixel in the y
r

  direction at a given pixel size 7 

correspond now to the same angular deviation of the beam. This angular deviation of the beam 8 

corresponding to the progression of one pixel is designated as the “angular pixel size” (aps) in the 9 

following. A consequence is that the unknown angular pixel size of the experimental ROI is related 10 

to the simulated one of the ECP, which is known; the ECP was simulated with a 13° angular 11 

aperture. From this value, a 4.7° angular aperture of the experimental images was deduced. 12 

Knowing that the size in pixels of the ROI along the x
r

 axis corresponds to 4.7° (512 pixels), an 13 

angular pixel size of the experimental ROI of 0.01° has been estimated. It has to be noticed that 14 

this value depends on the working distance and magnification used. It is also worth noting that 15 

the beam path remains a circle for every position of the ROI. The full geometrical explanation of 16 

this assertion is provided in Appendix A. These circular beam paths for the three positions A, B, C 17 

are shown in Fig 3. Circles corresponding to beam paths A and B are centered on positions 18 

deviated from an angle compared to the ECP center, which is the center of beam path C. As a 19 

consequence, each experimental profile could be matched with theoretical profiles present in a 20 

standard database. However, a misoriention will be found compared to the reference orientation 21 

C.   22 
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To verify experimentally these assumptions, the theoretical database used for the 1 

indexation must be characterized by a mean disorientation between neighbor orientations being 2 

below 0.01°, i.e. the angular pixel size (aps). It is possible to increase the database size to obtain 3 

a mean disorientation of 0.01°, but, it would require a long time to generate and search into the 4 

database, which is not the optimal solution. The approach chosen for this specific experiment is 5 

the following: the experimental profile located at the position C (center of the ROI), is indexed 6 

using a database of 1M of theoretical profiles. Then, because the maximum disorientation in the 7 

ROI compared to the center is close to 3.0° (value calculated using the ROI dimensions in pixels 8 

and the angular pixel size), a second database of 5M is constructed and sampled around the mean 9 

orientation with a maximum disorientation of 3°. The mean disorientation between two 10 

neighbouring orientations in the resulting database is 0.01°. Fig 4.a) presents the crystalline 11 

orientation map finally obtained and Fig 4.b) shows the experimental profiles compared to the 12 

theoretical ones for the three positions A, B, C. Experimental profiles match the theoretical ones, 13 

which confirms the previous assumptions that any profiles of the ROI can be assigned with an 14 

orientation present in the database. In the next part, a procedure to correct orientations is 15 

proposed using previous assumptions. 16 
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 1 

Figure 4: a) eCHORD Orientation map (Euler angles) b) Experimental versus theoretical profiles for 2 

the three reference profiles A, B, C after research in the database. c) Theoretical orientation map 3 

of the same area. Color codes corresponding to the Euler angles are indicated on the bottom of 4 

the figure. 5 

ii. Procedure to correct orientations 6 

The objective is to find the relation between the deviated orientations (away from the 7 

center of the field of view) and the reference orientation (at the center of the field of view). This 8 

problem can be expressed generally by multiplying the reference orientation vector with a passive 9 

rotation matrix: 10 

��	
� � 
�� ∗ ��� ∗ ������	�
��
�     (1) 11 
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with 1 

�� � �1 0 00 ���( �) −�#$( �)0 �#$( �) ���( �) % 2 

�� � & ���( �) 0 �#$( �)0 1 0−�#$( �) 0 ���( �)' 3 

The value of the angles  �and  � are just the angular pixel size aps = 0.01° multiplied by 4 

coordinates ( and ) (shifts from the center, expressed in pixels) of the misoriented point: 5 

x

y

X aps

Y aps

θ
θ

= ⋅
 = ⋅

  6 

The reader can refer to the reference [18] to obtain the orientation matrix from a triplet 7 

of Euler angles. In order to confirm that the disorientations can be associated with a deviation of 8 

angle  � and  �, the theoretical expected disorientation map has been computed. For each 9 

coordinate ((, )), matrices �� and �� are calculated using the respective value of   � and  � 10 

and the relation (1) is applied using as a reference the orientation (38.77, 0.87, 85.6)° found at 11 

the center of ROI. Both experimental and theoretical maps show similar gradients of Euler angles. 12 

Therefore, we can apply the correction on the experimental orientations.  13 

iii. Corrected map 14 

The corrected orientation map shown in Fig 5.a) has been obtained using the relation (1) 15 

for each position of the experimental orientations found on the original map on Fig 4.a). In order 16 

to confirm that the orientations computed from relation (1) are reliable, two distributions of 17 
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disorientation have been computed: the first one is obtained by comparing the orientations 1 

before the correction to the one at the ROI center, and the second by comparing the orientations 2 

after the correction to the one at the center. These two distributions are presented in the Fig 5.b). 3 

Before correction, the distribution is peaked at 1.5° with a maximum error of 3.0° whereas after 4 

correction, the distribution is peaked at 0.12°. 5 

 6 

Figure 5: a) Corrected orientation map (same area as Figure4.a). Color codes corresponding to the 7 

Euler angles are indicated below the orientation map. b) Distribution of disorientations before 8 

(gray) and after (blue) correction of orientations and their corresponding log-normal fits. 9 

5. Discussion 10 

In the previous section, a correction procedure for orientation maps acquired for a large 11 

field of view has been presented. The peak of the misorientation distribution is shifted from 1.5° 12 

to around 0.12°. This improvement of one order of magnitude considering the size of the mapped 13 
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area is completely sufficient for most materials applications. The approach is easily extensible to 1 

polycrystal and multi-phase materials for an acquisition with the same microscope parameters. 2 

The correction matrix is only dependent on the working distance and on the pixel size. Using a 3 

single crystal, it is possible to compute the correction for different pixel sizes and working 4 

distances. However, if the distance between the pivot point P and the final objective lens (see 5 

section 1) is known, the correction matrix can be recomputed without the use of a single crystal. 6 

By comparison with the literature [14], a correction peaked at 0.09° is reachable in EBSD for a 7 

field a view of 1 mm which is in the same order of the correction obtained in eCHORD. 8 

Nevertheless, if the precision needs to be improved, it is always possible to increase the scan rate 9 

or decrease the rotation step from 2° to 1°, which would give more detailed experimental profiles. 10 

Therefore, a better similarity between experimental profiles and theoretical ones is expected and 11 

thus could improve the angular precision of the procedure if necessary. 12 

6. Conclusion 13 

In this paper, a method to correct the scanning beam deflection impact on eCHORD 14 

orientation maps has been proposed. It is based on a rotation matrix that corrects the 15 

orientations indexed depending on the position of the indexed profiles relative to the center of 16 

the region of interest, the working distance and the pixel size. This method has been successfully 17 

applied on a silicon single crystal with an error peaked at 0.12° over a field of view of 2.3x1.7mm2. 18 

In the future, it would be very interesting to further decrease the magnification to reach a field 19 

of view in the centimetric range. This requires a longer working distance. For EBSD, it implies a 20 

repositioning of the EBSD detector and recalibration of the pattern center [19]. For eCHORD, 21 
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because geometrical distortions are now better understood and corrected at low magnification 1 

[20], the correction of the scan effect that we developed in this paper potentially still applies. 2 

Correcting the effect of the beam scanning paves the way to validate eCHORD as an alternative 3 

approach for simplified large area mapping.  4 
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Appendix A: Circles in the ECP 10 

The aim of this appendix is to demonstrate that the intensity variations for out-centered 11 

positions in the field of view can be determined by circles in the ECP computed using the intensity 12 

profiles obtained at the center of the field of view, where no beam deflection occurs due to the 13 

beam scanning. This helps to understand why out-centered intensity profiles are still present in 14 

our theoretical database of intensity profiles, but corresponding to a slightly different orientation. 15 

The interplay between the use of a scan rotation during the acquisition and the use of the 16 

tilt correction option in the microscope is also discussed. 17 

Reference frames 18 

First, it is important to set up the different reference frames used in this appendix.  19 
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- The reference frame linked to the microscope itself is the direct, orthonormal one 1 

( ), ,
x y z

e e e
r r r

 defined by the tilt axis 
x

e
r

of the microscope goniometer, the optical axis of the 2 

microscope column 
z

e
r

, pointing toward the electron gun, and 
y z x

e e e= ×r r r
.  3 

- Another important reference frame is the direct, orthonormal one attached to the 4 

substage. This frame ( ), ,i j ω
r r r

 is defined by the rotation axis of the substage ωr , and two 5 

other directions perpendicular to ωr , i
r

 and j
r

, so that ( ), ,i j ω
r r r

 is an orthonormal and 6 

direct frame. At the beginning of an eCHORD acquisition, the frames ( ), ,i j ω
r r r

 and 7 

( ), ,
x y z

e e e
r r r

 are identical, oriented in the same way. During the acquisition, this not true 8 

anymore, and the relation between ( ), ,i j ω
r r r

 and ( ), ,
x y z

e e e
r r r

 will be described in the 9 

following for each step of the acquisition procedure. It is important to note that the ECP 10 

simulations are carried out in the frame ( ), ,i j ω
r r r

 because this is the frame that is linked 11 

to the crystal, the sample being glued onto the substage. 12 

Cartesian coordinates are used in these two frames. 13 

Tilt correction and scan rotation 14 

The experimental BSE eCHORD images are always acquired with their horizontal direction 15 

along 
x

e
r

 and an out-of-plane direction along the optical axis. However, if the sample is tilted 16 

around 
x

e
r

 by an angleα , the content of the image corresponds then to a projection of the sample 17 

surface. The spatial calibration of the image is then different along the horizontal direction and 18 

the vertical direction. To recover an identical calibration along these two directions, it is necessary 19 
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to stretch the image vertically, either by post-acquisition pixel interpolation or during the image 1 

acquisition by using the tilt correction option usually available on most of the SEM [12]. However, 2 

this tilt correction option should not be used simultaneously with the scan rotation option, 3 

because the tilt correction acts on the spacing between scan lines, which are no more parallel to 4 

the tilt axis if a scan rotation is used.  5 

As described in the main body of the paper (see section 2. Experimental setup), the 6 

experiment used to demonstrate our correction of the beam deflection effect on the orientation 7 

map was carried out with a scan rotation to compensate for the sample rotation, in order to keep 8 

the field of view unrotated for each rotation step. In this case, the projection effect due to the tilt 9 

is digitally corrected after the acquisition. Without the scan rotation, the corners of the initial ROI 10 

would have been lost when unrotating the images and cropping them to keep the common area 11 

in all the images of the series. 12 

On the contrary, the experiment described in this appendix has been realized with a tilt 13 

correction and no scan rotation (same single crystal, with identical microscope setup). This allows 14 

explaining more clearly the geometrical setup corresponding to the successive steps of the 15 

acquisition procedure. Only the orientation of the crystal is slightly different compared to the 16 

experiment in the body of the paper, due to a different starting point for the rotation series. 17 

Electron Channeling Pattern geometry 18 

One has to keep in mind that an ECP is a stereographic projection of the intensities 19 

gathered using an electron beam precessing inside a cone with a vertex located on a fixed point 20 

on the surface of the sample. Because the opening half-angle is relatively small compared to a full 21 
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stereographic projection (13° here compared to 90°), the angular deflection corresponding to a 1 

pixel in the ECP is considered as a constant all over the ECP, which is not true when considering a 2 

complete hemispherical stereographic projection, as it is visible on a Wulff net. Any pixel in the 3 

ECP is then associated to a direction of the incoming electron beam described by two angles that 4 

can be deduced from the pixel Cartesian coordinates in the frame ( ), ,i j ω
r r r

. 5 

In this appendix, the ECP has been simulated from the orientation obtained by using the 6 

intensity profile at the center of the field of view, where no beam deflection occurs due to the 7 

beam scan. 8 

Why circles? 9 

Our correction procedure relies on the fact that the intensity profiles recorded for out-10 

centered positions still correspond to circles in the ECP computed from the orientation found at 11 

the center of the field of view (point C). Let report the acquisition geometry in this ECP Kikuchi 12 

pattern, which is computed in the ( ), ,i j ω
r r r

 frame. 13 

Step 1: At the beginning of the experiment, the rotation axis ωr of the substage is along 
z

e
r

because 14 

the tilt around 
x

e
r

 is equal to 0°. As well, the rotation angle around ωr  is equal to 0°. In this 15 

geometry, we have a complete correspondence between ( ), ,i j ω
r r r

 and ( ), ,
x y z

e e e
r r r

. We see 16 

Kikuchi lines in the experimental BSE image because, when scanning the ROI, the electron beam 17 

is deflected and then explore the directions around the center of the ECP. The experimental 18 

Kikuchi lines are then identical to the one visible in the center of the ECP. The horizontal and 19 
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vertical directions of the BSE image correspond to the horizontal and vertical directions in the 1 

ECP. 2 

Step 2: The sample is tilted by an angle α around 
x

e
r

. In this situation, the experimental Kikuchi 3 

lines visible in the image correspond to an area in the ECP centered around a beam position 4 

inclined by an angle α  in the ECP, shifted by an according number of pixels. Because i
r

is still equal 5 

to 
x

e
r

 in the ECP (no rotation yet aroundωr ), the experimental image does not need to be rotated 6 

before superimposing it on the ECP. However, ωr  and j
r

 are no more parallel respectively to 
z

e
r

 7 

and 
y

e
r

due to the tilt. This situation is represented in Figure A.1. 8 

 9 

Figure A.1: ECP simulated from the orientation deduced using the intensity profile obtained at the 10 

center of the field of view. The white circle centered in the middle of the ECP corresponds to an 11 

opening angle of 10α = ° . The raw experimental BSE image acquired at 10α = ° but before any 12 
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rotation is superimposed to the ECP with the center of the field of view located on the 10° circle, 1 

along j
r

. 2 

Step 3: The sample is then rotated by an angle 
i

ω  aroundωr . Because the crystal is attached to 3 

the substage that is rotated inside the microscope, the vector 
x

e
r

is no more parallel to i
r

. It is still 4 

in the ECP plane ( ),i j
r r

, but has been rotated by an angle
i

ω . Because the experimental images 5 

are always aligned with an horizontal direction along
x

e
r

, they have to be rotated anti-clockwise 6 

before being superimposable onto the ECP, as demonstrated in Figure A.2.. 7 

 8 
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Figure A.2 : ECP with superimposed images extracted from the BSE images series. The white 1 

arrows indicate the vector 
x

e
r

 for the selected rotation angles around ωr  indicated in the figure. 2 

Now, let us consider the content of the raw experimental BSE images acquired at a sample 3 

tiltα  around 
x

e
r

 and sample rotation
i

ω  aroundωr , before superimposing it on the ECP. Because 4 

ωr  has been aligned with the center of the field of view during the acquisition preparation (see 5 

section 2. Experimental Set-up), the content of each image appears rotated by an angle 
i

ω  around 6 

the center of the image compared to the situation before any rotation. When stacking all the 7 

images together, a given position on the sample surface is then rotating around the center in a 8 

clock-wise manner along the image stack depth.  9 

On the other hand, if we stack together the images that have been anti clock-wise rotated 10 

in order to superimpose them onto the ECP, then a given position on the sample surface has fixed 11 

pixel coordinates compared to the center of the first image. Its rotation around the image center 12 

has been corrected. It means that, when considering the images superimposed on the ECP, the 13 

shift in pixels between the center of the field of view and a given position on the surface is always 14 

the same in the ( ), ,i j ω
r r r

 frame, whatever the rotation angle
i

ω  . In other words, to go from the 15 

center of one image to a given position in the image, the same vector V
r

 has to be applied in the 16 

ECP plane, whatever the rotation. It is visible when tracking the black spots on the superimposed 17 

images as emphasized in Figure A.3.  18 
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 1 

Figure A.3: ECP with superimposed images extracted from the BSE images series. The unique 2 

vector V
r

(yellow) allowing going from the center of a given image to a given position of interest 3 

in the same image is represented for all the considered rotation angles
i

ω . Because the centers of 4 

the superimposed images are all along a 10° circle, so are the positions of interest in the different 5 

images (yellow dashed circle). 6 

In the eCHORD approach, we constitute an intensity profile for every position on the 7 

sample surface. To do this, the raw image series is aligned using the first image as a reference. 8 

This is completely equivalent to stack together all the images that has been rotated to be 9 

superimposable to the ECP. An intensity profile is then constituted by gathering the intensity 10 
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harvested at the same pixel position in all the images of the aligned stack. As evidenced in Figure 1 

A.3 (yellow dashed circle), the corresponding channeling conditions are obtained in the ECP along 2 

a circle of radius 10°, with a center shifted from the ECP center by the vector V
r

, V
r

being the 3 

vector defined in the ECP that allows going from the center of the field of view to the position of 4 

interest. The reason is that the centers of the images are all along the white 10° circle in the ECP 5 

(centered at the middle of the ECP) and that a position of interest is always linked to the center 6 

by the same vector V
r

whatever the rotation angle.  7 

It is also worth noting that, if a scan rotation (without post-acquisition tilt correction) is 8 

used during the acquisition, the rotation necessary to superimpose the raw images to the ECP is 9 

already carried out, as it is the case in the experiment presented in the main body of the paper. 10 

Conclusion of Appendix A 11 

It is demonstrated in this appendix that the intensity profiles obtained at out-centered 12 

positions in the aligned image series corresponds to circles in the ECP computed from the 13 

intensity profile at the center of the image. These circle centers are shifted in the ECP, i.e. with 14 

centers that do not correspond to the ECP center, which simply means that they correspond to 15 

different crystallographic orientations. Our theoretical database of intensity profile being 16 

constructed by drawing circles in ECPs simulated using a sampling of the orientation space, we 17 

can conclude that even the out-centered intensity profiles are correctly described by our model. 18 
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