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ALGEBRAIC FOLIATIONS AND DERIVED
GEOMETRY: THE RIEMANN-HILBERT

CORRESPONDENCE

BERTRAND TOËN AND GABRIELE VEZZOSI

Abstract. This is the first in a series of papers about foliations
in derived geometry. After introducing derived foliations on ar-
bitrary derived stacks, we concentrate on quasi-smooth and rigid
derived foliations on smooth complex algebraic varieties and on
their associated formal and analytic versions. Their truncations
are classical singular foliations. We prove that a quasi-smooth
rigid derived foliation on a smooth complex variety X is formally
integrable at any point, and, if we suppose that its singular locus
has codimension ≥ 2, then the truncation of its analytification is
a locally integrable singular foliation on the associated complex
manifold Xh. We then introduce the derived category of perfect
crystals on a quasi-smooth rigid derived foliation on X, and prove
a Riemann-Hilbert correspondence for them when X is proper. We
discuss several examples and applications.
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Introduction

This is the first of a series of works on foliations (mainly algebraic and
holomorphic) and derived geometry. In this paper we present a notion
of a derived foliation on algebraic or holomorphic varieties, that we
think is interesting for studying foliations with singularities. The point
of view adopted here is not completely new and goes back to previous
works by Tony Pantev and the authors on existence of potentials for
shifted symplectic structures (see e.g. [Pan14]). In a nutshell, a derived
foliation F on a scheme X consists of a perfect complex LF on X
together with a map a : OX −→ LF that satisfies formal properties
of being a de Rham differential (i.e. is a derivation squaring to zero).
One major difficulty is to define the precise higher coherences for such
a structure, encoding the fact that a2 does not really identically vanish
but rather it is homotopic to zero in a homotopy coherent way. This
is achieved by defining derived foliation as graded mixed commutative
differential graded algebras (graded mixed cdga’s, for short) satisfying
some extra properties (see Definition 1.2.1).

In this work we quickly restrict to the case of quasi-smooth derived fo-
liations F , which consists of restricting LF to be just a two terms com-
plex of vector bundles. Among derived foliations, these quasi-smooth
derived foliations are the closest to classical foliations in the usual sense,
and we think they form the most important class of derived foliations.
A quasi-smooth derived foliation F on a smooth variety X can be trun-
cated into a usual algebraic singular foliation τ0(F) on X (e.g. in the
sense of [Bau75, Ayo18]). More precisely, the kernel of the morphism
Ω1
X −→ H0(L), induced by a, defines a differential ideal inside differen-

tial forms and thus a singular foliation τ0(F) on X. We remark however
that arbitrary singular foliations are not derived foliations: they can be
represented by graded mixed algebras, but these do not satisfy our con-
ditions (except if the foliation has no singularities). Notice also that
being the truncation of a derived foliation is a non-trivial condition,
even locally in the analytic topology. Therefore, derived foliations are
not really generalizations of singular foliations, and these two class of
objects do not live in the same categories. Rather, it is more useful
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to keep in mind the intuition that derived foliations are some sort of
additional structure on their truncated singular foliations making them
better behaved objects.

The first two main results of this work are the following integrability
theorems. Note that for a derived quasi-smooth foliation being inte-
grable, i.e. being induced by a morphism between smooth varieties,
implies that its truncated singular foliation is also integrable (by the
same morphism). However, the converse is wrong.

Theorem 0.0.1. Let X be a smooth variety and F be a quasi-smooth
derived foliation on X. Assume that F is rigid (i.e. the induced map
H0(a) : Ω1

X → H0(L) is surjective). Then

(1) The derived foliation F is formally integrable around each point
x ∈ X.

(2) If we further assume that F has no singularities outside a closed
subset of codimension at least 2, then the associated truncated
singular foliation τ0(F) is analytically integrable, locally in the
analytic topology on X.

Part (1) of the above theorem is a consequence (Cor. 1.6.3) of a
more general result concerning the local structure of quasi-smooth de-
rived foliations (see Proposition 1.6.1), while part (2) is a consequence
of (1) and of a theorem of Malgrange ( [Mal77]). We remark here that
a singular foliation which is not formally integrable locally at all points
cannot be the truncation of a derived quasi-smooth foliation.

The second main result of this work is a Riemann-Hilbert correspon-
dence for derived quasi-smooth foliations. We first we introduce the
notion of crystal along a derived foliation F , which morally consists
of a vector bundle together with a partial connection along the leaves.
Once again, there are homotopical coherences to be taken into account,
and crystals are rather defined as certain graded mixed dg-modules
over the graded mixed dg-algebra defining the derived foliation. On
the other hand, a derived foliation F defines a sheaf OFh , in the an-
alytic topology, of locally constant functions along F . This is a sheaf
of commutative dg-algebras, which is in general not concentrated in
degree zero, and whose higher cohomology sheaves reflect the singular-
ities of F . The Riemann-Hilbert correspondence can then be stated as
follows (see Cor. 4.2.2):

Theorem 0.0.2. Let F be a quasi-smooth and rigid foliation on a
smooth and proper algebraic variety X. Assume that F is non-singular
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outside of a closed subset of codimension at least 2. There is an equiv-
alence of categories

Vect(F) ' Vect(OFh)

between on the l.h.s. the category of crystals along F , and on the r.h.s.
the category of sheaves of OFh-dg-modules which are locally free of finite
rank.

The above theorem is a consequence of two results proved in the
text: a more general statement (valid without the rigidity or codi-
mension assumptions) which relates perfect complexes of crystals with
a nilpotent condition and perfect complexes of OFh-dg-modules (see
Theorem 4.2.1), and the fact that a vector bundle crystal (i.e. an ob-
ject in Vect(F)) is nilpotent once F satisfies the hypotheses of Theorem
0.0.2 (see Theorem 3.2.3). We also prove that the above theorem is also
compatible with cohomologies.
Note that a consequence of Theorem 0.0.2 is Deligne’s relative Riemann-
Hilbert correspondence ( [Del70]): see Section 4.3.1 for details. It is
also possible to recover from Theorem 4.2.1 Kato-Nakayama’s loga-
rithmic Riemann-Hilbert correspondence: see Section 4.3.3 for details.

Related works. In [BSY19], the authors borrow their definition of
derived foliation from [Pan14], and study Lagrangian derived foliations
in relation with the problem of realizing the moduli space of sheaves
on a Calab-Yau fourfold as the derived critical locus of a (shifted)
potential. In [Ayo18], J. Ayoub have systematically studied underived
singular foliation on schemes; his theory lives algebraic geometry rather
than in derived geometry, and his purposes are somehow different, be-
ing related to differential Galois theory. In the next paper [TV] of this
series, we will concentrate on the ∞-topos of leaves of a derived folia-
tion, study the transversal geometry of derived foliations, and establish
an index theorem for them.

Acknowledgements. We thank Tony Pantev for useful discussions
about derived foliations over the years. The first author is partially
supported by ERC-2016-ADG-741501.

Conventions and notations. Everything, like vector spaces, com-
mutative dg-algebras (often shortened as cdga’s), algebraic varieties
etc., is defined over the field C of complex numbers.
By convention dAff is the∞-category of derived affine schemes locally
of finite presentation over C. Derived Artin stacks are, by definition,
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locally of finite presentation.
All the various functors, Sym, ⊗, ∧, f∗, f

∗, etc. will be suitably de-
rived when necessary. We will occasionally need underived functors for
which we will use specific notations Symu, ⊗u, fu∗ , etc., if necessary.
A vector bundle on X will be a locally free OX-Module of finite rank.

1. Derived Algebraic foliations

In this Section, after some reminders on mixed graded structures,
we define derived foliations on arbitrary derived stacks, give several
classes of examples of derived foliations, study derived foliations on
formal completions, and finally establish the local structure of quasi-
smooth rigid derived foliations.

1.1. Reminders on graded mixed stuff. We remind from [CPT+17]
(see also the digest [PV18]) the∞-category of graded mixed complexes
(over C). Its objects are Z-graded objects E = ⊕n∈ZE(n), inside
the category of cochain complexes (E(n) is called the weight n part
of E), together with extra differentials εn : E(n) −→ E(n + 1)[−1].
These extra differentials combine into a morphism of graded complexes
ε : E −→ E((1))[−1] (where E((1)) is the graded complex obtained
from E by shifting the weight-grading by +1), satisfying ε2 = 0. The
datum of ε is called a graded mixed structure on the graded complex
E. Morphisms of graded mixed complexes are defined in an obvious
manner, and among them, the quasi-isomorphisms are the morphisms
inducing quasi-isomorphisms on all the weight-graded pieces individu-
ally. By inverting quasi-isomorphisms, graded mixed complexes consti-
tute an∞-category denoted by ε−dggr. Alternatively, the∞-category
ε−dggr can be defined as the∞-category of quasi-coherent complexes
QCoh(BH), over the classifying stack BH for the group stack BGaoGm

(see [CPT+17, Rmk. 1.1.1] and [PT19, Prop. 1.1]).
The ∞-category ε − dggr comes equipped with a canonical sym-

metric monoidal structure ⊗. It is defined on object by the usual
tensor product of Z-graded complexes (taken over the base field C),
with the mixed structure defined by the usual formula ε ⊗ 1 + 1 ⊗ ε
(see [CPT+17, §1.1]). When viewed as QCoh(BH), this is the usual
symmetric monoidal structure on quasi-coherent complexes on stacks.

Commutative algebras in ε − dggr form themselves an ∞-category
ε − cdgagr, whose objects are called graded mixed cdga’s. Its objects
can be described as Z-graded cdga’s A = ⊕nA(n), endowed with a
graded mixed structure ε which is compatible with the multiplication
in A (i.e. is a graded biderivation). The fundamental example of such
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a graded mixed cdga is given by the de Rham algebra. For a cdga
A we can consider its dg-module Ω1

A of dg-derivations as well as its
symmetric cdga Symu

A(Ω1
A[1]) The usual de Rham differential induces

a graded mixed structure on Symu
A(Ω1

A[1]) making it into a graded
mixed cdga for which the induced morphism ε : A −→ Ω1

A is the usual
universal derivation. Applied to a cofibrant model A′ of A we get a
graded mixed cdga DR(A) := Symu

A′(Ω
1
A′ [1]) which is functorial, in

the sense of ∞-categories, in A. This defines an ∞-functor

DR : cdga −→ ε− cdgagr

which can be checked to be the left adjoint to the forgetful ∞-functor
sending a graded mixed cdga A to its weight 0 part A(0).

We remind the existence of the realization ∞-functor

| − | : ε− dggr −→ dg

given by RHom(C,−). This is a lax monoidal ∞-functor and thus
sends graded mixed cdga’s to cdga’s. It can be explicitly described as
follows. For a graded mixed complex E we from the product

|E| :=
∏
p≥0

E(p)[−2p]

and endow |E| with the total differential d+ ε, where d is the cohomo-
logical differential of E and ε is the graded mixed structure.

The following consequences will be useful in the rest of the paper.

• For A ∈ cdga, the underlying graded cdga of DR(A), obtained
by forgetting the mixed structure, is naturally equivalent to
SymA(LA[1]), where LA is the cotangent complex of A.
• As a consequence of the comment above, when A is a smooth

algebra, the graded mixed cdga DR(A) is canonically equiva-
lent to the usual de Rham algebra SymA(Ω1

A[1]) endowed with
its usual de Rham differential as graded mixed structure.

The notions of graded mixed complexes, graded mixed cdga’s and de
Rham algebras DR as defined above, they all make sense internally
to a (nice enough) base symmetric monoidal C-linear ∞-category (see
[CPT+17, Section 1.3.2], as well as [PV18, Rmk 1.5 and Section 2.1]).
These internal notions and constructions can be understood simply as
follows. Graded mixed cgda’s and modules make sense over any derived
stack F , as quasi-coherent sheaves of OF -linear graded mixed cdga’s.
Equivalently graded mixed modules over a derived F can be defined
as QCoh(F × BH), where, as above, H is the group stack BGa oGm.
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Graded mixed cdga’s are then naturally defined as commutative ring
objects inside the symmetric monoidal ∞-category QCoh(F ×BH).

Any commutative ring A in QCoh(F ) possesses an internal de Rham
complex, which is a graded mixed cdga over F . We denote this object
by DRint(A). Moreover, we can apply the direct image functor along
F ×BH −→ F to get a lax monoidal ∞-functor

QCoh(F ×BH) −→ QCoh(F ).

This lax monoidal ∞-functor is called the realization functor

| − | : QCoh(F ×BH) −→ QCoh(F ).

When A is cdga over F , we have a graded mixed cdga DRint(A) over F ,
and by applying | − | we get a cdga denoted by DR(A) := |DRint(A)|,
and called the de Rham cohomology of A over F . There is also a
relative version, for a morphism A −→ B of cdga’s over F , which is
|DRint(B/A)|, another cdga. The explicit formula giving the realiza-
tion recalled earlier is also valid in this internal setting. Indeed, for an
object E ∈ QCoh(F ×BH), its realization |E| is the object in QCoh(F )
given by

|E| =
∏
p≥0

E(p)[−2p]

endowed with the total differential, sum of the cohomological differen-
tial and the de Rham differential.

This discussion applies in particular to F = BH itself. We have
to note here that QCoh(BH × BH) consists of doubly graded mixed
complexes, i.e. complexes endowed with two extra gradings and two
associated graded mixed structures compatible with each others. By
our convention the realization

| − | : QCoh(BH×BH) −→ QCoh(BH)

consists of realizing the first graded mixed structure. For example, if
one starts with an algebra A in QCoh(BH) (i.e. a a graded mixed
cdga), then |DRint(A)| is another graded mixed cdga. It is obtained
by considering DRint(A) ∈ QCoh(BH × BH) and realizing it with
respect to the internal mixed structure, that is the one induced from
the graded mixed structure on A as opposed to the one given by the
de Rham differential. Using the correct convention here is essential for
the rest of the paper.

If we have a morphism of graded mixed cdga’s A −→ B, the above
construction produces an internal graded mixed cdga DRint(B/A) in-
side graded mixed complexes. Its realization is thus a graded mixed
cdga DR(B/A) called the internal de Rham cohomology of B relative
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to A.

With these notations, we have the following lemma recovering a class
of graded mixed cdga’s A from their DRint(A(0)/A). We will use this
lemma very often in the rest of the text.

Lemma 1.1.1. Let A be a graded mixed cdga and assume that the
canonical morphism

SymA(0)(A(1)) −→ A

is a quasi-isomorphism of graded cdga’s. Then, the canonical morphism
of graded mixed cdga’s

A −→ |DRint(A(0)/A)|
is a quasi-isomorphism.

Proof. Let B = A(0) and E = A(1). The internal cotangent complex
of B relative to SymB(E) is identified with E[1]. The internal de Rham
algebra DR(B/A) is then equivalent to SymB(E[2]). We are interested
in realizing the internal graded mixed structure coming from the one of
A. As E is pure of weight 1, the induced graded mixed structure on E
is trivial. The same is true for Symp(E[2]), and we thus conclude that
the internal graded mixed structure on SymB(E[2]) is trivial. Since
we are realizing realize internally, we have to realize each graded piece
individually. But the realization of a graded mixed complex M which
is pure of weight p is simply M [−2p]. Therefore, the realization of the
internal de Rham algebra is tautologically given by

|DRint(B/A)| ' ⊕p≥0|Symp(E[2])| = ⊕p≥0Sym
p(E).

2

1.2. Derived algebraic foliations as graded mixed cdga’s. In
this section we present a very general notion of derived foliations over
general derived stacks. Though later in this paper, we will only be
dealing with derived foliations over smooth varieties, we have decided
to give a general definition for further record and applications.

Definition 1.2.1. An affine derived foliation is a graded mixed cdga
A satisfying the following extra conditions.

(1) (Connectivity) The underlying cdga A(0) is cohomologically con-
centrated in non-positive degrees and is finitely presented over
C.

(2) (Perfectness) The A(0)-dg-module A(1)[−1] is perfect and con-
nective.
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(3) (Quasi-freeness) The natural morphism of graded cdga’s

SymA(0)(A(1)) −→ A

is a quasi-isomorphism of graded cdga’s.

For a derived foliation A as above, the derived affine scheme X =
SpecA(0) is called the underlying derived scheme of the foliation, and
we will say that the foliation is given over X. The perfect complex
on X determined by A(1)[−1] is called the cotangent complex of the
foliation.

Example 1.2.2. Let X = SpecR be a smooth affine C-scheme, TX
its tangent bundle, and V ⊆ TX a sub-bundle whose local sections
are closed under the Lie bracket canonically defined on local vector
fields (i.e. on local sections of TX/X). It is well known that if V∨
denotes the R-module of local sections of the dual vector bundle V ∨,
then the Lie bracket on local sections of V induces a differential on
A := SymR(V∨[1]). This gives A the structure of a derived foliation
over X.

More general examples of derived foliations will be given later in this
Section.

Affine derived foliations form an∞-category as follows. Consider the
∞-category (ε−cdgagr)op, opposite to the∞-category of graded mixed
cdga’s. The ∞-category of affine derived foliations is defined to be the
full sub-∞-category of (ε − cdgagr)op consisting of the graded mixed
cdga’s satisfying the conditions of definition 1.2.1. This ∞-category
will be denoted by dAffF .

We have a canonical ∞-functor

dAffF −→ dAff

sending an affine derived foliationA to the derived affine scheme Spec (A(0)).

Propositon 1.2.3. The above ∞-functor is fibered in the sense of
[TV15, §2.3]. Moreover, the corresponding ∞-functor

Fol : dAffop −→ Cat∞

is a stack for the étale topology.

Proof. By construction, the ∞-category Fol(SpecA) is equivalent to
the opposite∞-category of graded mixed cdga’s C satisfying the condi-
tions of Definition 1.2.1 and equipped with a cdga quasi-isomorphism
C(0) ' A. The ∞-category has two distinguished objects, the final
and initial objects. The initial object is A itself, considered as a graded
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mixed cdga’s purely in weight 0 with zero graded mixed structure. On
the other hand, the final object is DR(A).

Let now f : X = SpecA −→ Y = SpecB be a morphism of derived
affine schemes corresponding to a morphism of cdga’s B −→ A. The
pull-back ∞-functor

f ∗ : Fol(Y ) −→ Fol(X)

can be understood as follows. Let F ∈ Fol(Y ) be an object correspond-
ing to a graded mixed cdga C satisfying the conditions of Definition
1.2.1 and equipped with a quasi-isomorphism C(0) ' B. Associated
to F is a natural diagram of graded mixed cdgas

DR(B) //

��

C

DR(A).

The pull-back foliation f ∗(F) ∈ Fol(X) is then given by the graded
mixed cdga C ⊗L

DR(B) DR(A). This indeed satisfies the conditions of

Definition 1.2.1 since it is equivalent, as a graded cdga, to SymA(E),
where E is the following push-out in B-dg-modules

LB //

��

C(1)

��
LA // E

where LA is viewed as a B-dg-module via the map B → A. This proves
the first statement in the proposition, and moreover provides an explicit
description of pull-back ∞-functors. This description in turns easily
implies that the∞-functor Fol is a stack for the étale topology, as this
reduces to the fact that quasi-coherent modules is a stack for the étale
topology. 2

The above proposition can be used, by Kan extension along dAffop →
dStop, in order to define derived foliation over any base derived stack.

Definition 1.2.4. Let X ∈ dSt. The ∞-category

Fol(X) := lim
SpecA→F

Fol(SpecA)

is called the ∞-category of derived foliations over X.

We note here that when X is a derived DM-stack, then Fol(X) can
be described as the limit limU Fol(U), where U runs over all derived
affine schemes étale over X. By the explicit description of pull-backs
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given in the proof of Proposition 1.2.3, we see that an object in this limit
can be simply represented by a sheaf of graded mixed cdga’s A over
the small étale site Xét of X, together with an equivalence A(0) ' OX ,
and satisfying the following two conditions.

• The sheaf ofOX-dg-modulesA(1)[−1] is perfect and connective.
• The natural morphism of sheaves of graded cdgas

SymOX
(A(1)) −→ A

is a quasi-isomorphism.

We introduce the following notations.

Definition 1.2.5. Let X be a derived DM-stack and F ∈ Fol(X) be a
derived foliation over X.

• The sheaf of graded mixed cdga’s A over X corresponding to F
is called the de Rham algebra along F . It is denoted by DR(F).
• The perfect complex DR(F)(1)[−1] over X is called the cotan-

gent complex of F and is denoted by LF . We thus have a
quasi-isomorphism of quasi-coherent sheaves of graded cdga’s
over X

DR(F) ' SymOX
(LF [1]).

Before giving some examples of derived foliations, we fix the following
terminology.

Definition 1.2.6. Let X be a derived DM-stack, F ∈ Fol(X) be a
derived foliation over X and LF ∈ QCoh(X) is cotangent complex.

• We say that the foliation F is smooth if LF is quasi-isomorphic
to a vector bundle on X sitting in degree 0.
• We say that the foliation F is quasi-smooth if LF is quasi-

isomorphic to perfect complex of amplitude contained in coho-
mological degrees [−1, 0].
• We say that the foliation F is rigid if the induced morphism of

coherent sheaves

H0(LX) −→ H0(LF)

is surjective.

Remark 1.2.7. Definition 1.2.4 above can be extended to more general
settings. To start with, we may allow X being any derived Artin stack,
and we may furthermore drop the connectivity assumption on LF in
order to define non-connective derived foliations. These are useful for
instance in the setting of shifted symplectic and Poisson structures
(see e.g. [Pan14, BSY19]), but will not be considered in the present
work. Finally, using the graded circle of [MRT19] it is also possible
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to extend the definition of derived foliation over bases of positive or
mixed characteristic: this interesting aspect will be studied elsewhere.

1.3. Examples. We finish this Section by giving some classes of ex-
amples of derived foliations.

1.3.1. Lie algebroids. Let us now assume that X is a smooth DM stack.
Its tangent sheaf TX is a sheaf of Lie-algebras on the small étale site
Xet. Recall from [Nui19] that a Lie algebroid on X consists of a vector
bundle T on X, together two additional structures:

(1) a C-linear Lie bracket [−,−] on T (i.e. on local sections).
(2) an OX-linear morphism a : T −→ TX .

These data are required to satisfy the following compatibility rela-
tion: for any local sections s, t of T , and any function f on X

[s, ft] = f [s, t] + a(s)(f)t.

We can associate to a Lie algebroid on X a natural derived foliation on
X as follows. We consider the graded OX-cdga SymOX

(T ∗[1]), where
T ∗ is the OX-linear dual to T . The bracket on T induces a C-linear
differential d : T ∗ −→ T ∗ ∧OX

T ∗, which endows SymOX
(T ∗[1]) with

the structure of graded mixed cdga. This is an object in Fol(X). This
derived foliation is obviously smooth.

It is easy to show that this construction produces a fully faithful
∞-functor

LieAlgbd/X −→ Fol(X)

where LieAlgbd/X is the category of Lie algebroids over X. The es-
sential image of this ∞-functor can be shown to coincide with the full
∞-subcategory consisting of smooth derived foliations over X (Defini-
tion 1.2.6). To be more precise, for any vector bundle V on X, the
classifying space of graded mixed structures on the sheaf of graded
cgda SymOX

(V [1]) turns out to be discrete and in bijection with Lie
algebroid structures on V ∗. In particular, we get that the ∞-category
of smooth derived foliations over SpecC is equivalent to the usual cat-
egory of finite dimensional complex Lie algebras. Finally, a smooth
derived foliation on X is rigid in the sense of definition 1.2.6 if and
only if the corresponding Lie algebroid T is a sub-bundle (i.e. a local
direct factor) of TX via the anchor map a.

There is also a relation between derived foliations and dg-Lie alge-
broids as considered in [CG18, Nui19]. To a dg-Lie algebroid T over
an affine variety X = SpecA, we can associate its Chevalley-Eilenberg
cochain complex C∗(T ) := SymA(T ∗[1]), considered as a graded mixed
cdga using the Lie bracket as mixed structure. Though this will not be
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relevant in this paper, we think that this construction produces a fully
faithful ∞-functor from the full∞-subcategory consisting of dg-Lie al-
gebroids that are perfect over A and of amplitude in [0,∞), to derived
foliations over X.

1.3.2. Algebraically integrable derived foliations. Suppose that we are
given a morphism of derived DM-stacks f : X −→ Y that is locally of
finite presentation. The relative de Rham algebra of X over Y defines
a sheaf of graded mixed cdga DR(X/Y ) on the small étale site of
X, which is a derived foliation over X. Its underlying sheaf of graded
cdga’s simply is SymOX

(LX/Y [1]), where LX/Y is the relative cotangent
complex of X over Y . This is called the derived foliation induced by
the morphism f . We will use the notation

Ff := DR(X/Y ) ∈ Fol(X)

for this foliation. Note that Ff can also be understood as the pull-back
f ∗(0Y ), where 0Y (written also as 0, when there is no ambiguity) is
the final object in Fol(Y ), corresponding to the trivial sheaf of graded
mixed cdga OX .

Definition 1.3.1. Let X be a derived DM stack. A derived foliation F
on X (locally) equivalent to one of the form Ff = f ∗(0Y ), for a (locally
defined) morphism f : X → Y locally of finite presentation between
derived DM stacks, will be called algebraically (locally) d-integrable.

The reason for this name is that the derived foliation Ff corresponds
intuitively to the foliation on X whose leaves on are the derived fibers
of the map f . See also Remark 1.3.4.
It is obvious to see that Ff is quasi-smooth (resp. smooth) if and only
if f is quasi-smooth (resp. smooth). Also, Ff is automatically rigid.

1.3.3. Pfaffian systems as quasi-smooth and rigid derived foliations.
Let X be a smooth algebraic variety. Assume that we are given dif-
ferential forms wi ∈ Γ(X,Ω1

X), for i = 1, . . . , n, such that the graded
ideal (w1, . . . , wk) ⊂ Γ(X,SymOX

(Ω1
X [1])) is stable by the de Rham

differential. We chose differential forms wij ∈ Γ(X,Ω1
X) such that for

all i we have

d(wi) =
∑
j

wij ∧ wj.

We assume furthermore that the k × k matrix of forms W = (wij)ij
satisfy the following integrability condition

d(W ) +W ∧W = 0.
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Out of these data wi and W as above, we construct a sheaf of graded
mixed cdga’s on X by considering SymOX

(L[1]) where L is the two
terms perfect complex

L :=
(
OkX

w∗ // Ω1
X

)
.

The graded mixed structure on SymOX
(L[1]) is itself determined by a

morphism of complexes of sheaves of C-vector spaces

L −→ ∧2
OX

L

compatible with the de Rham differential on Ω1
X . Such a morphism

is obtained for instance by specifying a morphism OkX −→ OkX ⊗OX

Ω1
X which is a flat connection on the vector bundle OkX . Therefore,

the matrix W defines such a graded mixed structure, and therefore a
derived foliation on X.

The derived foliations defined above depends not only on the wi’s,
but also on the choice of the matrix W . It is clear that such derived
foliations are quasi-smooth and rigid. We call such derived foliations
Pfaffian derived foliations for obvious reasons. Derived foliations which
are algebraically d-integrable are always locally, for the Zariski topol-
ogy, equivalent to Pfaffian derived foliations. The converse is true lo-
cally in the analytic topology.

1.3.4. Pull-backs of smooth and rigid foliations. Let f : X −→ Y be a
morphism of smooth algebraic varieties and F ∈ Fol(Y ). We have seen
that there is a pull-back f ∗(F) ∈ Fol(X). It is easy to see that when
F is smooth, then f ∗(F) is always quasi-smooth. If F is moreover
rigid, then so is f ∗(F). We will see later that, at least if one admits
Y to be a formal scheme, all rigid and quasi-smooth derived foliations
are locally of this form (see Proposition 1.6.1). This follows from an
important property of pull-backs, namely the existence of a homotopy
push-out of cotangent complexes

f ∗(Ω1
Y ) //

��

Ω1
X

��
f ∗(LF) // Lf∗(F).

1.3.5. Derived foliations, truncations and singular algebraic foliations.
Our derived foliations bear an important relation with the singular
foliations classically considered in the algebraic and holomorphic con-
texts. There are several possible definitions of singular foliations in the
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literature. In [Bau75, Def. 1.11] they are defined as full coherent differ-
ential ideals of the sheaf of differential 1-forms. For our purposes, the
property of being full will be irrelevant, and will simply define a singu-
lar foliation (on a smooth variety X) as a coherent subsheaf D ⊂ Ω1

X

satisfying the condition

d(D) ⊂ D ∧ Ω1
X ⊂ Ω2

X ,

where d : Ω1
X −→ Ω2

X is the de Rham differential. This is equivalent
to [Ayo18, Def. 6.1.1].

Let now F ∈ Fol(X) be a derived foliation on a smooth variety X.
We consider the anchor map a : Ω1

X −→ LF and its induced morphism
on H0

Ω1
X −→ H0(LF).

We let D ⊂ Ω1
X be the kernel of the map a, which is a coherent subsheaf

of Ω1
X . As a comes from a morphism DR(X) −→ SymOX

(LF [1]) of
graded mixed cdga’s over X, it follows that the ideal in Ω∗X generated
by D is in fact a differential ideal (d(D) ⊂ D ∧ Ω1

X), i.e. D is an
underived singular foliation on X.

Definition 1.3.2. The kernel D of H0(a) : Ω1
X −→ H0(LF) is a sin-

gular foliation on X called the truncation of F , and denoted by τ0(F).

This produces an ∞-functor τ0 from Fol(X) to the category of sin-
gular foliations on X. However, we will see later that not all singular
foliation arise this way, and the existence of a derived enhancement of
a singular foliation is not automatic being related to local integrabil-
ity. This question will be studied in details for quasi-smooth and rigid
derived foliation (see Corollary 2.3.3).

Conversely, let D ⊂ Ω1
X be a singular foliation on X. We can con-

struct a graded algebra

DR(D) :=
⊕
p

(Ωp
X/ < D >) [p],

which is the (underived) quotient of the algebra of differential forms
Ω∗X by the graded ideal generated by D. As D is a differential ideal,
the de Rham differential induces a graded mixed structure on DR(D)
in such a way that the canonical morphism

DR(X) −→ DR(D)

becomes a morphism of graded mixed cdga’s. Note that however,
DR(D) does not satisfy the condition of definition 1.2.1, and thus does
not define a derived foliation in our sense. To be more precise, the
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underlying graded algebra DR(D) is of the form Symu
OX

(Ω1
X/D[1]),

where Symu is the underived symmetric algebra functor. The con-
struction D 7→ DR(D) is easily seen to be an equivalence of cate-
gories, from singular foliations on X to graded mixed algebras of the
form Symu

OX
(M [1]) such that Ω1

X −→ M is a coherent quotient. This
however does not define a functor from singular foliations to derived
foliations.

Finally, the truncation∞-functor τ0 enjoys a certain universal prop-
erty described as follows. The derived foliation F has a realization
|DR(F)|, and in the same way, the truncation τ0(F) has an under-
ived de Rham complex (Ω∗X/D) where the differential is the de Rham
differential. There is an induced canonical morphism

|DR(F)| −→ (Ω∗X/D).

This morphism is far from being an isomorphism in general, although
it is an isomorphism in low degrees under appropriate conditions (see
Proposition 3.1.5).

For later reference we give the following

Definition 1.3.3. An algebraic (resp. formal, resp. analytic) singular
foliation on a smooth algebraic variety (resp. formallly smooth formal
scheme, resp. smooth analytic space) X is locally integrable if locally in
the Zariski topolgy (resp. locally formally, resp. locally in the analytic
topology) at each point of X there exists an algebraic (resp.formal, resp.
analytic) leaf (i.e. a maximal integral subvariety).

Remark 1.3.4. In the literature, a (locally) integrable singular fo-
liation is also sometimes called (locally) completely integrable. Note
that there is a notion of pullback of singular foliation along an map
f : X → Y , with X and Y smooth. For simplicity we state it in the
algebraic case: if D ⊂ Ω1

Y is an algebraic singular foliation on Y , then
it’s pullback is, by definition, the subsheaf image of the composite map
f ∗(D) → f ∗(Ω1

Y ) → Ω1
X . Since the de Rham differential commutes

with pullbacks, it is clear that this subsheaf defines an algebraic singu-
lar foliation on X. In the formal or analytic cases, one simply replaces
the algebraic Ω1 with its formal or analytic analog. Now, the local in-
tegrability condition of Definition 1.3.3 on a singular algebraic, formal
or analytic foliation on X is equivalent to the existence, locally at each
point of X, of a map f : X → Y , with Y smooth, and an isomorphism
between the given foliation on X and the pullback via f of the final
foliation D = Ω1

Y on Y . This is easily seen, since one may take Y = An
C

because Y is smooth. This observation inspires our definition of (local)
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d-integrability for derived foliations below (see definitions 1.3.1, 1.5.2
and 2.1.2).
Finally notice that this alternative definition of local integrability of
formal or analytic singular foliation in terms of pullbacks coincides
with the one given in [Mal77, §3] if one further assume that f is gener-
ically smooth (this is condition b) at p. 73 of loc.cit). To distinguish
between the two, we will refer to Malgrange’s stronger notion as local
strong integrability.

1.4. Interpretation via the derived loop space. We consider the

formal additive group Ĝa, as well as its classifying stack Ŝ1 := BĜa ∈
dSt. The group Gm acts on the formal group Ĝa and thus on the

formal circle Ŝ1. The stack Ŝ1 is itself a group stack and thus acts on
itself by translation. These two actions combine into an action of the

group stack H := Ŝ1 o Gm. As explained in [PT19, Prop. 1.3] the
symmetric monoidal ∞-category QCoh(BH) is naturally equivalent to
the symmetric monoidal ∞-category of graded mixed complexes.

For a derived DM-stack X ∈ dSt, its formal derived loop stack is
defined by

LfX := Map(Ŝ1, X).

It comes equipped with a canonical action of H. By the equivalence
recalled above, between QCoh(BH) and graded mixed complexes, we
see that a derived foliation over X is the exact same thing as a a
derived stack F over LfX, together with anH-action on F covering the
canonical action on LfX and such that F is relatively affine over X and
of the form SpecOX

(LF [1]) (compatibly with the grading where LF is
of weight one) for LF a connective perfect complex over X. As a result,
Fol(X) can be realized as a full sub-∞-category of (dSt/LfX)H, of
H-equivariant derived stacks over LfX.

The above interpretation of derived foliations makes pull-back of fo-
liations more natural. For a morphism of derived DM-stacks f : X −→
Y , there is an induced H-equivariant morphism LfX −→ LfY . For
a derived foliation F ∈ Fol(Y ), realized as an H-equivariant derived
stack F −→ Y , the pull-back f ∗(F) simply is realized by the pull-back
of derived stacks

f ∗(F) ' F ×LfY LfX,
equipped with its natural projection down to LfX.

1.5. Foliations over formal completions. Let X be a smooth affine
variety and Y ⊂ X be a closed subvariety. For simplicity we assume
that the ideal of Y in X is generated by a regular sequence (f1, . . . , fk).
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We denote by ÔY the ring of functions on the formal completion of X
along Y .

Recall that we have a module Ω̂1
Y of differential forms on the formal

completion of X along Y , defined as the formal completion of Ω1
X along

(the ideal defining) Y . This is a locally free ÔY -module. Moreover, it

comes equipped with a canonical derivation d : ÔY −→ Ω̂1
Y which

extends to give a full structure of graded mixed cdga D̂R(Y ) on the
graded cdga

SymÔY
(Ω̂1

Y [1]).

We can then consider the ∞-category of graded mixed cdga’s A en-
dowed with a morphism

u : D̂R(Y ) −→ A

and satisfying the following conditions.

• The morphism u induces an isomorphism ÔY −→ A(0).

• The ÔY -dg-module A(1)[−1] is perfect and connective.
• The natural morphism of graded cdga’s

SymÔY
(A(1)) −→ A

is a quasi-isomorphism.

Let us denote by F̂ol(Ŷ ) the opposite ∞-category of the above ∞-

category of graded mixed cdga’s under D̂R(Y ). We call its objects

formal derived foliation on the formal scheme Ŷ .

On the other hand, we may identify any formal scheme Ŷ with its as-
sociated (derived) stack, and therefore we may consider its∞-category

of foliations Fol(Ŷ ), according to Definition 1.2.4.

Propositon 1.5.1. There exists a natural equivalence of ∞-categories

F̂ol(Ŷ ) ' Fol(Ŷ ).

Proof. The formal completion of X along Y , denoted by Ŷ , is equiv-
alent, as an object of dSt, to a colimit

Ŷ := colimnYn

where Yn ⊂ X is the closed sub-scheme defined by the equations
(fn1 , . . . , f

n
k ), where (f1, . . . , fk) is the regular sequence generating the

ideal of Y in X. We thus have Fol(Ŷ ) ' limnFol(Yn). Now, the right

hand side is directly related to F̂ol(Ŷ ) by the limit ∞-functor

lim : limnFol(Yn) −→ F̂ol(Ŷ ).
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Note that this is well defined as limnDR(Yn) ' D̂R(Y ), because Ω1
Ŷ
'

limnLYn . The inverse functor is defined by sending a graded mixed cgda

A under D̂R(Y ) to its families of restriction

{A⊗D̂R(Y ) DR(Yn)}n ∈ limnFol(Yn).

The fact that these two ∞-functors are inverse to each others is an
immediate consequence of the fact that the natural ∞-functor

Perf(Ŷ ) −→ limnPerf(Yn)

is an equivalence. 2

The following is the formal version of Definition 1.3.1.

Definition 1.5.2. Let Ŷ (respectively, Ŷ ′)) be the formal completion
of a smooth affine scheme Y (resp. Y ′) along an ideal generated by

a regular sequence. We say that a foliation F on Ŷ is formally (lo-
cally) d-integrable if there exists a (locally defined) morphism of formal

schemes f : Ŷ → Ŷ ′ such that F is (formally locally) equivalent to the

pullback f ∗(0
Ŷ ′) of the final foliation 0

Ŷ ′ on Ŷ ′ via f .
If X is a smooth variety, x ∈ X, and x̂ denotes the formal completion
of X at x, then an algebraic foliation F ∈ Fol(X) is said to be formally

d-integrable at x if its restriction F̂ to x̂ (which is a formal foliation
on x̂) is formally d-integrable according to the previous definition.

Note that, in the above definition, the underlying graded cdga’s of

f ∗(0
Ŷ ′) is SymOX

(L̂
Ŷ /Ŷ ′ [1]), where L̂

Ŷ /Ŷ ′ is the cotangent complex of

f : Ŷ → Ŷ ′.

1.6. Formal structure of rigid quasi-smooth derived foliations.

In the proposition below we let Ân be the formal completion of An at
0.

Propositon 1.6.1. Let X be smooth variety and F ∈ Fol(X) be a
rigid and quasi-smooth derived foliation on X. Then, Zariski locally on
X, there exists a smooth and rigid derived foliation F ′ on the formal

scheme X × Ân, such that F is the pull-back of F ′ by the zero section

X −→ X × Ân.

Proof. We will freely use the material and notations about internal
De Rham complexes and their realizations, recalled in Section 1.1.
First of all, the statement being Zariski local, we may assume that X =
SpecA is a smooth affine variety. We consider F ∈ Fol(X), a rigid and
quasi-smooth derived foliation, which corresponds to a graded mixed
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cdga DR(F) with an identification DR(F)(0) ' A and satisfying the
conditions of definitions 1.2.1 and 1.2.6. There is a natural morphism

Ω1
A −→ LF ,

whose cone, by the rigidity and quasi-smooth hypothesis, must be of
the form N∗[1], for a vector bundle N∗ over X. By localizing further
on X we may suppose N∗ isomorphic to OnX . We consider the push-out
of graded mixed cdga’s

DR(F) −→ DR(F)⊗L
DR(X) A.

On the underlying graded cdga’s, this morphism

SymA(LF [1]) −→ SymA(N∗[2])

is induced by the boundary map LF → N∗[1]. Moreover, as N∗ is a
vector bundle (and X is affine) we see that the graded mixed structure
on the graded mixed cdga SymA(N∗[2]) must be trivial.

We now consider the induced morphism on the relative de Rham
algebra

DRint(SymA(N∗[2])/DR(F)) −→ DRint(A/DR(F)).

We can then consider their internal realization and the induced mor-
phism on the internal de Rham cohomology

|DRint(SymA(N∗[2])/DR(F))| −→ |DRint(A/DR(F))|.

This is a new morphism of graded mixed cdga’s and thanks to lemma
4.1.2, the right hand side is canonically equivalent to DR(F), so we
get a morphism

|DRint(SymA(N∗[2])/DR(F))| −→ DR(F).

The left hand side is a graded mixed cdga, say B, whose degree zero

part is |SymA(N∗[2])| ' ŜymA(N∗) ' O(X × Ân). Moreover, by
construction, it is not hard to see that B is free, as a graded cdga, over
the B(0)-module Ω1

A⊗AB(0). Therefore, Proposition 1.5.1 tells us that

B corresponds to a smooth foliation F ′ on X × Ân.
The morphism of graded mixed cdga’s B −→ DR(F) induces a mor-

phism e∗(F ′) −→ F in Fol(X), where e : X −→ X × Ân is the zero
section. This morphism is furthermore an equivalence by observing
the induced morphism on cotangent complexes. In particular, e∗(F ′)
is rigid, and this automatically implies that F ′ is rigid as a foliation on

X × Ân. 2
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Remark 1.6.2. Without the rigidity assumption, but still for quasi-
smooth derived foliations, Proposition 1.6.1 remains true if one replaces

the formal scheme X × Ân by a formally smooth formal Artin stack.

When restricting to the formal completion at a point x ∈ X, Propo-
sition 1.6.1 has the following important consequence.

Corollary 1.6.3. Let F ∈ Fol(X) be a derived quasi-smooth and rigid
derived foliation over a smooth algebraic variety X. Let x ∈ X and

x̂ = Spf(ÔX,x) be the formal completion of X at x, and F̂ ∈ Fol(x̂)

the restriction of F . Then, there exists a morphism f : x̂ −→ Âm and
an isomorphism

f ∗(0Âm) ' F̂ .
In other words, F is formally d-integrable at each point (Def. 1.5.2).

Proof. Indeed, by Proposition 1.6.1, F is, locally at x, the pull-back

of a smooth and rigid derived foliation F ′ on X×Ân. Thus, F̂ becomes

isomorphic to the pull-back of a smooth and rigid derived foliation F̂ ′
on X̂ × Ân. By the formal version of Frobenius theorem (see for in-

stance [BZ09, Thm. 2]), we know that F̂ ′ is integrable, and this implies

that F̂ is d-integrable. 2

Remark 1.6.4. The above corollary is also true for non-quasi-smooth

derived foliation, but Âm must be replaced by a more general, eventu-
ally not formally smooth, derived formal scheme. It shows in particular
that not all singular foliation is the truncation of a quasi-smooth and
rigid derived foliation, not even at the formal level. Indeed, formal
integrability is not always satisfied for singular foliations (see ??).

2. The analytic theory

The general notion of derived foliation has a complex analytic ana-
logue. We will not need the most general definition, that would require
some advanced tools of derived analytic geometry, and we will restrict
ourselves to derived foliations over complex manifolds, for which the
basic definitions can be given more directly.

2.1. Analytic derived foliations. Let X be a smooth complex ana-
lytic space. It has a sheaf of holomorphic 1-forms Ω1

X , and a de Rham
algebra DR(X) := SymOX

(Ω1
X [1]). This is a sheaf of graded cdga’s

over X, which is equipped with a canonical graded mixed structure
given by the holomorphic de Rham differential.
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Definition 2.1.1. A holomorphic or analytic derived foliation over X
consists of a sheaf A of graded mixed cdga’s over X, together with a
morphism of sheaves graded mixed cdga’s

DR(X) −→ A

satisfying the following conditions:

(1) The induced morphism OX −→ A(0) is a quasi-isomorphism.
(2) The complex of OX-modules A(1)[−1] is perfect and connective.
(3) The natural morphism SymOX

(A(1)) −→ A is a quasi-isomorphism
of sheaves of graded cdga’s.

The analytic derived foliations over a complex manifold X form an
∞-category, denoted by Fol(X). It is a full sub-∞-category of the
∞-category of sheaves of graded mixed DR(X)-algebras over X. For
any morphism f : X −→ Y of complex manifolds, we have a pull-back
∞-functor

f ∗ : Fol(Y ) −→ Fol(X).

It is defined as in the algebraic case. There is a natural morphism
f−1(DR(Y )) −→ DR(X) of sheaves of graded mixed cgda’s on Y . For
F ∈ Fol(Y ), corresponding to a sheaf of graded mixed cdga DR(F),
we define f ∗(F) ∈ Fol(X) as the derived foliation associated to the
sheaf of graded mixed cdga’s given by the base change

DR(f ∗(F)) := DR(X)⊗L
f−1(DR(Y )) f

−1(DR(F)).

As in Definition 1.2.6, we have the notions of smooth, quasi-smooth,
and rigid derived foliations over a complex manifold. As in Definition
1.3.2, we have a notion of truncation of an analytic derived foliation
on a complex manifold; this truncation is an analytic singular foliation
on the same complex space.

The following is the analytic version of Definition 1.3.1.

Definition 2.1.2. An analytic derived foliation F on a complex man-
ifold X is (locally) d-integrable if there exists a (locally defined) ana-
lytic map F : X → Y of complex manifolds and a (local in the analytic
topology) equivalence F ' f ∗(0Y ), where 0Y is the final derived ana-
lytic foliation on Y .

2.2. Analytification. Let X be a smooth algebraic variety and Xh be
the corresponding complex analytic space. We are going to construct
an analytification ∞-functor

(−)h : Fol(X) −→ Fol(Xh).
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We have a morphism of ringed spaces

u : (Xh,OhX) −→ (X,OX).

This morphism induces a canonical isomorphism of vector bundles on
Xh u∗(Ω1

X) ' Ω1
Xh . This extends to a natural isomorphisms u∗(Ω∗X) '

Ω∗
Xh , which is compatible with the de Rham differential in the sense

that the composed morphism

u−1(DR(X)) −→ u∗(DR(X)) ' DR(Xh)

is not only a morphism of graded cdga’s but of graded mixed cdga’s.
For an algebraic derived foliation F ∈ Fol(X), corresponding to a

morphism of sheaf of graded mixed cdga’s DR(X) −→ DR(F), we
consider

DR(Xh) −→ u−1(DR(F))⊗L
DR(X) DR(Xh).

This defines a derived foliation Fh ∈ Fol(Xh). Obviously, the con-
struction F 7→ Fh is functorial and defines an ∞-functor

(−)h : Fol(X) −→ Fol(Xh).

Definition 2.2.1. The analytification∞-functor for derived foliations
is the ∞-functor

(−)h : Fol(X) −→ Fol(Xh)

defined above.

The analytification ∞-functor shares the following straightforward
properties.

• (Functoriality) Let f : X −→ Y be a morphism of smooth alge-
braic varieties and fh : Xh −→ Y h the corresponding morphism
of complex spaces. Then, we have a naturally commutative di-
agram of ∞-functors

Fol(Y )
f∗ //

(−)h

��

Fol(X)

(−)h

��
Fol(Y h)

(fh)∗
// Fol(Xh).

• A derived foliation F ∈ Fol(X) is smooth (resp. quasi-smooth,
resp. rigid) if and only if Fh is smooth (resp. quasi-smooth,
resp. rigid).
• For any smooth variety X, the analytification∞-functor (−)h :
Fol(X) −→ Fol(Xh) is conservative.
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• Exactly as done in 1.3.5 for the algebraic case, there is a trunca-
tion∞-functor τ0 : Fol(Y )→ SingFol(Y ) from analytic derived
foliations to analytic singular foliations over a complex mani-
fold Y . Moreover, it is easy to check that, if X is a smooth
algebraic variety, the following diagram commutes

Fol(X)

τ0

��

(−)h
// Fol(Xh)

τ0
��

SingFol(X)
(−)h

// SingFol(Xh).

When X is smooth and proper GAGA implies furthermore the fol-
lowing statement.

Propositon 2.2.2. For a smooth and proper algebraic variety X the
analytification ∞-functor

(−)h : Fol(X) −→ Fol(Xh)

is an equivalence.

Proof. We let Ω∗X [∗] := SymOX
(Ω1

X [1]) be the sheaf of cdga’s on X.
Its analytification is Ω∗

Xh [∗] = SymO
Xh

(Ω1
Xh [1]). The analytification

functor produces an dg-functor between dg-categories of dg-modules

Ω∗X [∗]−Mod −→ Ω∗Xh [∗]−Mod.

We restrict this ∞-functor to the full sub-dg-categories of perfect dg-
modules, i.e. sheaves of dg-modules which locally are obtained by
finite limits and colimits of Ω∗X [∗] (resp. Ω∗

Xh [∗] itself), and pass to
ind-completion to get

IndPerf(Ω∗X [∗]) −→ IndPerf(Ω∗Xh [∗]).

By GAGA this is an equivalence. We recall here that for any graded
mixed cdga A, the dg-category of dg-modules A −Mod ' IndPerf(A)
has a canonical action of the group stack H = BGa o Gm. The
Gm-action is induced by the grading on A, while the action of BGa

by the mixed structure. The dg-category of fixed points by H is
moreover equivalent to the dg-category of graded mixed A-dg-modules
(see [PT19]). By sheafification, this implies that the group H acts on
both dg-categories IndPerf(Ω∗X [∗]) and IndPerf(Ω∗

Xh [∗]) and the analyti-
fication dg-functor becomes an H-equivariant dg-equivalence

IndPerf(Ω∗X [∗]) ' IndPerf(Ω∗Xh [∗]).
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We apply the fixed points construction (see [PT19] for details) and get
this way a new equivalence of ∞-categories

IndPerf(Ω∗X [∗])hH ' IndPerf(Ω∗Xh [∗])hH.

The analytification functor being compatible with tensor products, the
above∞-functor has a natural symmetric monoidal structure and thus
induces an ∞-equivalence on the level of ∞-categories of commuta-
tive algebras. The proposition follows by the observation that Fol(X)
(resp. Fol(Xh)) is a full sub-∞-category of the∞-category of commu-
tative algebras in IndPerf(Ω∗X [∗])hH (resp. in IndPerf(Ω∗

Xh [∗])hH) and
that these sub-∞-categories match by the above equivalence. 2

2.3. Analytic integrability. We have seen that quasi-smooth and
rigid derived foliations are always formally d-integrable, a property
which distinguishes them from the underived singular foliations. We
now study analytic d-integrability (Def. 2.1.2) of quasi-smooth and
rigid derived foliations, locally in the analytic topology. We think it
is not true that analytic d-integrability always holds for quasi-smooth
and rigid derived foliations, but we will see below (Proposition 2.3.2)
that their truncations are always locally integrable under a rather usual
smoothness outside of codimension ≥ 2 condition.

Let F ∈ Fol(X) be a quasi-smooth and rigid derived foliation on a
smooth algebraic variety X and Fh ∈ Fol(Xh) its analytification. We
consider the truncation τ0(F) (Definition 1.3.2), which is an algebraic
singular foliation on X, and its analytification τ0(Fh), which is an
analytic singular foliation on Xh.

The cotangent complex LFh is perfect complex of amplitude [−1, 0]
on Xh.

Definition 2.3.1. With the above notations and assumptions on F ,
the smooth locus of F is the Zariski open subset in X of points where
LF is quasi-isomorphic to a vector bundle sitting in degree 0. Its closed
complement Sing(F) ⊂ X is called the singular locus of F .

Equivalently, since F is supposed to be quasi-smooth and rigid,
Sing(F) is the support of the coherent sheaf H1(TF), where TF := L∨F
denotes the tangent complex of F . Note that, in particular, the smooth
locus of such an F might be empty.

The following result entails local analytic integrability of the trun-
cation of any quasi-smooth and rigid derived foliation as soon as we
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impose smoothness outside a codimension ≥ 2 subset. More precisely,
we have the following result.

Propositon 2.3.2. Let X be a smooth algebraic variety and F ∈
Fol(X) be a quasi-smooth rigid derived foliation. We assume that the
singular locus Sing(F) ⊂ X is at least of codimension 2. Then, the
truncated analytic singular foliation τ0(Fh) on Xh is locally integrable
in the analytic topology.

Proof. This is in fact an easy consequence of our Corollary 1.6.3,
which ensures that the foliation F in the statement of Proposition
2.3.2 is formally d-integrable at each point. This implies that its trun-
cation τ0(Fh) is a singular foliation on Xh which is formally integrable
at each point. At this point, we would like to apply [Mal77, Thm. 3.1]
that proves that a formally strongly integrable singular foliation is an-
alytically strongly integrable if its singular locus has codimension ≥ 2
(for the notion of formally or analytically strongly integrable singular
foliation, see Remark 1.3.4) to deduce that τ0(Fh) is, a fortiori, ana-
lytically integrable locally around each point of X. But in order to do
this, we need to show that τ0(Fh) is not only formally integrable but
also formally strongly integrable (at each point). Now, by hypothesis,
the smooth locus of F is a non-empty Zariski open in X, hence dense,
since X is irreducible, so our F is a quasi-smooth rigid derived foliation
which is actually smooth on an open Zariski dense subset of X. Now,
for a quasi-smooth (rigid) derived foliation F on X which is smooth on
a dense open Zariski subset of X, formal d-integrability of F at x ∈ X
implies formal strong integrability at x for its truncation τ0(F) (since,
for f : X → Y locally defined at x, the fact that the pullback derived
foliation f ∗(0Y ) is generically smooth entails generic smoothness for
the map f itself1). Thus we are in a position to apply [Mal77, Thm.
3.1], and deduce local analytic (strong) integrability around any x for
the analytification τ0(Fh). 2

An important consequence of Proposition 2.3.2 is the following state-
ment, establishing a precise relation between underived singular folia-
tions and quasi-smooth rigid derived foliations.

Corollary 2.3.3. Let X be a smooth algebraic variety and D an un-
derived singular foliation on X whose singular locus Sing(F) ⊂ X is
of codimension at least 2. Then D is locally, for the analytic topology,

1The reader may easily verify that this implication is false for underived singular
foliations.
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the truncation of a quasi-smooth and rigid derived foliation if and only
if it is formally integrable at each point.

3. Derived categories of algebraic foliations

In this section we study define and study the derived category of
crystals over a derived foliation, both in the algebraic and in the an-
alytic setting. In this paper we will consider only perfect crystals on
smooth varieties. The study of more general derived categories of de-
rived foliations will appear elsewhere.

3.1. Crystals along a derived foliation. We let F ∈ Fol(X) be
a derived foliation on a smooth algebraic variety X and DR(F) the
corresponding graded mixed cdga. We consider DR(F)− ε−dggr the
∞-category of graded mixed DR(F)-dg-modules.

Definition 3.1.1. With the notations above, a perfect crystal over
F is a graded mixed DR(F)-dg-module E satisfying the following two
conditions.

• The dg-module E(0) is perfect over OX ' DR(F)(0).
• The natural morphism

E(0)⊗L
OX

DR(F) −→ E

is a quasi-isomorphism of graded DR(F)-dg-modules.

For a perfect crystal E over F , the perfect complex E(0) on X, will be
referred to as the underlying perfect complex of E. A perfect crystal
E over F will be simply called a vector bundle over F if its underlying
perfect complex is quasi-isomorphic to a vector bundle on X sitting in
degree 0. The ∞-category of perfect crystals over F is the full sub-∞-
category Perf(F) of DR(F) − ε − dggr consisting of perfect crystals.
The full sub-∞-category of Perf(F) consisting of vector bundles over F
will be denoted by Vect(F).

Since we will only be considering perfect crystals we will often omit
the adjective perfect when speaking about objects in Perf(F).

The∞-category Perf(F) is obviously functorial in F in the following
sense. Let f : X −→ Y be a morphism of smooth algebraic varieties.
Let F ′ ∈ Fol(Y ) and F ∈ Fol(X) be derived foliations, and u :
f ∗(F ′) −→ F a morphism in Fol(X). Then, there is a base change
∞-functor

Perf(F ′) −→ Perf(F).
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On affine derived foliation this base change functor is simply induced
by the usual base change DR(F) ⊗L

DR(F ′) (−) on graded mixed dg-
modules.

Before proceeding to de Rham cohomology of crystals, let us give
two specific examples of crystals, relating this notion to more standard
notions of D-modules and more generally of representations of Lie al-
gebroids.

Crystals and D-modules. Let E be a quasi-coherent complex of
D-modules on a smooth algebraic variety X. We can represent E as a
pair consisting of a quasi-coherent E(0) complex on X together with
a flat connection ∇ : E(0) −→ E(0) ⊗OX

Ω1
X . The de Rham complex

of this connection produces a graded mixed structure on DR(E) =
E(0) ⊗OX

DR(X), making it into a graded mixed DR(X)-module.
This construction defines an equivalence between the ∞-category of
quasi-coherent D-modules on X and the ∞-category of graded mixed
DR(X)-dg-modules which are quasi-free (see [PT19, Prop. 1.1]). Re-
stricting to perfect complexes we see that perfect crystals over the final
derived foliation on X form an ∞-category naturally equivalent to the
∞-category of D-modules which are perfect over X.

Crystals over smooth derived foliations. Let now F be a smooth
derived foliation over a smooth algebraic variety X. We have seen al-
ready (§1.3.1) that F corresponds to a Lie algebroid a : T −→ TX . A
representation of this Lie algebroid is, by definition, a pair consisting
of a vector bundle V together with a morphism ∇ : V −→ V ⊗OX

T ∗

satisfying the obvious Leibniz rule, and ∇2 = 0. Such a representa-
tion has a de Rham complex DR(V ) := V ⊗OX

DR(X), on which ∇
defines a graded mixed structure. This construction produces an ∞-
functor from the category of representations of the Lie algebroid T to
the∞-category Perf(F). It is easy to show that this∞-functor is fully
faithful, and that its essential image is Vect(F).

The derived categories of crystals over derived foliations can be used
in order to define de Rham cohomology of derived foliations with coef-
ficients in a crystal. This de Rham cohomology is usually referred to
as longitudinal cohomology in the setting of classical foliations or Lie
algebroids.
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Let F be a derived foliation over a smooth algebraic variety X. The
∞-category Perf(F) can be identified with a dg-category (or, equiva-
lently, has the structure of a C-linear ∞-category), and we will sim-
ply denote by Hom(E,E ′) the complex of C-vectors spaces of Hom’s
from E to E ′ in this dg-category structure. Notice that the projection
DR(F) → OX on the weight 0 part, defines a structure of crystal on
OX (concentrated in weight 0 and degree 0).
For an arbitrary perfect crystal E over F , we consider the complex of
morphisms Hom(OX , E), from OX to E. We denote this complex of
C-vector spaces by

HDR(F ;E) := Hom(OX , E)

and call it de Rham cohomology of F with coefficients in E.
Note that the C-g-category Perf(F) is also endowed with a natural
closed symmetric monoidal structure (equivalently, has a structure of
C-linear closed symmetric monoidal ∞-category).

Remark 3.1.2. Though we will not need this in this paper, we mention
that the symmetric monoidal structure on Perf(F) implies existence
natural multiplicative structure morphisms

HDR(F ;E)⊗C HDR(F ;E ′) −→ HDR(F , E ⊗C E
′).

In particular, HDR(F ;OX) is a commutative dg-algebra, and HDR(F ;E)
is a dg-module over HDR(F ;OX), for any E ∈ Perf(F).

The complex HDR(F , E) can be also described as the hypercoho-
mology of X with coefficients in an explicit complex of sheaves. We
consider E as a sheaf of graded mixed DR(X)-modules. We can apply
the realization ∞-functor | − | : ε− dggr −→ dg, and thus get a com-
plex of sheaves |E| of C-vector spaces on X. We then have a natural
quasi-isomorphism

HDR(F , E) ' H(X, |E|).

Note that |E| is explicitly given by the complex of sheaves
∏

i≥0E(i)[−2i]
endowed with its total differential sum of the cohomological differ-
ential and the mixed structure. As E(i) is naturaly equivalent to
E(0)⊗OX

∧iLF [i], HDR(F , E) may be considered as a version of the de
Rham complex of E along the foliation F .

Proposition 1.6.1 has the following extension, stating that perfect
cyrstals on quasi-smooth and rigid derived foliations are always, locally,
pull-backs of perfect crystals on a smooth and rigid foliation on a formal
scheme.



30 BERTRAND TOËN AND GABRIELE VEZZOSI

Propositon 3.1.3. Let F ∈ Fol(X) be a rigid and quasi-smooth de-
rived foliation on a smooth algebraic variety X, and E ∈ Perf(F) be a
perfect crystal on F . Then, Zariski locally on X, there exists a smooth

and rigid foliation F̂ on X × Ân, and a perfect crystal Ê ∈ Perf(F̂),
such that

e∗(Ê) ' E

where e : X ↪→ X × Ân is the zero section.

Proof. The proof is almost the same, verbatim, as that of Proposition
1.6.1. The only changes consist in considering pairs of a graded mixed
cdga’s A together with a graded mixed A-module M , all along the ar-
gument. We leave these details to the reader. 2

Let D ⊂ Ω1
X be a (underived) singular foliation on X. A coherent

sheaf with flat connection along D is defined to be a coherent sheaf E
on X together with a C-linear map

∇ : E −→ E ⊗OX
(Ω1

X/D)

satisfying the usual Leibniz rule, and being flat in the usual sense. In
terms of underived graded mixed algebras, coherent sheaves with flat
connection along D are exactly graded mixed DR(D)-modules E such
that E(0) is coherent and E is free on E(0). If we denote by Coh(D)
the category of the coherent sheaves with flat connection along D, then,
there is a truncation ∞-functor

τ0 : Vect(F) −→ Coh(τ0(F))

which sends a crystal E to E(0) endowed with the induced map

E(0) −→ E(1) −→ H0(E(1)) ' E(0)⊗OX
(Ω1

X/D).

Exactly as crystals on a derived foliation have de Rham cohomology,
coherent sheaves with flat connection along a singular foliation D have
naive de Rham complexes. For such an object (E,∇) ∈ Coh(D), we
form its de Rham complex modulo D

E
∇ // E ⊗ (Ω1

X/D) // . . . // E ⊗ (Ωi
X/ < D >) //

The hypercohomology of this complex on X will be denoted by

HDR,naive(D,E).

If one starts with a derived foliation F on X, and E ∈ Vect(E), then
the truncation functor induces a canonical projection

HDR(F , E) −→ HDR,naive(τ0(F), τ0(E)),
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which is functorial in an obvious manner. Without further assumptions
on F , this morphism is not injective nor surjective in cohomology.
However, we have the following result, showing that the closer F is to
be smooth, the closer this morphism is to an equivalence.

Remark 3.1.4. IfD is an analytic singular foliation on a complex man-
ifold Y , the definitions of Coh(D), HDR,naive(D,E), for E ∈ Coh(D),
and of the map HDR(G, E) −→ HDR,naive(τ0(G), τ0(E)), for G an ana-
lytic derived foliation on Y and E ∈ Perf(G), all make sense and are
completely analogous to the algebraic case treated above. And, obvi-
ously, the usual analytification functor for sheaves, induces a functor
Coh(F )→ Coh(F h), for an algebraic singular foliation F on a smooth
algebraic variety X, where F an is the analytification of F , which is an
analytic singular foliation on Xh.

Propositon 3.1.5. Let F be a quasi-smooth, rigid and derived foliation
over a smooth algebraic variety X and E ∈ Vect(F). Assume that LF
is quasi-isomorphic to a vector bundle on a Zariski open in X whose
complement is of codimension at least d ≥ 1. Then, the morphism

Hi
DR(F , E) −→ Hi

DR,naive(τ0(F), τ0(E)))

is an isomorphism for i < d− 1 and is surjective for i = d− 1.

Proof. We start by the following lemma.

Lemma 3.1.6. Let L := V
s // W be a complex of vector bundles on

X with W sitting in degree 0, and assume that s is a monomorphism
which is a sub-bundle on a Zariski open (X−S) with S of codimension
≥ d. Then, for all p ≥ 0, the perfect complex ∧p(L)[p] is cohomologi-
cally concentrated in degrees [inf(d− 2p,−p), p].

Proof of the lemma. The complex computing E := ∧p(L) is the perfect
complex whose term in degree −i is given by Symp−i(V )⊗ ∧i(W ). It
is of amplitude contained in [−p, 0]. By assumption its higher coho-
mology sheaves H i for i < 0 are all coherent sheaves with supports of
dimension less than (dimX − d). Its dual E∗ is a perfect complex of
amplitude [0, p] with all its higher cohomology sheaves being coherent
with supports of dimension less than (dimX − d). Therefore, we get
the following vanishing for ext-sheaves

Exti(H i(E∗),OX) = 0 ∀ i < d.

This implies that the cohomology sheaves of the perfect complex E '
(E∗)∗ are concentrated in [inf(d− p, 0), 0] as required. 2
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We now consider the morphism of complexes of sheaves on X

|E| −→ Hi
DR,naive(τ0(F), τ0(E))).

The fiber of this map is the realization of the graded mixed complex
K whose weight p piece is

K(p) = τ≤−1(∧p(LF)⊗ E)[p],

the fiber of the natural morphism

∧p(LF)⊗ E[p] −→ Ωp
X/ < D > ⊗E.

By the previous lemma, eachK(p) sits in cohomological degrees [inf(d−
2p,−p),∞), and thusK(p)[−2p] sits in cohomological degrees [inf(d, p),∞).
Note also that K(p) ' 0 if p ≤ d. Therefore, its realization, given by
the complex

∏
p>dK(p)[−p] with the appropriate differential, lies in

degrees [d,∞). This concludes the proof of the proposition. 2

3.2. Analytification and nilpotent crystals. The analytification
∞-functor for derived foliation (see 2.2) has the following variant for
crystals. Let F be a derived foliation on smooth algebraic variety
X, and Fh the corresponding analytic derived foliation on Xh. We
define Perf(Fh) as the∞-category of sheaves of graded mixed DR(Fh)-
modules E on Xh satisfying the following two conditions.

• The dg-module E(0) is perfect over OXh ' DR(Fh)(0).
• The natural morphism

E(0)⊗O
Xh

DR(Fh) −→ E

is a quasi-isomorphism of graded DR(Fh)-dg-modules.

It is easy to check that the usual analytification∞-functor for sheaves
induces an ∞-functor

(−)h : Perf(F) −→ Perf(Fh).
Before introducing nilpotent crystals, we note that the following

GAGA result for perfect crystals.

Propositon 3.2.1. Let X be a smooth and proper algebraic variety,
and F be a derived foliation on X. Then, the analytification∞-functor

Perf(F) −→ Perf(Fh)
is an equivalence of ∞-categories.

Proof. Similar to the proof of Proposition 2.2.2 and left to the reader.
2

We now introduce the nilpotent crystals.
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Definition 3.2.2. Let X be a smooth algebraic variety, F a derived
foliation on X, and E ∈ Perf(F) be a perfect crystal over F . We
say that E is nilpotent if, locally on Xh, the sheaf of of graded mixed
DR(Fh)-dg-modules corresponding to Eh, belongs to the thick triangu-
lated subcategory generated by the trivial crystal DR(Fh) (considered
as a graded mixed dg-module over itself).

The adjective nilpotent in Definition 3.2.2 is justified by the following
observation. Let X = SpecC and F be given by a finite dimensional
Lie algebra g. A crystal on F is nothing else than a complex of linear
representations E of g with finite dimensional cohomologies. Such an
object is a nilpotent crystal if and only if furthermore the induced repre-
sentation of g on H i(E) is nilpotent for all i. This shows, in particular,
that nilpotency for crystals is a non-trivial condition. However, we will
now show that it always holds for an important class of examples.

Theorem 3.2.3. Let F ∈ Fol(X) be a quasi-smooth and rigid de-
rived foliation on a smooth algebraic variety X. If Sing(F) ⊂ X is of
dimensional at least 2, then any E ∈ Vect(F) is nilpotent.

Proof. This theorem will be in fact a consequence of Proposition 2.3.2.
Let E ∈ Vect(F), and S(E) the free graded mixed DR(F)-algebra
generated by E, i.e. S(E) = Sym(E), where Sym is computed inside
the symmetric monoidal ∞-category Perf(F). The graded mixed cdga
S(E) defines a derived foliation FE over V , where π : V −→ X is the
total space of the vector bundle E(0)∗ on X, dual of E(0). As a graded
algebra, we have

S(E) ' SymOX
(E(0))⊗OX

SymOX
(LF [1]),

so that, in particular, the cotangent complex of FE is π∗(LF), hence
FE is a quasi-smooth derived foliation on V .
Now, the natural morphism Ω1

V −→ π∗(LF) is given by the deriva-
tion SymOX

(E(0)) −→ SymOX
(E(0)) ⊗OX

LF , itself induced by the
derivation Ω1

X → LF and by multiplicativity from the crystal structure

E(0) −→ E(0)⊗OX
LF

of E. In particular, the induced morphism of coherent sheaves Ω1
V −→

π∗(LF) ' LFE
is surjective on H0 because the composite

π∗(Ω1
X) −→ Ω1

V −→ π∗(LF)

is the pull-back by π of Ω1
X → LF (which is surjective on H0 by the

rigidity assumption on F). I.e. the derived foliation FE on V is also
rigid.
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The derived foliation FE on V thus satisfies both the conditions
of Proposition 2.3.2, so that its truncation τ0(FhE) can be integrated
locally on V h. Let f1, . . . , fk be holomorphic functions, defined locally
around a point x ∈ Xh ⊂ V h, that integrate τ0(FhE). We fix a local
trivialization of πh : V h → Xh around x, as Xh × Vx, where Vx is
the fiber of V at x, so that local parameters at x on V h are given by
(z1, . . . , zn, t1, . . . , tr), where zi are local parameters on Xh and tj ∈ Vx
form a vector space basis. Let us consider the Taylor series expansions
of the functions fi as

fi =
∑

ν=(ν1,...,νr)

ai,νt
ν ,

where ai,ν are functions around x on Xh.

By construction, the homogenous part of degree p of each function
fi are sections of the bundle Symp(V ∗)h. Moreover, the fact that the fi
integrate the foliation τ0(FE) implies that these sections are in fact flat
sections, i.e. they are local sections of the sheaf H0

DR,naive(Sym
p(E)h).

We consider new functions at x ∈ V h by taking the weight one pieces

gi :=
∑
j

ai,(j)tj,

wherer (j) := (0, . . . , 1, . . . , 0) and 1 ≤ j ≤ r. By proposition 3.1.5,
each function gi can be, and will be, considered as a germ of holomor-
phic section at x of the vector bundle E(0), the dual of V . These germs
are flat, and thus they collectively define an analytic germ morphisms
of crystals at x

φ : OkXh −→ Eh.

The above morphism φ is clearly surjective ouside of the closed subset
Sing(F) ⊂ X so, after choosing a subset of functions, we get that a
morphism of crystals

φ′ : Ok′Xh −→ Eh

which is an isomorphism outside of Sing(F) for some k′ ≤ k. As
Sing(F) is of codimension ≥ 2, by Hartogs theorem, we deduce that
φ′ is in fact an isomorphism at x.

This finishes the proof that E is nilpotent as required. 2

4. The Riemann-Hilbert correspondence

4.1. The sheaf of flat functions. Let F ∈ Fol(X) be a derived
foliation over a smooth algebraic variety X, and Fh ∈ Fol(Xh) its
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analytification. The realization |DR(Fh)| of DR(Fh) (see Section 1.1)
defines a sheaf of commutative dg-algebras on Xh.

Definition 4.1.1. With the notations above, the sheaf of cdga’s |DR(Fh)|
on Xh is called the sheaf of locally constant functions along F . It is
denoted by OFh.

4.1.1. The smooth case. In the case of smooth derived foliations the
sheaf OFh is easy to understand. As a start, let us assume that F
is furthermore rigid, so that it defines an actual classical holomorphic
regular foliation on Xh. The sheaf of cdga’s OFh is then concentred in
degree zero and is isomorphic to the subsheaf of OXh of holomorphic
functions which are locally constant along the leaves. This explains
the name we gave to OFh in general. Locally on Xh, the foliation is
induced by a smooth holomorphic map f : Xh −→ Cn and the sheaf
OFh is simply given by f−1(OhCn).

When F is smooth but not necessarily rigid, it corresponds to a Lie
algebroid T −→ TX on X (see 1.3.1). Its analytification is thus a holo-
morphic Lie algebroid T h −→ ThX on Xh. This Lie algebroid possesses
a Chevalley-Eilenberg cohomology complex C∗(T h), which is a sheaf of
C-linear cdga’s on Xh. It is explicitely given by SymO

Xh
((T ∗)h[−1])

endowed with the standard Chevalley-Eilenberg differential. Then, the
sheaf of cdga’s OFh is quasi-isomprhic to C∗(T h). Therefore, for an
arbitrary non-rigid smooth derived foliation F , OFh is cohomologically
bounded, but not necessarily concentrated in degree 0 anymore.

4.1.2. Local structure. The local structure of the sheaf OFh can be
understood using Proposition 1.6.1 as follows. Let x ∈ X and let
A = OhX,x be the ring of germs of holomorphic functions on X at x.
By Proposition 1.6.1 we know that there exist a smooth and rigid foli-
ation F ′ on B = A[[t1, . . . , tn]], i.e. k linearly independent commuting
derivations ν1, . . . , νk on A[[t1, . . . , tn]] which are holomorphic along X
and formal in the variables ti’s. More explicitly, the derivations νi are
given by expressions of the form∑

i

ai.
∂

∂xi
+
∑
j

bj.
∂

∂tj

where ai and bj are elements of B and the xi’s are local coordinates of
X at x. The derivations νi define a de Rham complex

B // ⊕iB. ∂∂xi ⊕j B.
∂
∂tj

// . . .
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This complex is a model for the stalk of OFh at the point x.

We can say more when the derived foliation F is moreover locally
d-integrable (Definition 2.1.2). Assume that we are given f : X −→ Y
a holomorphic map between complex manifolds. As we are interested
in a local description we can assume that X and Y are Stein mani-
folds, and will allow ourselves to restrict to open subsets in necessary.
We assume that F := f ∗(0Y ) is the induced analytic derived folia-
tion on X. By construction, the sheaf of cdga OF is the sheaf on
X, for the analytic topology, of relative derived de Rham cohomol-
ogy: it associates to an open U ⊂ X the cdga OF(U) := |DR(F)| =
|DR(U/Y )|. This sheaf can explicitly be computed as follows. We

let X
j // Z = X × Y p // Y be a factorization of f as a closed im-

mersion followed by a smooth morphism (where j is the graph of f).

The sheaf of rings ÔX of formal functions on Z along X, has a natural
structure of a DZ-module on Z. Therefore, we can consider the relative

de Rham complex of ÔX over Y , and obtain a sheaf |DR(ÔX/Y )| of
cdga’s on Z. This sheaf is set-theoretically supported on X, and thus
can be considered as a sheaf of cdga’s over X.

Lemma 4.1.2. There exists an equivalence of sheaves of cdga’s on X

|DR(ÔX/Y )| ' OF .

Proof. The cotangent complex of F sits in the following exact triangle
of perfect complexes on X

N∗ // Ω1
X

// LF ,

where N∗ = f ∗(Ω1
Y ). We thus have a push-out of graded mixed cdga’s

over X

DR(F) // SymOX
(N∗[2]) =: B

DR(X) //

OO

OX

OO

AsX is Stein, we see that the graded mixed structure on SymOX
(N∗[2])

is automatically trivial. We consider the internal de Rham algebra
DRint(B/DR(F)). This is a cdga endowed with two extra gradings,
and two commuting graded mixed structures. As such, it has a total
realization defined by

||DRint(B/DR(F))|| := RHom(OX ,DRint(B/DR(F)))
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where OX is considered as a trivial double graded mixed complex of
sheaves. This total realization can be obtained by successive realiza-
tions of the two graded mixed structures, and thus in two different
manners depending on the orders in which these realizations are taken.
If we realize the first graded mixed structure, the one defined by the

graded mixed structure on DR(F), we get |DR(ÔX/Y )|. Realizing
the second one, gives back DR(F). We thus obtain this way the de-
sired equivalence after taking the second realization. 2

A consequence of the above lemma is the following explicit descrip-
tion of the stalks of OF at a given point x ∈ X. Let (x1, . . . , xk) and
(y1, . . . , yn) be local coordinates of X at x and Y at y = f(x). The ring
of germs of functions on X × Y at (x, y) can then be identified with
C{x∗, y∗}, the ring of germs of holomorphic functions at 0 ∈ Ck+n, and
the graph of f defines an ideal I ⊂ Ck+n. We thus have the relative de
Rham complex of C{x∗, y∗} over C{y∗}, and its completion along I

̂C{x∗, y∗} // ̂C{x∗, y∗}
k

// ∧2( ̂C{x∗, y∗}
k

) // . . . ∧k( ̂C{x∗, y∗}
k

).

The differential in this complex is induced by the derivative relative to
Y , sending a function f to

∑
j≤k

∂f
∂xj
.dxj. The above complex is natu-

raly quasi-isomorphic to the stalk of OF at x.

4.1.3. Flat functions and singularities. In general, the complex of sheaves
of flat functions OF is not cohomologically concentrated in degree 0, as
we will show in some specific examples below. Its non-zero cohomology
sheaves contain subtle informations about the singularities of F , that
can be sometimes expressed in terms of vanishing cohomology.
Let us have a look at the specific case of dimension one quasi-smooth
derived foliations, and the local structure of the sheaf OFh . Assume
that locally, in the analytic topology, such a derived foliation is induced
by a holomorphic map

f : X −→ C.
The derived foliation on X is then f ∗(0), the pull-back of the trivial
foliation on C. If the map f is constant, say 0, then it is easy to see that
OFh) is the constant sheaf on X with stalks C[[x]] the formal functions
on C at 0. Indeed, in this case the cotangent complex of f splits as
Ω1
X⊕OX [1], and the graded mixed cdga DR(X/C) is DR(X)[u] where

u is a free variable in degree 2. The realization of this graded mixed
cdga is |DR(X)|[[x]] the formal power series in the absolute de Rham
complex of X. As a sheaf on X this is quasi-isomorphic to C[[x]]. This
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situation generalizes easily to the case of an arbitrary holomorphic map
f : X −→ Cn having constant rank (left to the reader).

Let us now assume that f : X −→ C is not constant. The graded
mixed cdga corresponding to F = f ∗(0) is the relative de Rham algebra
DR(X/C). The cotangent complex of f is now represented by the
complex

Lf = OX
df // Ω1

X ,

given by the differential of f . As graded cdga, DR(X/C) is then
DR(X)[u], with u in degree 2, and where the cohomological differential
sends u to df . The graded mixed structure on DR(X)[u], at least lo-
cally on X, is simply given by the derivation OX −→ Ω1

X −→ Lf where
the second map is the canonical map. According to this, the realiza-
tion of DR(X/C) is a version of the formal twisted de Rham complex
of [Sab12]. To be more precise, we consider the sheaf of graded algebras
on X

ŜymOX
(OX ⊕ Ω1

X [−1]) '
∏
p≥0

Ω∗≤pX ,

where Ω∗X stands for SymOX
(Ω1

X [−1]). We consider the differential
t.dDR + ∧df , where t.dDR means the de Rham differential going from
the p-component to the (p+ 1)-component. This complex is naturally
quasi-isomorphic to the realization of DR(F) = DR(X/C) and thus
is a model for the sheaf OFh .

Assume that f has an isolated singularity at x ∈ X, and let us
restrict X so that x is the only critical point of f . Then, lemma 3.1.6
implies that for any p the complexes of sheaves

OX
df // Ω1

X

df // . . .
df // Ωp

X

are cohomologically concentrated in degree p and thus quasi-isomorphic
to the a p-shift of the sheaf Hp(f) := Ωp

X/df ∧ Ωp−1
X . The fiber of the

truncation map

|DR(X/C)| −→ (Ω∗X/df, dDR),

where (Ω∗X/df, dDR) is the naive relative de Rham complex, is thus the
realization of the graded mixed complex whose component of weight p
are zero if p ≤ DimX and HDimX [2p − DimX] if p > n. Therefore,
this realization is quasi-isomorphic to

∏
p>DimX HdimX(f)[−dimX]. As

obviously HDimX(Ω∗X/df, dDR)) ' 0, we deduce that we have

Hp(OFh) ' Hp(Ω∗X/df, dDR)
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for p < DimX − 1, and we have a long exact sequence

0 // HDimX−1(OFh) // HDimX−1(Ω∗X/df, dDR) //

//
∏

p>DimX−1HdimX(f) // Hp(OFh) // 0.

In particular, we see that the top cohomology sheaf of OFh is supported
at x and contains and infinite number of copies of J(f), the Jacobian
ring of f at x.

In the general situation, it is surely possible to relate the cohomol-
ogy sheaves of OFh to some twisted de Rham complex as described
in [Sab12], and thus to vanishing cohomology. Note also that the com-
plex OFh appears in a disguised form, under the name Koszul-de Rham
algebra, in [Sai17], where it is explicitely related to the naive relative
de Rham complex and the singularities of the map f .

4.2. The Riemann-Hilbert correspondence. Let X be a smooth
algebraic variety and F ∈ Fol(X) be a derived quasi-smooth foliation
on X. We first construct the Riemann-Hilbert ∞-functor for F

RH : Perf(F) −→ OFh − dg.

It is defined as the composite

Perf(F)
(−)h

// Perf(Fh)
RHom(O

Xh ,−)
// OFh − dg

where RHom(OXh ,−) sends a crystalE over Fh to the complex RHom(OXh , E)
of sheaves of C-vector spaces, endowed with its natural module struc-
ture over

RHom(OXh ,OXh) ' |DR(Fh)| = OFh .

We let Perfnil(F) be the full sub-∞-category of Perf(F) consisting of
nilpotent crystals in the sense of Definition 3.2.2. By definition of
nilpotency for crystals, the ∞-functor RH defined above restricts to

RH : Perfnil(F) −→ Perf(OFh),

where Perf(OFh) is the∞-category of sheaves of perfectOFh-dg-modules
on Xh.

Theorem 4.2.1. Let F ∈ Fol(X) be a quasi-smooth derived foliation
on a smooth algebraic variety X. If X is proper, then the ∞-functor

RH : Perfnil(F) −→ Perf(OFh)

is an equivalence.
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Proof. By GAGA (see Proposition 3.2.1) we know that the analyti-
fication ∞-functor induces an equivalence Perfnil(F) ' Perfnil(Fh).
Now, both ∞-categories Perfnil(Fh) and Perf(OFh) are global sections
of natural stacks of triangulated ∞-categories on Xh. Let us de-
note these stacks by Perfnil(Fh) and Perf(OFh). Moreover, the RH
∞-functor is itself obtained by taking global sections of a morphism
of stacks RH : Perfnil(Fh) −→ Perf(OFh). By definition of nilpo-
tency, OXh locally generates (in the sense of triangulated∞-categories)
Perfnil(Fh), while OFh locally generates Perf(OFh), and by definition
RH(OXh) ' OFh . We then conclude that RH is locally fully faithful
and locally essentially surjective. It is therefore a local equivalence of
stacks, and thus a global equivalence, i.e. RH is an equivalence. 2

Combining Theorem 4.2.1 with Theorem 3.2.3, we get our main
result. For F ∈ Fol(X) be a quasi-smooth and rigid derived fo-
liation on a smooth and proper algebraic variety X, we denote by
Perfv(F) ⊂ Perf(F) the full triangulated sub-∞-category generated by
objects in Vect(F).

Corollary 4.2.2. Let F ∈ Fol(X) be a quasi-smooth and rigid derived
foliation on a smooth and proper algebraic variety X. If the singular
locus Sing(F) has codimension ≥ 2, then the Riemann-Hilbert corre-
spondence

RH : Perfv(F) −→ Perfv(OFh)

is an equivalence of ∞-categories.

4.3. Examples.

4.3.1. Smooth and rigid foliations. Let X be a smooth and proper al-
gebraic variety and F be smooth and rigid derived foliations on X.
We represent F by a differential ideal D ⊂ Ω1

X which is furthermore a
subbundle. The category Vect(F), of vector bundle crystals along F is
equivalent to the category of vector bundles V on X endowed with a
partial flat connection

∇ : V −→ V ⊗ Ω1
X/D

satisfying the standard properties. As already observed (see 4.1.1),
the sheaf OFh is then a genuine sheaf of commutative algebras: it is
the subsheaf of OXh , of holomorphic functions on X, which are locally
constant along the leaves, i.e. local functions f on X such that df ∈
D ⊂ Ω1

X . Locally on Xh, the foliation is given by a smooth holomorphic
map X −→ Cp, and the sheaf OFh can then be described as f−1(OCp),
the sheafy inverse image of the sheaf of holomorphic functions on Cp.
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The Riemann-Hilbert correspondence of Theorem 4.2.1 and Corol-
lary 4.2.2 implies the existence of an equivalence of categories

Vect(F) ' Vect(OFh)

where Vect(OFh) is the category of sheaves of OFh-modules on Xh

which are locally free of finite rank. When F is furthermore induced
by a smooth and proper morphism f : X −→ Y , i.e. f ∗(0Y ) ' F , this
equivalence is essentially the relative Riemann-Hilbert correspondence
of [Del70]. The extension from vector bundles to perfect complexes
essentially states that this equivalence is also compatible with coho-
mology, and also induces a quasi-isomorphism

HDR(F ;V ) ' HB(Xh, RH(V )),

between the algebraic de Rham cohomology of V over X to the (Betti)
cohomology ofXh with coefficients in the sheaf ofOFh-modulesRH(V ).

4.3.2. Lie algebroids. Let X be a smooth and proper algebraic variety
and F be smooth derived foliation on X. We have seen that such a
derived foliation corresponds to a classical Lie algebroid with anchor
map a : T −→ TX (see §1.3.1). The category Vect(F) can then be
described as representations of T in vector bundles, i.e. vector bundles
V together with a connection along F

∇ : V −→ V ⊗ T ∗

satisfying the Leibniz and flatness ∇2 = 0. In this case, the sheaf OFh

is the sheaf of cdga’s on Xh

OXh
// (T ∗)h // ∧2(T ∗)h // . . . // ∧d(T ∗)h

where d is the rank of V . This is a sheaf of cdga’s not concentrated in
degree 0 in general. If the anchor map a turns out to be a subbundle
on a Zariski open U ⊂ X, then the higher cohomology sheaves have
supports on X − U .

We denote by K the kernel of the anchor map a : T −→ TX , consid-
ered as a sheaf on the big étale site of X. As such it is representable
by a Lie algebra scheme K −→ X, whose fiber Kx at a point x ∈ X is
the kernel of the map ax : Tx −→ TX,x, which is a C-linear Lie algebra.
For an object V ∈ Vect(F), and a point x ∈ X, the Lie algebra Kx

acts naturally on the fiber Vx. If V is nilpotent in the sense of Defini-
tion 3.2.2, then for all points x ∈ X the Kx-module Vx is a nilpotent
representation of the Lie algebra Kx.

The Riemann-Hilbert correspondence of Theorem 4.2.1 induces an
equivalence of categories

Vectnil(F) ' Vect(OFh).
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The extension to perfect complexes again essentially states that this
equivalence is also compatible with the natural cohomologies on both
sides, i.e. algebraic de Rham cohomology and Betti cohomology.

4.3.3. Log vector fields. Let X be a smooth and proper algebraic va-
riety and D ⊂ X be a divisor with simple normal crossings. We let
TX(log(D)) ⊂ TX be the subsheaf of vector fields that stabilize D, i.e.
derivations preserving the ideal defining D. This defines a Lie algebroid
on X, and thus a smooth derived foliation F , to which we can apply our
Riemann-Hilbert correspondence (Theorem 4.2.1 and Corollary 4.2.2).
Let us unravel the two sides of the Riemann-Hilbert correspondence
in this case. Note first that Vect(F) consists of pairs consisting of a
vector bunlde on X together with a logarithmic flat connections along
D

∇ : V −→ V ⊗ Ω1
X(log(D)).

The structure sheaf OFh is then the sheaf of cdga’s on Xh given by the
logarithmic de Rham complex

OXh
// Ω1

Xh(log(D)) // Ω2
Xh(log(D)) // . . . // Ωd

Xh(log(D)).

By Grothendieck’s log-de Rham theorem, this is a resolution of the
sheaf of cdga’s j∗(C), where j : (X −D) −→ X and C is the constant
sheaf (with stalks C) on (X −D). Note that j∗(C) is not concentrated
in degree 0, as its fiber at a point x ∈ D is the cohomology algebra of an
m-dimensional torus H∗((S1)m,C), if the local equation of D at m is of
the form x1. . . . .xm = 0 (for (x1, · · · , xd) a system of local parameters
at x in X, and m ≤ d).

The Lie algebroid TX(log(D)) has isotropy along D. For a point
x ∈ D, in a neigborhood of which D has equation x1. . . . .xm = 0, the
kernel of the anchor map a : TX(log(D)) → TX at x is an abelian Lie
algebra of dimension m. Generators of this Lie algebra are given by
the local vector fields xi.

∂
∂xi

for 1 ≤ i ≤ m, which are local sections of

TX(log(D)) that, once evaluated at x, provide a basis for the Lie alge-
braKer(ax). As we have already remarked, if V ∈ Vect(F) is nilpotent,
then the actions of the Lie algebras Ker(ax) on Vx must be nilpotent.
In our case, these actions are given by the residues of the connection
∇ along the components of D, and thus when V is nilpotent these
residues must be nilpotent too. The converse is true: V ∈ Vect(F)
is nilpotent if and only if it has nilpotent residues. This follows from
the local analytic structure of flat connections with logarithmic poles
along D, and the fact that they correspond to local systems on X −D
with unipotent local monodromies around D (see e.g. [Del70]). The
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Riemann-Hilbert correspondence of Theorem 4.2.1 then becomes the
following equivalence of categories

RH : Vectnil(F) ' Vect(j∗(C)),

where Vectnil(F) can be identified with vector bundles on X endowed
with flat connections with logarithmic poles along D. Its extension to
perfect complexes

RH : Perfnil(F) ' Perf(j∗(C))

implies that the previous equivalence RH : Vectnil(F) ' Vect(j∗(C)) is
also compatible with cohomology theories on both sides. Note here that
j∗(C) can also be described as π∗(CXh), where π : X log −→ Xh is the
logarithmic homotopy type of the pair (X,D) in the sense of [KN99],
and that C generates, in the sense of triangulated categories, the cate-
grory of unipotent local systems. Therefore, perfect OFh-dg-modules
can also be understood as perfect complexes of C-modules on X log

which are relatively unipotent over Xh, i.e. those which become unipo-
tent along the fibers of π. These statements have a straightforward
generalization to the case where (X,D) is replaced by a more general
log-structure on X. The equivalences above recovers the logarithmic
Riemann-Hilbert correspondence of [KN99, Thm. 0.5].

4.3.4. The RH correspondence along a non-smooth morphism. Let f :
X −→ Y be a morphism between smooth and proper algebraic vari-
eties, and F = f ∗(OY ) ∈ Fol(X) be the derived foliation induced by
f (recall that f ∗ denotes here the pull-back functor on foliations, and
OY = Ω1

Y is the final foliation on Y ). We associate to f the morphism
between de Rham shapes (first introduced in [Sim96]) fDR : XDR −→
YDR, where for a scheme Z the functor ZDR sends an algebra A to
Z(Ared). The relative de Rham shape is defined

(X/Y )DR := XDR ×YDR
Y.

Quasi-coherent sheaves on (X/Y )DR are by definition relative crystals
on X over Y . Note that these are also the quasi-coherent sheaves on
the relative infinitesimal site (X/Y )inf of X over Y (see [Gro68]). This
site has objects commutative diagrams of the form

Sred //

��

X

��
S // Y,

where Sred −→ X is a Zariski open. The topology is itself defined
in the natural way. It comes equiped with a structure sheaf OX/Y,inf
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sending a diagram as above to O(S). It is then possible to prove that
there exists a natural equivalence of ∞-categories

Perf(F) ' Perf(OX/Y,inf).

Therefore, perfect crystals along the foliation F are nothing else than
perfect complexs on the relative infinitesimal site of X over Y .

In this situation, the sheaf OFh on Xh is the relative analytic de-
rived de Rham complex of Xh over Y h. As explained earlier, it has a
projection onto the naive de Rham complex (Ω∗

Xh/Y h [−∗], dR), which

is the de Rham complex of relative holomorphic differential forms

OXh
// Ω1

Xh/Y h
// . . . // Ωn

Xh/Y h .

It is important to remark that the projection

OFh −→ (Ω∗Xh/Y h [−∗], dR)

is far from being an equivalence in general. For example, if f : X → Y
is a closed immersion the right hand side is just the sheaf OXh whereas

the left hand side is ÔXh , the structure sheaf of the formal completion
of X inside Y . Proposition 3.1.5 implies that this morphism is an
isomorphism on cohomology groups in degree less than d if the map f
is smooth outside of codimension (d+ 1) closed subset.

Let us assume now that f : X −→ Y is flat with reduced fibers
and of strictly positive relative dimension. By generic smoothness f is
smooth on X −S where S is a closed subset of codimension d > 1. By
Proposition 3.1.5 we have that

H0(OFh) ' H0((Ω∗Xh/Y h [−∗], dR)).

The right hand side is the subsheaf of functions on Xh which are lo-
cally constant along the fibers of f , i.e. those which are pull-backs of
functions on Y h. In other words, we have an isomorphism of sheaves
of rings

H0(OFh) ' f−1(OY h).

Therefore, OFh has a canonical structure of a sheaf of f−1(OY h)-cdga’s.
Therefore, for any point y ∈ Y , we can consider the following sheaf of
cdga’s on Xh

OFh ⊗f−1(O
Y h ) Cy,

where the map f−1(OY h) −→ Cy = C is given by evaluation at y. The
resulting sheaf is the derived analytic de Rham cohomology of the fiber
f−1(y), and thus it is the constant sheaf C on that fiber. We deduce
that

OFh ⊗f−1(O
Y h ) Cy ' (iy)∗(C)
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where iy : f−1(y) ↪→ X is the inclusion of the fiber at y.
The previous discussion prompts the following interpretation. For

any E ∈ Vect(OFh), we define its base changes Ey := E ⊗f−1(O
Y h ) Cy

which are genuine local systems on f−1(y). Therefore, the notion of
perfect complexes of OFh-dg-modules should be understood as a notion
of analytic families of perfect complexes of local systems along the fibers.
With this interpretation, the Riemann-Hilbert correspondence

RH : Perf(F) ' Perf(OFh)

of Theorem 4.2.1 should be actually understood as an equivalence be-
tween algebraic families of crystals along the fibers of f , and analytic
families of perfect local systems along the fibers.
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