
HAL Id: hal-02441649
https://hal.science/hal-02441649

Submitted on 16 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the safety assessment of RPAS safety policy
Diego Couto, Kevin Delmas, Xavier Pucel

To cite this version:
Diego Couto, Kevin Delmas, Xavier Pucel. On the safety assessment of RPAS safety policy. 10th Euro-
pean Congress on Embedded Real Time Software and Systems (ERTS 2020), Jan 2020, TOULOUSE,
France. �hal-02441649�

https://hal.science/hal-02441649
https://hal.archives-ouvertes.fr

On the safety assessment of RPAS safety policy

Diego COUTO
ONERA

Toulouse, France
Email: diego.couto reyes@onera.fr

Kevin Delmas
ONERA

Toulouse, France
Email: kevin.delmas@onera.fr

Xavier PUCEL
ONERA

Toulouse, France
Email: xavier.pucel@onera.fr

Abstract—Remotely Piloted Aircraft Systems (RPASs) should
become shortly mainstream to meet the operational requirements
of emerging applications such as autonomous transport or in-
frastructure monitoring. The integration of these systems in the
airspace creates new issues, especially concerning safety. The
variety of operational contexts where RPAS are involved defeats
the safety assessment processes used for decades for large civil
aircrafts. One of the major issues is the lack of standardisation
of RPAS safety policies. We claim that including the safety policy
during safety assessment is one of the prominent challenges for a
safe integration of the RPAS in the airspace. Hence, we provide a
formal modelling and analysis framework dedicated to the safety
assessment of RPAS safety policies.

I. INTRODUCTION

The Remotely Piloted Aircraft Systems (RPASs) should be-
come shortly mainstream to meet the operational requirements
of emerging applications such as autonomous transport [1] or
infrastructure monitoring [2]. The integration of these systems
in the airspace creates new issues, especially concerning safety
as described in [3]. The variety of operational contexts where
RPAS are involved defeats the safety assessment processes,
like the ARP4754 [4], used for decades for large civil aircrafts.

One of the major issues for the safety assessment of RPAS
is the lack of standardisation of their safety policies. We call a
safety policy the set of procedures that are applied to select a
control mode (nominal or degraded) for the Unmanned Aircraft
Vehicle (UAV) depending on its health status. Designing a
safety policy for an RPAS is significantly different than for a
civil aircraft, mostly because the possible operational contexts
are much more diverse. This means that new requirements such
as modularity and distribution are applicable to RPAS safety
policies, while common requirements such as dynamism, de-
terminism and decision soundness are more challenging to
meet.

We claim that integrating an analysis of the safety policy
in the safety assessment is one of the prominent challenges for
a safe integration of the RPAS in the airspace. In this paper,
we provide a formal modelling framework dedicated to the
safety assessment of RPAS safety policies. The contribution
of this paper is four-fold: 1) provide a formal framework for
modelling both the propagation of failures within the RPAS
and the safety policy; 2) identify meaningful properties and
requirements for evaluating a safety policy and ensuring the
dependability of the RPAS; 3) describe an intelligible yet for-
mal way to model the safety policy through a preference-based
formalism; 4) use automated verification tools to perform the
safety assessment.

The remainder of the paper is organised as follows: section
II describes the major issues related to the modelling and anal-
ysis of a safety policy, and how these issues can be seen as an
estimation problem; section III provides a formal description
of the framework, illustrated on a simple yet comprehensive
RPAS use-case; section IV positions the proposed approach
with related work.

II. GENERAL OVERVIEW OF THE APPROACH

A. Reminder on safety processes

Complex systems are usually developed using a safety
assessment process, that is a set of verification and valida-
tion activities performed throughout the system development
process. For large civilian aircraft, the standard ARP4754 [4]
describes a safety assessment process tightly linked to the
development process [5]. Generally, a safety process can be
seen as an instantiation of the following safety assessment
pattern at various levels.

a) Hazard Analysis : Identify the failure conditions, in
a given context, that may rise safety issues so-called failure
conditions and allocate safety objectives to these conditions
commensurate with the hazard’s severity. These safety ob-
jectives enforce some bounds over safety indicators such as
the minimal number of root failures, or the failure rate of a
particular failure condition.

b) Safety Assessment: Assess the proposed architecture
against the safety objectives. To perform the safety assessment,
designers can rely on formalisms (for instance listed in the
ARP4761 [6]) enabling the analyst to describe the contribution
of the failures of the architecture’s components to the failure
conditions. As identified by [7], classical formalisms embrace
an architecture-agnostic modelling. Consequently, adapting the
safety models after an evolution of the system design may
be cumbersome. Architecture-aware formalisms [8], [9] have
been introduced to overcome the limitations of architecture-
agnostic formalisms. Architecture-aware formalisms provide a
way to define the dysfunctional behaviour of entities called
components that are instantiated and connected to build the
architecture of a system. Ultimately the interconnected com-
ponents can be analysed by automatic solvers like [10], [11]
to derive a safety assessment. This kind of approach is the
so-called Model-Based Safety Assessment.

For general aviation, the advisory circular 23 [12] describes
a standard high-level functional decomposition of aircraft
systems. Based on this functional decomposition, it performs
a high-level and generic Hazard Analysis providing standard
failure conditions, and defines a generic safety policy. This

documents provides a framework where one can focus on
the Safety Assessment and analyse the contributions of each
system component to the standard failure conditions, provided
the system meets the assumptions made in the document.

The high-level generic functional decomposition proposed
in [3] could be a starting point for a similar document
for RPAS. However, we found it impossible to extend this
approach to a generic Hazard Analysis and a generic safety
policy for RPAS. The main reason is the diversity of both
use cases and UAV designs (quad-rotor, fixed wing, etc). The
hazards can vary significantly according to the operational
context (populated or desert area), and the ways to mitigate
those hazards, i.e. the safety policy, depends heavily on the
physical capacities of the UAV.

Instead of trying to reproduce a unique generic Hazard
Analysis and safety policy as done in [12], we opt for an ap-
proach where Hazard Analysis and safety policy are tailored to
each operation, and are specified early in the safety assessment.
Our ambition is to provide a tool that facilitates this way of
performing safety assessment.

B. What is a safety policy ?

The approach we propose for safety assessment is organ-
ised around the notion of safety policy. Informally, the safety
policy provides a way to mitigate hazards by using appropriate
behaviour, especially in the presence of faults.

Formally, we model a safety policy as a process that
produces decisions about the control mode to apply using as
input the health status of an RPAS. We first define these two
concepts.

Definition 2.1 (Control Mode): We denote M the set of
control modes of the UAV, where a control mode m ∈ M
is a way in which orders from the pilot are translated into
commands for the control mechanisms to act on the flight
control surfaces. A control mode can be considered as a
configuration of the UAV.

Example 2.1 (Control Mode): The Auto Pilot (AP) mode
is a control mode that only receives a target position as
input, and computes the trajectory to reach it as well as all
the necessary manoeuvres required to follow this trajectory.
Another control mode is the Emergency manual (EM), where
the pilot sends low level commands (direct pitch, roll, yaw,
thrust) and the UAV applies them without any type of filtering
or assistance and sends a visual feedback (e.g.a First Person
View camera). Some intermediate modes can be available,
where the pilot provides some intermediate level inputs (speed,
altitude, manoeuvre type), and the UAV translates them into
low level commands.

Definition 2.2 (Health Status): Let R be the set of re-
sources (hardware, software or functional artefacts) that are
used in any control mode. Only a subset RA ⊂ R of the
resources can be monitored; the health status is composed of
the availability and integrity of the monitored resources. It is
classically estimated by analysing alarms obtained from RPAS
monitoring.

Example 2.2 (Health Status): Let the Control and Com-
mand link (denoted C2 link) be a monitored resource, C2∈ RA.

The health status of the C2 link is comprised of both the
availability (i.e can the UAV and the pilot communicate) and
the integrity (i.e is information transmitted correctly between
the pilot and the UAV) of this resource.

Definition 2.3 (Safety policy): A safety policy is a proce-
dure that specifies at each instant in time the control mode
that should be enabled in the RPAS. It usually depends on the
past and current health status as well as the current operational
context of the UAV.

Safety policies can be distributed across several actors. In
our approach, we focus on safety policies that are structured
as illustrated in Figure 1, where the policy is distributed
across two actors: the pilot and UAV. The procedure contains
several steps: 1) the system uses monitors to detect abnormal
conditions and raise alarms; 2) each actor receives alarms
about a limited subset of monitorable resources, and estimates
the health status according to these alarms; 3) each actor
applies decision rules and determines a control mode to apply;
4) eventually one actor (the UAV in our case) is in charge of
selecting the final control mode among the provided ones.

Note that the decision rules are not the same for all actors,
partly because they do not have access to the same information,
and partly because the rules must account for a potential loss
of communication. Moreover we do not assume that the pilot
is necessarily a human operator or a more complex system
involving technical items. This distinction may be necessary
to identify the safety objectives that can be considered for this
actor. Nevertheless the main objective of this paper is to model
the interaction between the actors and assess their impact on
the safety, therefore the notion of actor’s nature is out of the
scope of this paper.

C. Modelling a safety policy: challenges

Modelling a safety policy and integrating its analysis in the
safety assessment of an RPAS raises the following challenges.

a) Modularity: Across its lifetime, an RPAS is likely to
be used in environments that present different hazards. Each
time, the safety policy must be adapted to its environment.
Similarly, various RPASs can be used for a given mission, but
the safety policy must be tailored to each system. Finally, the
tasks that are assigned to a RPAS may vary inside the same
environment. A key point for the usability of RPAS is that the
safety policy must be able to be decomposed into parts that are
related to the UAV, to the environment and to the operations,
so that these parts can be reused and/or adapted to new vectors,
environments or operations.

b) Dynamism: The safety policy generally relies on the
order in which the alarms occur, and is thus a dynamic process.
So the first challenge is to capture its dynamics to assess its
safety impacts on the RPAS.

c) Determinism: A safety policy is generally provided
as a set of rules, that associate control mode to apply when
a given condition over the health status is fulfilled (i.e if the
communication is unavailable, return to the home point). Such
rules are seldom exclusive, so for a given health status a set of
rules may apply. Since a single control can be selected at each
time step to control the UAV, some rules must be applied in
priority. The challenge is to provide a formalism to prioritise

2

System Safety policy

ResourcesUAV

Pilot

Monitor

Monitor

Estimate
alarms

Estimate
alarms

Apply Ruleshealth
status

Apply Ruleshealth
status

Selection
control
mode

control
mode control

mode

Fig. 1: Overview of a pilot/UAV distributed safety policy for a RPAS

these rules, in a way that is deterministic (the same inputs lead
to the same outputs) and understandable by a pilot.

d) Distribution: A safety policy is usually distributed
over several actors, typically the UAV and the pilot. The safety
policy of the whole RPAS system (decomposed as the pilot
and UAV local safety policies) must then contain a module in
charge of the final decision when local safety policies disagree.

e) Decision: The final challenge for a safety policy, and
not the least, is to make the right decisions. A safety policy
uses as input the health status and the operational context to
select the control mode to apply, but these inputs are obtained
by on-board monitoring and/or pilot monitoring activities.
However, because not all resources can be monitored, and
because the monitoring can be itself fallible, most of the time
these inputs are uncertain. This makes the decision challenge
particularly difficult, and motivates the use of formal models
and analyses to make sure the safety policy does not contain
intricate bugs.

D. Modelling a safety policy as an estimation problem

Our approach addresses the decision challenge by decom-
posing it into two parts. The first part addresses the uncertainty
about the health status and operational context by providing an
estimate for them. This estimate is then used in the second part
to select the control mode most appropriate to these estimated
health status and operational context.

Some work like [13] maintain a set of possible health
status sequences. Even if we assume an onboard computer
could handle this large amount of information, we believe this
approach is not relevant for RPAS. Indeed, presenting to the
pilot a large set of possible failure scenarios will likely confuse
him and increase the probability of human error.

In contrast we consider that a unique health status must
be computed at each time step. When several health statuses
can explain the observed alarms, only one of them will be
chosen. This can be achieved using dedicated formalisms such
as conditional preferences [14].

In particular, preference based estimation problem has been
addressed in the literature by [15]. In this work, the estimation
problem is formalised as a satisfiability problem over a set
of constraints expressed with propositional logic and Past-
Time Linear Temporal Logic (PTLTL). These constraints are
split in two categories: 1) the hard constraints denoted ∆
modelling the possible states and transitions of the system;
2) the soft constraints denoted Γ encoding the selection of a

unique estimation among the system’s states compliant with
∆ and the observations as a conditional preference model.

In this paper we reuse the formalism from [15], and recall
the main elements.

Definition 2.4 (Estimation Model): An estimation model
is defined over a set of variables V partitioned into observable
variables O and estimated variables E. All variables are either
observed or estimated (O ∩ E = ∅ and O ∪ E = V).

The system behaviour is defined by a set ∆ of hard
constraints expressed over V using PTLTL. They express the
temporal dynamics of the system and are always satisfied. The
set of states that can be reached by the system is denoted S,
and the initial state s0 ∈ S.

The estimation strategy is defined by a sequence Γ of con-
ditional preferences of the form

(
(v0 ! c0), . . . , (vn ! cn)

)
where vi ∈ E is an estimated variable, and ci is a formula
expressed in PTLTL that represents the condition when we
prefer to estimate vi to true. For consistency reasons, ci can
only depend on past variables, present observable variables,
and on present variables whose value is determined by a prior
preference. Preferences are soft constraints, they are applied
only when both values are possible for the variable, i.e. both
values are consistent with the constraints of ∆.

In an estimation model, a system state is a Boolean assign-
ment to variables of V , an observation is an assignment to O
and an estimation to E. A sequence of states (s0, . . . , sk) ∈ S∗
is a possible execution trace of the system if and only if
it satisfies all the PTLTL formulas in ∆. Given a previous
estimated state ŝ and an observation o, the next estimated state
is the assignment that extends o, and that satisfies preferences
whenever possible (preferences are evaluated in sequential
order). The estimation process is illustrated below.

Example 2.3 (Hard Constraints (∆)): Let r1 and r2 be
two UAV resources, respectively monitored by two alarms are
active low: if their power supply fails, they will trigger. Let
rpow be a third resource that provides power to r1, r2 and
their alarms. One can model the behaviour of this system with
propositional (i.e. Boolean) variables h1 (resp. h2 and hpow)
representing that r1 (resp. r2 and rpow) is healthy, and a1

(resp. a2) representing that the alarm for resource r1 (resp.
r2) is triggered.

Formally, the model uses observable variables O =
{a1, a2} and estimated variables E = {h1, h2, hpow}, and no
more.

The behaviour “At every instant, the ith alarm triggered if
and only if the power supply or monitored resource are not

3

ok” is represented by the following constraints:

∆ =

{
(¬a1)⇔ hpow ∧ h1,
(¬a2)⇔ hpow ∧ h2

}

The classical Boolean operators such as logical negation ¬,
conjunction ∧, disjunction ∨ and equivalence ⇔ are available
for modelling. In addition, past-time temporal operators such
as yesterday Y , once O and since S can be used as well to
express what dynamic behaviour is possible in the system.

When describing a state or observation, we denote
A = v1 · · · vnvn+1 · · · vn+m the assignment where variables
v1, · · · , vn are assigned to true, variables vn+1, · · · , vn+m are
assigned to false, while variables not mentioned are unas-
signed.

Example 2.4 (Soft constraints (Γ)): Let us consider the
initial state s0 = hpowh1h2a1a2. If at the first time
step, we receive the observation o1 = a1a2 then five
possible states are consistent with ∆, s0 being the pre-
vious state, and o1 being the current observation. These
states are a1a2hpowh1h2, a1a2hpowh1h2, a1a2hpowh1h2,
a1a2hpowh1h2, and a1a2hpowh1h2.

The principle of state estimation is to provide a decision
procedure that selects one of these candidates, specified by
a conditional preference model Γ. The preference language
is expressive enough to implement the following reasoning:
“If all the alarms are simultaneously triggered at the same
time step, we prefer to explain them by a failure of the power
supply”, formally written as the following preference:

hpow ! ¬Y (a1) ∧ ¬Y (a2) ∧ a1 ∧ a2 (γ1)

By adding two additional preferences about h1 and h2, we can
build a complete estimation model. For example, the following
model completes the reasoning with the optimistic principle
that “If there is no alarm, or if the alarm is already explained
by a fault in the power supply, we prefer to assume the resource
is healthy”:

h1 ! ¬a1 ∨ ¬hpow (γ2)
h2 ! ¬a2 ∨ ¬hpow (γ3)

Then the ordered sequence Γ = (γ1, γ2, γ3) defines an estima-
tion model that selects state a1a2hpowh1h2 for the previous
state s0 and current observation o1. Note that preferences γ2

and γ3 can use the value of variable hpow in their condition,
as it is fixed first by γ1. γ1 however can only depend on past
and observable variables.

This model can be used to generate an incremental estima-
tor as described in [15]. In some instances, it is possible that
an estimation model may be undefined for some of the system
observation sequences as explained in [16]. In addition to this
verification, their tool supports the verification of arbitrary
properties for the pair system/estimator. In the section III, we
describe how to model a safety policy with this approach, and
illustrate how safety objectives can be expressed as properties
for the pair system/estimator. We then show how automated
verification can be used to perform safety assessment.

Resource Failure
Mode0..*

fm

1of

Alarm

0..*necessary

Mode

1..*necessary

0..*fm

System
1..*

R

1..*

M

1..*

A

Fig. 2: Entity relation diagram of an RPAS safety policy.

III. MODELING FRAMEWORK

This section presents how we instantiate an estimation
model to represent the safety policy of an RPAS. It is organised
as follows. First we describe how each model part is imple-
mented in terms of hard constraints and preferences. Second,
we discuss how this model fits the requirements of modularity,
dynamism, determinism, distribution and decision described in
the previous section. Finally, we explain the analyses that can
be run on the model that contribute to the safety assessment.

A. Safety policy model

The first step to model the safety policy consists in identi-
fying the control modes, resources (with their failure modes)
and alarms (with their failure modes) of the RPAS. These
entities and their relations are captured by the diagram depicted
in figure 2. More precisely, a RPAS (System) owns a set of
control modes (M), resources (R) and alarms (A).

Each control mode depends on a specific set of resources to
be applicable, this set is described by the relation necessary.
Each resource and alarm owns one or several failure modes
given by the relation fm, modelling the considered ways
resources and alarms fail. Each alarm provides information
about a unique resource (of relation), however it depends
on potentially several resources (necessary relation) to be
triggered.

Example 3.1 (RPAS): The drone’s mission is to inspect an
infrastructure located in a pre-defined evolution zone nearby
populated areas. The drone should not fly, land or crash outside
the evolution zone. This RPAS is constituted of:

• 6 control modes named Autonomous (A), Semi-manual
with Steering (P), Semi-manual with Guidance (G), Full
Manual (M), Hovering (H) and Crash (C), i.e. M =
{A,P,G,M,H,C}.

• 8 resources named Steering (pi), Guidance
(gu), Communication (rc), Propulsion (pr),
Actuators (ac), Steering Law (piLaw), Guidance
Law (guLaw), and Power Supply (pow), i.e.
R = {pi, gu, rc, pr, ac, piLaw, guLaw, pow}. Each
resource r ∈ R has two failure modes, named Lost
(r.LS), when the resource is completely lost, and
Erroneous (r.ES) when the resource produces abnormal
information or behaviour, i.e. r.fm = {r.LS, r.ES}.

• 5 alarms, respectively of the Steering (alpi),
Guidance (algu), Communication (alrc), Propulsion

4

Mode Resource

pi gu ac pr rc pow piLaw guLaw

A X X X X X X X X
G X X X X X X
P X X X X X X
M X X X X
H X X X X X X X
C

Fig. 3: Resource dependencies of the control modes of the
RPAS

(alpr) and Actuator (alac) resources, i.e.
A = {alpi, algu, alrc, alpr, alac}. Each alarm a ∈ A
has a failure false negative modes a.FN . All alarms
depend on the Power Supply resource.

The resources required for each control mode are illustrated
in figure 3.

To model the safety policy, one must provide:

1) the behavioural model of its system, here decomposed as
the failure model and alarm model;

2) and the estimation and decision strategy of the policy,
i.e the health status estimation strategy, and control mode
selection strategy.

a) Failure model: This part of the model specifies
assumptions over the failures modes of each resource: tran-
sient or permanent failures, exclusive or cumulative, etc.
The assumptions about failure modes are expressed as hard
constraints (∆R) that define the possible combinations of
failures as well as the possible transitions between them. To
do so, the occurrence of a failure mode f is modelled by a
Boolean variable (also denoted f) true when the failure mode is
observed on a given resource or alarm. Our model assumes that
alarms and resources own a single nominal mode implicitly
represented as the absence of failure modes. Therefore when a
resource or alarm is in its nominal mode all its failure modes
are set to false.

The analyst is free to use any pTLTL formula over failure
mode variables to describe its failure model. Let us provide a
set of recurrent patterns considered to model the RPAS.

Definition 3.1 (Permanent Failure): Once a resource r has
entered a permanent failure mode f ∈ r.fm, then it cannot be
repaired.

Y (f)⇒ f

Definition 3.2 (Exclusive Failures): In a resource r with
exclusive failure modes, at any time step t, only one failure
mode is active: ∧

f∈r.fm,
f ′∈r.fm,

f 6=f ′

f ⇒ f
′

Definition 3.3 (Interleaved Failures): In a system with in-
terleaved failures, at most one failure occurs at each time step.

It is stated as:∧
r∈R, r′∈R

f∈r.fm, f ′∈r′.fm
f 6=f ′

(
Y (f) ∧ f

)
⇒
(
Y (f ′)⇔ f ′

)

Example 3.2 (Failure model): In our RPAS model, the
failure modes for all resources and all alarms are exclusive,
permanent, and interleaved. These constraints over the pi
resource are:

Permanent: When pi was lost (resp. erroneous) then it
remains lost (resp. erroneous)

(Y (pi.LS)⇒ pi.LS) ∧ (Y (pi.ES)⇒ pi.ES)

Exclusive: If pi is lost (resp. erroneous) then it cannot
be erroneous (resp. lost)

(pi.LS ⇒ pi.ES) ∧ (pi.ES ⇒ pi.LS)

b) Alarm model: This part of the model describes the
nominal and dysfunctional behaviours of the alarms. The
former specifies the conditions over the state of the monitored
resource where the alarm should be triggered. The latter
describes the impact of failures either in the alarm or in a
resource that is necessary for the alarm e.g.the alarm no longer
detects failures in the monitored resource. These rules are
also encoded as hard constraints (∆A) that define the alarms
behaviour in relation to the resource failures. Once again we
consider that an alarm only provides a binary information i.e
either the alarm is triggered or not. Therefore the Boolean
variable a is true when the alarm a is triggered.

Once again, the analyst is free to use any pTLTL formula
over failure mode and alarm variables to describe its alarm
model. Let us provide a set of recurrent patterns considered to
model the RPAS to model “active low” alarms with a “false
negative” failure mode.

Definition 3.4 (Active low alarm with false negative):
Let us consider an alarm a that owns a unique failure mode
“false negative” denoted a.fn that models a situation where
the alarms always remains silent. Assuming the alarm a is
“active low” then it is not triggered (denoted a) if and only
if the necessary and monitored resources are correct or it in
failure mode fn, that is:

a⇔

a.fn ∨
 ∧

f∈a.of.fm

f ∧
∧

r∈a.necessary,
f ′∈r.fm

f ′

Example 3.3 (Alarm model): In our RPAS model, all
alarms are active low with false negative. For alpi the alarm
model is:

alpi⇔
(
alpi.fn ∨

(
pi.LS ∧ pi.ES ∧ pow.LS ∧ pow.ES

))
c) Health status estimation: The combination of hard

constraints (∆ = ∆R ∧∆A) describes how resources can fail,
and how alarms are raised in consequence. However, only
alarms are observable by the monitor, therefore the actual
failure mode of the resources (i.e. the health status) must be
deduced according to these signals and the knowledge of the

5

Alarm and Failure models. Recall that in our approach, we only
keep one estimated health status at each time step, selected
thanks to a preference model (ΓR). This preference model
specifies which health status among those that are consistent
with ∆ to prefer, given the current alarms.

Here again, there are patterns that occur repeatedly in
safety policy models. To illustrate them, let us describe the
following typical estimation preferences that have been con-
sidered to model the safety policy of our RPAS.

Definition 3.5 (Preference of common causes): Let a re-
source r be necessary for several alarms Ar = {a ∈ A|r ∈
a.necessary}, with |Ar| ≥ 2. The common cause preference
indicates that when multiple alarms are active, we prefer an
estimation in which a unique failure explains all the alarms:

r.fm!
∧

a∈Ar

a

Definition 3.6 (Failure mode preference): It is often the
case that, for a given alarm, several failure modes can explain
it. It is then necessary to specify which one is the preferred
explanation. For instance if an alarm a triggers off (was on,
is now off), one may prefer to explain it with a false negative
rather than the monitored resource being repaired:

a.fn! Y (a) ∧ a
Note that preferences are soft equivalences. Once the alarm
stays silent for two consecutive time steps, this preference will
stop preferring the false negative explanation.

Definition 3.7 (Non monitored resource preference):
When a resource r is not monitored and not necessary to any
alarm then one must prefer to not consider the failure of this
resource as the explanation of the actual state of the system.
So let r be resource s.t. ∀a ∈ A, a.of 6= r∧ r /∈ a.necessary,
then for each f ∈ r.fm we have:

f ! ⊥
Example 3.4: In our RPAS system, the health status esti-

mation is based on the three previous preferences.

d) Control mode selection: The last part of the model
describes the mechanism that selects a control mode. This
mechanism may be expressed both with a set of hard con-
straints (denoted ∆M) and preferences (denoted ΓM), since it
is possible to select only one control mode at each time step.

The typical constraints that can apply to control modes
include mode exclusivity (one mode selected at each time
step) and applicability (a mode can only be selected when
its necessary resources are estimated healthy) constraints.

Definition 3.8 (Mode applicability): A mode m can be se-
lected (denoted by m.select) if its necessary resources are
available, that is:

m.select⇒
∧

r∈m.necessary
f∈r.fm

f

Definition 3.9 (Exclusive modes): At each time step, ex-
actly one mode must be selected:∨

m∈M
m.select,

∧
m∈M
m′∈M
m 6=m′

m.select⇒ m′.select

In the RPAS use-case, the pilot is able to select a subset of
modes so-called manual modes (denoted Mp = {P,G,M}).
Thus, the mode selection activity is distributed over the UAV
and the pilot. To model this distribution, we consider for
each pilot mode m ∈ Mp a Boolean variable m.selectp
meaning that the pilot selects the mode m. Since the modelling
framework is based on constraint programming, the analyst can
consider or not a set of assumptions over the pilot selection
strategy. In the latter, the pilot selection variables are free
variable i.e any possible assignments of these variables are
considered in the subsequent analysis.

Since the pilot and the UAV may disagree on the mode
selection, a strategy must be modelled. In the use-case, the
priority is given to the pilot only if the selected mode is
considered as safe by the UAV i.e the resources it rely on are
available. This kind of selection strategy is formally provided
by the following definition.

Definition 3.10 (Conditional pilot mode selection): Let
m ∈Mp, then(

m.selectp ∧
∧

r∈m.necessary

r.ES ∧ r.LS

)
⇒ m.select

In the general case, several control modes may be applica-
ble, and one must be chosen. A simple way to do so is to use
an unconditional preference model.

Definition 3.11 (Order based policy): A simple way to se-
lect a mode is to consider a total, unconditional preference
order over the control modes, for instance based on the
automation level (more autonomous modes are preferred to less
autonomous modes). Let (m1, · · · ,mn)i∈1,|M| be a sequence
of exclusive control modes sorted by automation level, then the
policy “Select m1 if possible, otherwise select m2 if possible,
etc” is encoded as:

ΓM =

 m1.select!>
...

mn.select!>

It is important to note that, even though in example 3.11,

the preferences do not explicitly depend on the health status,
the preferences about failure mode variables are applied before
the preferences about the control mode. As a consequence,
the way failure modes are estimated can change which control
modes are applicable, and thus weigh on the final choice of
control mode.

Example 3.5: In our RPAS example, the control modes are
exclusive, subject to the applicability constraint, and selected
via an order based policy.

B. Evaluation of the modelling approach

The presented modelling approach gathers the constraints
and preference to the activities identified in the figure 1.
The failure model describes the dysfunctional behaviour of
the system, and how failures affect the different functions of
the system. It is tightly linked to the functional architecture.
The alarm model identify the monitoring of the system and
provides the assumption over failure detection capability of

6

these monitoring systems and there dependencies. Going back
to our RPAS example, we detailed what are the resources
(e.g.pi), the monitored ones (e.g.pi monitored by alpi) and
the monitoring dependencies (e.g.alpi depends on pow). The
health status estimation can implement a very pessimistic
strategy, or a very optimistic one, or a conditional one. It
may depend on function-specific or alarm-specific variables, or
may be very independent from the other model components.
Finally, the control mode selection finalises the safety policy,
and translates the health status into an actual control mode.
Such a modular modelling enables the analyst to update only
one part of the model with very limited impact on the other
ones, which facilitates the reuse of model components from
one mission to the other.

With the use of a temporal language, the dynamic aspects
of the safety policy are easily represented and analysed.

As explained in [15], the estimation model selects a unique
state in a deterministic way. This guarantees that the safety
policy behaviour is reproducible for tests and analyses.

The disagreement solving between the pilot and the UAV is
explicitly modelled in the framework, enabling the analyst to
assess the safety impact of the selection strategy. As a means
to represent a transition relation, conditional preferences are
more concise than pure hard constraints. As such, our model is
expressive enough to implement complex decision functions.
At the same time, since the preferences are applied sequen-
tially, it is quite straightforward to explain a given estimation,
by stating the previous estimated state, and which preferences
were applied or violated. The number of preferences stays
small when compared to the potentially exponential number
of explanations for an observation.

C. Safety objectives verification

We express safety objectives under questions of the form
“Can a dynamic system reach a state that satisfies property X
?”, where the dynamic system is the RPAS including its safety
policy. These questions can be automatically verified using the
safety policy model described in the previous section.

In an estimation problem, the observable variables receive
exactly one value at each time step. Inversely, the estimated
variables are associated to two values: their real value in the
system, and their estimated value in the safety policy. When
one models a safety policy as an estimation problem, whenever
several failure modes are consistent with the observations, the
safety policy chooses one failure mode among the candidates.
This means that there are scenarios where the safety policy
estimates a failure mode that is different from that of the
system. In our model, this is expressed by the fact that the
real value of the failure mode variables differs from the one
that is estimated.

Example 3.6 (Fly-Away): A typical desired property for a
RPAS would be to avoid the Fly-Away since it lead to a
potential collision with on-ground or in-air obstacles. Such a
feared event occurs when:

• the dependencies of the selected mode are not satisfied;

• and the propulsion is still available (otherwise it would
result in a crash in the evolution zone);

• and the selected mode is not C.

One must then identify the situations where this event occurs,
therefore the property would be “It exists an observation
sequence where a fly-away occurs”. Such informal property
can be decomposed over each mode m ∈ M (except C) as
the following formula:

φR =
∨

r∈m.necessary r.ES ∨ r.LS ∧ pr.LS
φE = m.select

A fly-away thus occurs if, for a given mode m, the above
formula are satisfied.

Our analysis approach takes advantage of this situation to
represent some safety objectives. Note that the evolution of the
system’s state depends only on the occurrence of failures. So
one may not be interested to ensure that a safety policy fulfils
the properties for an arbitrary large number of failures, since
this policy may not likely to exist. A more relevant analysis
would be to ensure that the safety policy is ”reasonably safe”
i.e ensures a set of properties up to a given number of
failures. This analysis can be performed thanks to a bounded
reachability analysis defined as follows.

Definition 3.12 (Bounded reachability analysis): Let ∆,Γ
be an estimation model, φR and φE two sentences in PTLTL.
The reachability analysis denoted REACHABLE∆,Γ(φR,φE ,n)
enumerates, up to the time step n , pairs (SR, SE) where:

• SR and SE have length n;

• at each time step, SR satisfies ∆ and SE satisfies both ∆
and Γ;

• at the last time step, SR satisfies φR and SE satisfies φE .

SR represents the real system states, while SE represents the
estimated policy states.

Example 3.7 (Bounded reachability): Back to the exam-
ple 2.3, one may want to identify the sequences of states
where ”The power supply failure is not detected after one
time step”. This analysis can be performed by using the
bounded reachability by decomposing the property as ”The
power system failure” Y (hpow) and ”Is not detected after
one time step”hpow. The sequences leading to this step, up
to three time step would be obtained by calling REACH-
ABLE∆,Γ(Y (hpow),hpow,3). Such a request would provide the
an example of the table I where:

1) a failure of h2 is (correctly) estimated at s1;

2) according to ∆, the subsequent alarm a1 can be inter-
preted either as a failure of h1 or a failure of hpow
but according to the preference γ1, the failure of h1

is preferred over the failure of hpow leading to a mis-
estimation of the system state;

3) ultimately, the inability to estimate the failure of hpow
after one time-step is satisfied on s3.

The reachability analysis has been performed on the RPAS
to identify the situations for which the Fly-Away feared event
(introduced in the example 3.6) occurs. For the sake of
readability, the results of the reachability analysis provided
in the table II has been processed to display the single new

7

Step Observed variables Estimated variables

System Estimator

s0 a1a2 hpowh1h2

s1 a1a2 hpowh1h2

s2 a1a2 hpowh1h2 hpowh1h2

s3 a1a2 hpowh1h2 hpowh1h2

TABLE I: Reachability analysis result

Order Failures Comments

1 piLaw.LS Undetectable steering control failure
piLaw.ES

guLaw.LS Undetectable guidance control failure
guLaw.ES

2 api.FN pi.LS Steering sensors failure and
api.FN pi.ES monitoring false negative

agu.FN gu.LS Guidance sensors failure and
agu.FN gu.ES monitoring false negative

arc.FN rc.LS Communication failure and
arc.FN rc.ES monitoring false negative

aac.FN ac.LS Actuator failure and
aac.FN ac.ES monitoring false negative

apr.FN pr.ES Erroneous propulsion and
monitoring false negative

TABLE II: Safety assessment of the RPAS for the Fly-Away

failure occurring at each time step. Note that the uniqueness is
enforced by the interleaving and permanent failure constraints.

The safety assessment identified two single contributors to
the Fly-Away: the control laws. Since these resources are not
monitored, a failure of one of these control laws is not detected
by any alarm, therefore neither the pilot or the UAV initiates
a mode change. The second set of scenarios involves a typical
combination of alarm failure (false negative) and resource
failure. Once again this situation boils down to the previous
one i.e an undetectable failure. Note that the propulsion and
the power supply loss do not contribute to the fly-away since
it would result in a crash of the drone in the evolution zone.

The designer of the safety policy can use these information
to enhance the policy for instance by adding monitoring points.
Since the framework is modular, extra assumptions can be
made by adapting the alarm model, without changing the
remaining model.

IV. RELATED-WORK

1) Analysis of a safety policy: The integration of the safety
policy in the safety assessment can be related to the formal
verification of Fault Detection, Isolation and Recovery (FDIR)
mechanisms. For instance the authors of [17] used several
verification techniques to prove that a set of FDIR mechanisms
meets some functional requirements. Another work [18] uses
finite state machine to model the system and FDIR behaviours
while failure propagation were modelled by Temporal Fault
Propagation Graphs (TFPG). A dedicated model-checker is
then used to assess some functional properties of the FDIR.
Eventually [19] provides a comprehensive formal framework to
either assess or even synthesise a safety monitoring. Neverthe-
less, the aforementioned papers do not consider the limited sys-

tem’s state observability, therefore do not consider the safety
impact of this source of uncertainty. Indeed the particularity
of our framework is to provide a preference-based modelling
of the strategy (formalised in Γ) considered by the designer to
select a given state when several system’s states can explain
the current observations.

In [20], the property of fault diagnosability is stated and
analysed with respect to a set of conditions that can represent
safety requirements. However the authors of [20] do not
address one of the main aspects of autonomous systems like
RPAS, identified by the authors of [21], that is the collabora-
tion of human and technical elements to ensure the safety of the
whole system. Especially considering the monitoring capability
of each agent, their mitigation strategy and the arbitration
in case of disagreement on the safety action to perform. In
the presented framework, this distribution problematic is a
core challenge addressed both by the modelling of the actor
monitoring capabilities as hard constraints and their mitigation
strategy as a preference model.

2) Diagnosis of discrete event systems: The problem of
assessing the presence of faults in a system is known as Model-
Based Diagnosis, and has been addressed in various ways in
the literature, in particular for discrete event systems [22].
However, the question of which is the preferred diagnosis is
usually reduced to a form of likelihood, independent from the
operational context. [15] provides a way to specify a diagnosis
selection strategy that accounts for the operational context,
such as alarms and hazards, and the distribution of the safety
policy.

3) Control of discrete event systems: The problem of
selecting the control mode of the system could also be rep-
resented as a problem of control of a discrete-event system
[23]. While this allows one to represent the safety effects
of the dynamic control model selection, this requires to
accurately represent the actions from the pilot in order to
derive meaningful analyses. This may be done in future work.
Controller synthesis techniques [24] could be applied to ease
the description of safety policies and even improve them.

V. CONCLUSION

a) Summary: We presented in this paper a formal mod-
elling framework dedicated to the safety assessment of RPAS
safety policies. This framework enables the analyst to provide,
in a modular way, the failure and alarm models formalising
both the considered failures of the RPAS, the possible control
modes and monitoring (and their own dependencies) used to
handle these failures. A light formalisation of the distributed
strategy considered to select a control mode (by the pilot
and the UAV) and to select a mode in case of disagreement
has been provided and illustrated on the use-case. Eventually
we provided a way to automatically perform some qualitative
safety assessments of the safety policy, especially to identify
single point of failures.

b) Limitations and future works: The framework is
currently built to deal with coarse grain fault models based
on abstract failure modes (loss or erroneous). The analyst may
need to express more precisely the impact of resource failures
for instance in a quantitative way (e.g.propulsion blocked to a
given value). To alleviate this expressiveness restriction, one

8

can consider using Satisfiability Modulo Theory (SMT) solvers
to handle constraints and properties expressed over various
kinds of objects e.g.reals values. Moreover the presented
modelling of the pilot behaviour is simplistic and does not
exploit the expressiveness of the framework. We are currently
working on new modelling integrating the capability of the
pilot to detect inconsistencies between downloaded data in
absence of alarms, and conversely its ability to detect false pos-
itive. Concerning automatic assessment, the current readability
analysis is based on iterative calls to a SAT solver to enumerate
the scenarios without considering minimality constraints. Such
an enumeration is a major bottleneck to provide a scalable
analyser. Considering some minimality criteria (typically based
on the inclusion) can drastically enhance the efficiency of the
solver.

REFERENCES

[1] Airbus, February 2018. [Online]. Available:
https://www.airbus.com/newsroom/press-releases/en/2018/02/vahana–
the-self-piloted–evtol-aircraft-from-a–by-airbus–succ.html

[2] F. Flammini, C. Pragliola, and G. Smarra, “Railway infrastructure
monitoring by drones,” in 2016 International Conference on Electrical
Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles &
International Transportation Electrification Conference (ESARS-ITEC).
IEEE, 2016, pp. 1–6.

[3] K. J. Hayhurst, J. M. Maddalon, P. S. Miner, G. N. Szatkowski, M. L.
Ulrey, M. P. DeWalt, and C. R. Spitzer, “Preliminary considerations for
classifying hazards of unmanned aircraft systems,” 2007.

[4] SAE, “Aerospace Recommended Practices 4754a - Development of
Civil Aircraft and Systems,” 2010.

[5] A. Legendre, A. Lanusse, and A. Rauzy, “Toward model
synchronization between safety analysis and system architecture
design in industrial contexts,” in Model-Based Safety and Assessment
- 5th International Symposium, IMBSA 2017, Trento, Italy, September
11-13, 2017, Proceedings, 2017, pp. 35–49. [Online]. Available:
https://doi.org/10.1007/978-3-319-64119-5 3

[6] SAE, “Aerospace Recommended Practices 4761 - guidelines and meth-
ods for conducting the safety assessment process on civil airborne
systems and equipment,” 1996.

[7] T. Prosvirnova, “Altarica 3.0: a model-based approach for safety anal-
yses,” Ph.D. dissertation, Ecole Polytechnique, 2014.

[8] A. Arnold, G. Point, A. Griffault, and A. Rauzy, “The altarica formalism
for describing concurrent systems,” Fundamanta Informaticae, vol. 40,
no. 2-3, pp. 109–124, 1999.

[9] Y. Papadopoulos and J. A. McDermid, “Hierarchically performed haz-
ard origin and propagation studies,” in Computer Safety, Reliability and
Security. Springer, 1999, pp. 139–152.

[10] A. Rauzy, “Mathematical foundations of minimal cutsets,” Reliability,
IEEE Transactions on, vol. 50, no. 4, pp. 389–396, 2001.

[11] B. Bittner, M. Bozzano, R. Cavada, A. Cimatti, M. Gario, A. Griggio,
C. Mattarei, A. Micheli, and G. Zampedri, “The xsap safety analysis
platform,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2016, pp. 533–539.

[12] F. A. Administration, “Advisory circular ac 23.1309-1c: Equipment,
systems, and installations in part 23 airplanes,” Federal Aviation Ad-
ministration, Tech. Rep., March 1999.

[13] Q. Gaudel, E. Chanthery, P. Ribot, and M. J. Daigle, Diagnosis of Hy-
brid Systems Using Hybrid Particle Petri Nets: Theory and Application
on a Planetary Rover. Cham: Springer International Publishing, 2018,
pp. 209–241.

[14] N. Wilson, “Computational techniques for a simple theory of condi-
tional preferences,” Artificial Intelligence, vol. 175, no. 7-8, pp. 1053–
1091, 2011.

[15] C. Pralet, X. Pucel, and S. Roussel, “Diagnosis of intermittent faults
with conditional preferences,” in Proceedings of the 27th International
Workshop on Principles of Diagnosis (DX’16), 2016.

[16] X. Pucel and S. Roussel, “Intermittent Fault Diagnosis as Discrete
Signal Estimation: Trackability analysis,” in DX 2017, BRESCIA,
Italy, Sep. 2016. [Online]. Available: https://hal.archives-ouvertes.fr/hal-
02003771

[17] E. Bensana, X. Pucel, and C. Seguin, “Improving fdir of spacecraft
systems with advanced tools and concepts,” Proc. ERTS, 2014.

[18] B. Bittner, M. Bozzano, A. Cimatti, R. De Ferluc, M. Gario, A. Guiotto,
and Y. Yushtein, “An integrated process for fdir design in aerospace,”
in International Symposium on Model-Based Safety and Assessmemt.
Springer, 2014, pp. 82–95.

[19] M. Machin, J. Guiochet, H. Waeselynck, J.-P. Blanquart, M. Roy, and
L. Masson, “Smof: A safety monitoring framework for autonomous sys-
tems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 48, no. 5, pp. 702–715, 2016.

[20] A. Paoli and S. Lafortune, “Safe diagnosability for fault-tolerant su-
pervision of discrete-event systems,” Automatica, vol. 41, no. 8, pp.
1335–1347, 2005.

[21] E. E. Alves, D. Bhatt, B. Hall, K. Driscoll, A. Murugesan, and
J. Rushby, “Considerations in assuring safety of increasingly au-
tonomous systems,” 2018.

[22] J. Zaytoon and S. Lafortune, “Overview of fault diagnosis methods for
discrete event systems,” Annual Reviews in Control, vol. 37, no. 2, pp.
308–320, 2013.

[23] W. Wonham, K. Cai, and K. Rudie, “Supervisory control of discrete-
event systems: A brief history–1980-2015,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 1791–1797, 2017.

[24] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin, “Algorithms
for omega-regular games with imperfect information,” in International
Workshop on Computer Science Logic. Springer, 2006, pp. 287–302.

9

