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How to build a new athletic track to break records

Amandine Aftalion∗ Emmanuel Trélat†

Abstract

We introduce a new optimal control model which encompasses pace optimization and motor
control effort for a runner on a fixed distance. The system couples mechanics, energetics, neural
drive to an economic decision theory of cost and benefit. We find how effort is minimized to
produce the best running strategy, in particular in the bend. This allows us to discriminate
between different types of tracks and estimate the discrepancy between lanes. Relating this
model to the optimal path problem called the Dubins path, we are able to determine the
geometry of the optimal track and estimate record times.

1 Introduction

Usain Bolt’s 200m record has not been beaten for ten years and Florence Griffith Joyner’s for
more than thirty years. And what about if the secret behind beating records was to build a new
athletic track with a better geometry? Researchers have addressed theoretical issues on various
aspects of sport records [1, 2, 3, 4, 5] or strategies [6, 7, 8, 9, 10], on the effect of running on a
bend [11, 12, 13, 14, 15], however little has been done on how to improve the records for running
200m. Indeed, the more economical way to run is on a straight, but only the 100m is run straight.
Starting from 200m, the track has curved parts so that the runner has to counter the centrifugal
force and inner lanes are therefore disadvantaged. Analyzing what is the geometry of an optimal
track to beat records has never been addressed. Here, we introduce an optimal control problem to
build a track related to the well-known Dubins problem [16]. Introducing a new model for pace
optimization and motor control effort, we determine the optimal running strategy which leads to
the design of a new track having shorter straights and larger radii.

It is not that it is impossible to build a straight 200m or 400m track, but it would not be
convenient for the audience and it would make a poor arena. At present, there are three designs
of tracks which can be certified by the IAAF [17]: standard tracks (made of straights and semi-
circles) and two types of double bend tracks (where the double bend is made of three arcs of two
different radii) as illustrated in Figure 1. It is usually admitted in the athletic community that the
standard track is the quickest and there is no hope to beat a record on a double bend track, the
second type DB2 with the longest straight being the worst. Actually, the double bend tracks have
been designed to include a football or rugby stadium in it, and the big disadvantage is that the
bends have a smaller radius of curvature. Therefore, the centrifugal force is bigger and the double
bend tracks are slower in total [18, 11]. Moreover, on such tracks, there is a major disadvantage
on being on lane 1, or the inside lanes where the curvature is the largest, because there is a bigger
difference between extreme lanes than on standard tracks. So the multi-sports arena are certainly
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Track Straight length Bend length Width Circle
Standard 84.39m 115.61m 73m (36.50m, 180◦)
Track Straight length Bend length Width Circle 1 Circle 2
DB1 79.996m 120.004m 80m (34.00m, 70◦) (51.543m,40◦)
DB2 98.52m 101.48m 72m (24.00m, 60◦) (48.00m, 60◦)

Figure 1: Geometry and dimensions for IAAF certified tracks. The straight length is AB and the
width is BC. The standard track is made of two straights and two semi-circles. There are two
types of double bend tracks (DB1 ans DB2) and each of them has a smaller outside radius than
the standard track, leading to a higher centrifugal force. Note that the distance 400m is achieved
at 0.3m from the boundary of the first lane.

not favorable for athletic records! The issue of this paper is to analyze better what is an optimal
track to beat records, and also a track which minimizes the disadvantage of inner lanes.

When on a bend, the runner uses his propulsive force both to move along the track and to act
against the centrifugal force mv2/R, where m is his mass, v is his velocity and R is the radius
of curvature of the track (which depends on the position of the runner on the track). Therefore,
there is a limitation, also called constraint of movement[11] which is

f2 +
v4

R2
6 f2max

where fmax is the maximal propulsive force per unit mass and f is the time dependent propulsive
force per unit mass in the direction of movement. A first idea is to find an optimal track without
solving in details the runner’s equations of movement but minimizing the maximum of the curvature
(that is 1/R) over the track. Indeed, this way, the velocity and propulsive force can be maximized.
Without any extra constraint, the optimal solution minimizing the maximum of curvature is the
straight [16, 19]. But we want to impose to have a closed loop in order to have a nice arena for the
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audience. Another constraint can be to additionally include an inner rectangle for the multi sport
activities. Denoting by ABCD a track as in Figure 1, we assume that the track is symmetric with

respect to horizontal and vertical lines, that (AB) and (CD) are straights so that B̃C and D̃A are
the bends on each side.

2 Optimal track.

First problem. Assume that the length of the straight is fixed, hence the length lb of the bend
is fixed too, but the Euclidean distance BC between the points B and C is free.

Find the optimal curve of prescribed length lb joining two free points B and C, with horizontal
tangent at B and C, and minimizing the upper bound of the curvature.

The problem is a particular case of the well known Dubins problem [16, 19] and the optimal
geometry is a semi-circle leading to the standard track made of straights and semi-circles. If one
ignores the obligation to have a straight of prescribed length, then the optimal arena from this
point of view is a circle of radius R such that R + 0.3 = 200/π. Actually, it would be better to
have a shorter straight than the official standard track in order to have a bigger radius for the two
semi-circles and thus a smaller centrifugal force. Our simulations on the full runner problem (see
below) indicate that below a length of 60m for the straight line, the difference becomes tiny in
terms of performance (of the order of one thousandth of a second) because the centrifugal force is
no longer significant. But a straight of 60m is definitely quicker by 4 hundredth of a second than
the present straight of 84.39m. Therefore, the present standard track is not favorable for athletic
records.

Let us be more specific about the optimal control problem to design the best track to beat
records: let (x(s), y(s)) be a curve of length l, solution of

ẋ(s) = cos θ(s), x(l) = 0,
ẏ(s) = sin θ(s), y(0) = 0,

θ̇(s) = u(s), θ(0) = π/2, θ(l) = π.

By symmetry, this represents a quarter of the bend. The curvature of the track is given by
u(s) = θ̇(s) which is our control. The usual locomotion problem[20] takes w = u̇ as a control

and minimizes
∫ l

0
w(s)2 ds, but here we want to minimize the maximum of the curvature, that is

minimize M under the control constraint |u(s)| 6 M for s ∈ [0, l]. This problem is related to
well known Dubins optimal control problem[16, 19] for which the solutions are concatenations of
straight lines and of arcs of a circle. Without any additional constraint, this leads to the standard
track.

Second problem: Because of the constraint to include a football or a rugby stadium inside the
track, the Euclidean distance BC has to be greater than that realizing the minimum of Problem
1. Then of course, the semi-circle is not possible because the length of the curve and the distance
BC are not consistent.

Find the optimal curve of prescribed length lb joining two free points B and C whose distance
is bigger than some prescribed value l2, with horizontal tangent at B and C, minimizing the upper
bound of the curvature, and so that the track ABCD contains a fixed stadium.

It follows from [16] that the optimal solution is made up of two quarters of a circle joined by a
vertical straight, instead of three arcs of a circle as in the double bend tracks. If lb is the length of
the bend given by Figure 1, R is the radius and lv is the length of the vertical straight, then

2R+ lv = BC and π(R+ 0.3) + lv = lb.
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Note that we have to add 0.3m to compute the length because the runner is supposed to run the
whole track of 400m at 0.3m of the border. Therefore, (π − 2)R = lb − BC − 0.3π. For DB1,
we fix AB = 79.996 and want to include a football stadium of 70 × 109 so that BC > 70. The
optimization yields R = 34.22 (which is very close to the outer radius of DB1 which is 34) and
lv = 11.56. For DB2, we fix AB = 98.52 and BC > 72, then the optimization yields R = 25
(slightly bigger than the outer radius for DB2 which is 24) and lv = 22. In Figure 2, we see that
Problem 2 yields for the constraints of DB2 a solution which is very close to the actual design of
the track.

Figure 2: Optimal track (red) for a fixed distance AB = 98.52 and for BC > 72, including a rugby
stadium which are the grey rectangles. There are two quarters of a circle, separated by a vertical
straight, which is eventually very close to the double bend track in black.

Third problem: Take a fixed rectangle or a fixed shape corresponding to a football stadium or a
rugby stadium. Find the optimal curve of length 400m, encompassing this shape, at a distance at
least 0.3m, and minimizing the maximum of the curvature. The difference with Problem 2 is that
we do not impose a straight of fixed length.

The football stadium is a rectangle of length 109m and width 70m. The rugby stadium has to
include a rectangle of length 95m and width 73m, to which are added two small rectangles on each
side of length 12m and width 66m, leading to a new rectangle of size 119× 66.

An extra constraint is then to have a track encompassing a fixed rectangle. For instance define
a rectangle of width 2l1 and length 2l2, and optimize the curve, as above, under the additional
constraint

max(|x(s)|/l1, |y(s)|/l2) > 1 ∀s ∈ [0, l].

This yields the track solving Problem 3 illustrated in Figure 3.
The optimal curve, solution to Problem 3, is a wider track than the usual tracks, as illustrated

in Figure 3. This optimal track is much better for beating records as we will see below.
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Figure 3: Optimal track (blue) including a rugby stadium. It is made of horizontal lines of length
55.52m, of vertical lines of length 2.52m and of quarters of a circle of radius 44.88m. It is wider
by 8m than the standard track (dotted black), which contains neither the football stadium nor the
rugby stadium. The optimal track will allow to break records. Also plotted is a standard track
with shorter straights (dotted magenta) which also includes a football and a rugby stadium; it
consists of two 61m straights and two semi-circles.

Figure 4: Zoom on the new optimal track. Note that the length 400m is measured at 0.3m from
the edge of the track, so that 45.18 = 44.88 + 0.3.
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3 Runner model.

In order to check that the optimal track solving Problem 3 illustrated in Figure 3 or a standard
track with shorter straights are indeed significantly better than the existing ones, we next estimate
the runner’s performance on these tracks. Our aim is to prove that, on such an optimized track,
not only, good runners can improve their records, but also, the discrepancy between extreme lanes
is decreased. Our numerical simulations to compute the optimal time rely on solving an optimal
control problem on a curved track[11] that we improve using a neural drive model[21, 22] and
taking into account a restoring force to straighten back. It articulates motor control to economic
decision theory of cost and benefit. We also use the minimal intervention principle[23] so that
effort is minimized through penalty terms.

Let d > 0 be fixed, x(t) be the position of the runner at time t, v(t) the velocity, e(t) the
anaerobic energy, f(t) the propulsive force. The system for a runner on a straight track introduced
in [24] and extended by [25, 26, 27, 28, 29] relies on Newton’s second law and on an energy equation.
To better encompass the variations of the propulsive force, we improve the previous model[11] by
adding a motor control equation limiting the variations of f(t) through the motor control u(t) as
introduced in another context[22]. The energy equation states that the power of the propulsive
force is equal to the available power coming from the anaerobic energy e(t) and the aerobic energy,
that is the energetic equivalent of the oxygen uptake V O2 [11]. Newton’s second law applied to
the runner takes into account the propulsive force f and the friction term, that we choose to be
linear in velocity and this provides an equation in the direction of movement:

ẋ(t) = v(t) x(0) = 0, x(tf ) = d

v̇(t) = −v(t)

τ
+ f(t) v(0) = v0

ḟ(t) = γ
(
u(t)(Fmax − f(t))− f(t)

)
f(t) > 0

ė(t) = σ(e(t))− f(t)v(t) e(0) = e0, e(t) > 0, e(tf ) = 0,

where e0 > 0 is the initial energy, τ > 0 is the friction coefficient related to the runner’s economy,
Fmax > 0 is a threshold upper bound for the force, γ > 0 is the time constant of motor activation
and u(t) is the neural drive which will be a control. The second equation is Newton’s second
law applied to the runner, taking into account the propulsive force f and the friction term, that
we choose to be linear in velocity. The third equation is the motor control equation limiting the
variations of f through the motor control u. The fourth equation is the energy equation: the power
of the propulsive force is equal to the available power coming from the anaerobic energy e(t) and
the aerobic energy. The function σ(e) is the energetic equivalent of the oxygen uptake V O2 [11].
For a short race, we have

σ(e) = σmax
e0 − e
e0

.

The optimal control problem on a straight consists in minimizing a cost: since the runner wants to
minimize his final time by optimizing his effort, the cost is the sum of the final time and a weighted
L2 norm of the motor control u. But other additional terms will be considered on the bend.

When running a bend, one has to take into account the angle θ(t) with respect to the vertical
axis. Therefore, one has to project Newton’s law on the Frénet vectors to find the reaction N of
the ground. At equilibrium, we have

N = g cos θ +
v2

R
sin θ
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and then the angle θ is such that

tan θ =
v2

Rg
.

Nevertheless, since the velocity v varies with time and the radius of curvature changes abruptly at
the end of the bend, we go one step further in the modelling and we consider that the runner is
modelled by a rod of length 2` having an angle θ with the vertical axis. As illustrated in Figure 5,
in the moving frame at velocity v, the forces per unit mass acting on the rod are the weight g, the
centrifugal force fc = v2/R and the reaction of the ground N . Moreover, because the runner wants

Figure 5: Forces per unit mass acting on a runner modelled by a rod.

to anticipate the return to the straight line, he exerts a restoring force at his foot to straighten
back to θ = 0. This is why we take θ̇(t) as another control. We need to penalize the cost with the
variables we control, as well as with the angle variations. This is a minimal effort principle[23].
We choose a penalty term related to the derivatives of the position in the angular plane:

‖r̈(t)‖2 = `2θ̈(t)2 + `2θ̇(t)4.

Assuming regular variations of the control θ̇, we find the expression of θ̈ from the sum of momentum
around the axis which yields

J

`
θ̈(t) =

v(t)2

R
cos θ(t)− g sin θ(t)

where J = 4
3`

2 for a runner of height 2`, recalling that everything is by unit of mass. Therefore,
our penalty term is

9

16

Å
v(t)2

R cos θ(t)
− g sin θ(t)

ã2
+ `2θ̇(t)4.

Because the runner has a finite force, we have an upper bound coupling the propulsive force, the
velocity and the angle.

f(t)2 +N(t)2 6 f2M + g2.
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We find the value of N(t) from the projection on er taking into account the normal acceleration

`θ̇(t)2 = N(t)− g cos θ(t)− v(t)2

R
sin θ(t).

We also add, in the energy equation, a term related to the power developed by the restoring force
in the energy consumption, as well as a term related to the cost of staying with a static momentum.
We refer to [30] for a choice of the coefficient of cost of this static moment: cstat = 0.17.

The optimal control problem consists in solving the solutions under the constraints by mini-
mizing the cost: since the runner wants to minimize his final time by optimizing his effort, the
cost is the sum of the final time and a penalty term due to the controls u, θ̇ and a term related
to variations of the angle. We therefore follow the minimal intervention principle[23] in human
movement. This provides a well posed optimal control problem that we solve numerically.

Instead of writing the equations of motion in the time variable, we write them using the distance
variable s. This amounts to dividing by v the derivatives in time to get the derivatives in space.
Turning this into the distance variable, this yields the optimal control problem

min

∫ d

0

1

v(s)

Å
1 + ε1u(s)2 + ε2

Ç
9

16

Å
v(s)2

Rk(s)
cos θ(s)− g sin θ(s)

ã2
+ `2w(s)4

å
+ ε3`

2w(s)2
ã
ds

where u(s) and w(s) = v(s)θ′(s) are the controls, under the dynamical constraints

v′(s) =
1

v(s)

Å
−v(s)

τ
+ f(s)

ã
, v(0) = v0,

e′(s) =
σ(e(s))− f(s)v(s)

v(s)
− `(cstat − `w(s))

v(s)

Å
v(s)2

Rk(s)
cos θ(s)− g sin θ(s)

ã
,

e(0) = e0, e(s) > 0, e(d) = 0,

f ′(s) =
γ

v(s)
(u(s)(Fmax − f(s))− f(s)) , f(s) > 0,

θ′(s) =
w(s)

v(s)
,

and under the state constraint

f(s)2 +

Å
v(s)2

Rk(s)
sin θ(s) + g cos θ(s) + `w(s)2

ã2
− g2 6 f2M

for s ∈ [0, d]. Here Rk(s) denotes the curvature radius on lane k at distance s from the start. The
parameters εi are chosen so that the penalty terms are a small perturbation of the first integral
which is the time to cross the finish line. We take ε1 = 0.01, ε2 = 1, ε3 = 10.

The identification of the parameters is made on Johnson’s data given in Table 1. This leads to
fM = 9.5, e0 = 1619.56, τ = 1.2, Fmax = 16, v0 = 2.32, γ = 0.0025.

Optimization and numerical implementation of the optimal control problem are done through
the combination of automatic differentiation softwares with the modeling language AMPL [31] and
expert optimization routines with the open-source package IpOpt [32]). This allows to solve for
the velocity, force, energy, angle in terms of the distance providing the optimal strategy and the
final time.

On a standard track, the runner starts on the semi-circle and he adapts his angle θ in such a
way that tan θ = v2/Rg. Then he straightens when reaching the straight part of the track. We
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Table 1: Johnson’s timesplits for the 1996 World Championships. Line 1 : distance in meters, line
2, time splits for 10 meters in seconds.

20m 30m 40m 50m 60m 70m 80m 90m 100m 110m 120m

3.02 0.97 0.91 0.89 0.87 0.86 0.87 0.87 0.88 0.86 0.86

130m 140m 150m 160m 170m 180m 190m 200m

0.89 0,91 0.91 0,93 0,94 0.96 0.96 0.96

have chosen the numerical parameters to match Michael Johnson’s record in Atlanta in 1996 to see
whether he could have done better on the new optimal track. He was on lane 5 with a final time of
19.32s. The lane width is 1.22m and lanes 2 and out are measured 20 cm out from the inside of the
lane. For lane 1, according to our model, Johnson would have made 19.37s on the usual standard
track. The optimal track illustrated in Figure 3 is indeed significantly more favorable and the time
discrepancy between lanes is smaller: he would have beaten his record by 4 hundredth of a second,
with a final time of 19.285s on lane 5, and 19.30s on lane 1. The angle of the runner is illustrated
in Figure 6. On this new track, the runner does not have time to be fully straight between the two
curves (difference of angle of four degrees) because the vertical straight is very short.

It is interesting to note that the times we compute on the new track are actually very close by
the thousandth to the modified standard track with shorter straights of 61m that we have drawn
in Figure 3.

To complete our study, we mention that similar simulations on double bend tracks DB2 lead
to a final time of 19.52s on lane 1 and of 19.484s on lane 5, while on DB1, it is 19.44 for line 1 and
19.40 for line 5. They are much slower tracks since the outer radius of curvature is very small.

Here, following [30] we have taken cstat = 0.17. Assuming that the runner would have more
difficulty in staying bent, that is for instance his static coefficient is five times bigger, cstat = 0.85,
he takes then slightly longer to run and the discrepancy between lanes is bigger but remains only of
the order of the hundredth of a second. The difference between lanes remains significantly smaller.

4 Conclusion

In conclusion, it is quite new to be able to compute the optimal geometry of the track and predict
the discrepancy in records according to this geometry. Our optimal control problem couples me-
chanics, energy, neural drive to determine through cost and benefit, the optimal strategy to run a
race. Our study highlights that present standard athletic tracks are not the best to break records.
Indeed shorter straights and larger radii of curvature could improve the 200m record possibly by 4
hundredth of seconds. Using the Dubins path problem, the constraint to encompass other sports
can be taken into account leading to a new track with shorter horizontal straights and small vertical
straights. Our recommendation is to build such tracks in the future.

Acknowlegment. The authors are very grateful to Vincent Hakim and Jean-Pierre Nadal for
discussions.
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Figure 6: The angle θ (in blue) vs the distance for a runner on lane 5 compared with arctan(v2/Rg)
(in red). Top left, on a standard track with shorter straights, the maximal angle is 0.25 rad, that
is 14◦. The runner stays bent longer but at a smaller angle than on the standard track (bottom
left), for which the maximal angle is 0.28 rad, that is 16.1◦. Top right, on the optimal track, the
maximal angle is 0.24 rad, that is 13.7◦ and adapts to the vertical straight; bottom right, on the
double bend track DB2, the angle is much bigger and has to change drastically leading to poor
final times.
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[32] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming,” Mathematical Programming, vol. 106, no. 1,
pp. 25–57, 2006.

12


	Introduction
	Optimal track.
	Runner model.
	Conclusion

