
HAL Id: hal-02441594
https://hal.science/hal-02441594

Submitted on 15 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using execution graphs to model a prefetch and write
buffers and its application to the Bostan MPPA

Wei-Tsun Sun, Hugues Cassé, Christine Rochange, Hamza Rihani, Claire
Maiza

To cite this version:
Wei-Tsun Sun, Hugues Cassé, Christine Rochange, Hamza Rihani, Claire Maiza. Using execution
graphs to model a prefetch and write buffers and its application to the Bostan MPPA. 9th European
Congress on Embedded real time Software and Systems (ERTS 2018), Jan 2018, Toulouse, France.
�hal-02441594�

https://hal.science/hal-02441594
https://hal.archives-ouvertes.fr

Using execution graphs to model a prefetch and write buffers and

its application to the Bostan MPPA∗

Wei-Tsun Sun1, Hugues Cassé1, Christine Rochange1, Hamza Rihani2, and Claire Mäıza2

1 IRIT - University of Toulouse
2 Verimag - Univ. Grenoble Alpes

{wsun, casse, rochange}@irit.fr

{rihanih, claire.maiza}@univ-grenoble-alpes.fr

Abstract

Verifying the temporal properties of critical sys-
tems embedded in vehicles, like planes or cars, is
crucial to avoid catastrophic issues. A key com-
ponent of this verification is the Worst Case Exe-
cution Time (WCET) of the programs composing
these systems. A common and sound approach to
compute WCET is based on static analysis of the
programs that requires, in turn, to precisely model
the behavior and the timings of the hardware.

Processor-specific features such as pipelines,
caches, and buffers influence the hardware perfor-
mances significantly. Hence taking processor fea-
tures into account when estimating WCET is essen-
tial. Modeling the processor’s features formally to
ensure safe and accurate estimation is then a must.
In this paper, we present the methodology applied
to capture the behavior of prefetch and write buffers
of the Kalray Bostan MPPA microprocessor, and
to incorporate the established models with the Ex-
ecution Graph (XG) to obtain WCET estimation.
These analyses are then applied to the Mälardalen
benchmark suite and the experimentation results
validate the feasibility of our approach.

Keywords Real-Time, WCET, static analysis,
VLIW, pipeline analysis

1 Introduction

Verifying the temporal properties of critical sys-
tems embedded in vehicles, like planes or cars, is
crucial to avoid catastrophic issues. A key compo-
nent of this verification is the Worst Case Execution
Time (WCET) of the programs composing these
systems. In this paper, we focus on the WCET com-
putation by static analysis that requires to model
the software and the host hardware in order to ob-
tain a sound overestimation of the WCET. This

∗This work is supported by the project CAPACITES,
funded by French DGE and BPI.

computation is usually made of several analyses per-
formed on the binary code and depending on the
considered micro-architecture.

This paper presents the adaptation of the Exe-
cution Graph (XG) [14] approach to model two
pipeline acceleration mechanisms: the prefetch
buffer and the write buffer.

As a platform example containing write buffer
and prefetch buffer we target the Kalray’s Bostan
MPPA core, where we will use its short name, k1b,
throughout the paper. This architecture is designed
for massive parallel computing and hence provides
strong computational power. Yet, its design should
also address the requirements for real-time applica-
tions, i.e. the deterministic and predictable behav-
ior of the hardware. Therefore, tight WCET static
estimation should naturally be achieved for this ar-
chitecture: this paper also verifies this assumption.

Contributions: (a) the analysis of the Prefetch
Buffer (PFB) and the WriteBuffer (WB), (b) the
implementation in XG of their temporal behavior,
(c) an approach based on a mix of static analyses and
XG customization to cope with micro-architecture
elements exhibiting complex behaviors.

Organization: The next section presents the
state-of-the-art of WCET computation by static
analysis and introduces the XG method and the
concept of temporal events. Section 3 and 4 show
the support, respectively, of PFB and WB, in the
block time computation by XG. Related works are
discussed in Section 5 and we conclude in Section 6.

2 Background

In this paper, we use the Implicit Path Enumera-
tion Technique (IPET) [10] approach to compute an
upper-bound on the WCET of programs in machine
code. This approach is currently the most used as it
is the most flexible to combine the timing effects of

1

 main BB 1 (PREFIX)

bd inst addr details
b1 i1_1 1250 get $r8 = $ra
 i1_2 1254 add $r12 = $r12, -8
 i1_3 1258 make $r0 = 0;;
b2 i2_1 125c make $r16 = 22288
 i2_2 1260 make $r1 = 40
 i2_3 1264 make $r3 = 1
 i2_4 1268 sw 20[$r12] = $r16;;
b3 i3_1 1270 make $r0 = 0
 i3_2 1274 sb 41[$r16] = $r0;;
b4 i4_1 1278 call -1392
 i4_2 127c copy $r2 = $r0
 i4_3 1280 sw 16[$r12] = $r8;;

 icrc BB 1 (BODY)

bd inst addr details
b5 i5_1 0d08 make $r4 = 26088
 i5_2 0d0c zxh $r0 = $r0
 i5_3 0d10 sxh $r2 = $r2;;
b6 i6_1 0d18 lhz $r9 = 0[$r4];;
b7 i7_1 0d1c cb.nez $r9, 128;;

call

Figure 1: The partial CFG from CRC

the different components of the micro-architecture.
It is often split into three passes: (a) extraction of
the execution paths in the binary code as a Con-
trol Flow Graph (CFG) and analysis of flow facts
(e.g. loop bounds), (b) analysis and qualification of
the behavior of the acceleration mechanisms (like
caches) and (c) combination of information provided
by (a) and (b) to obtain the block times and the
WCET.

The program is represented by a CFG: G =
(V,E, ε) where V is the set of Basic Blocks (BB),
E = V × V is the set of transitions between BB
(by sequential execution or branches) and ε ∈ V is
the entry point of the program. A basic block is a
sequence of instructions with one entry point and
one exit point: a branching instruction is always
the last instruction of the BB.

In this paper we consider a Very Long Instruction
Word architecture (VLIW). The instructions of a
VLIW are grouped in bundle.

Following example: Throughout this paper, we
use a code segment of the program crc, from the
Mälardalen benchmarks [1], whose CFG is shown in
Figure 1. In this example, function icrc (whose we
only show the first BB) is called from BB 1 of the
main function. Since the processor is implemented
with VLIW architecture, a bundle, bi, consists of
multiple instructions executed together. The bun-
dles are shown at the most left columns in the BB,
where each individual instruction is labeled as im n,
indicating the nth instruction of bundle bm. The
program address and the details of each instruction
are given at the right of each BB.

2.1 The IPET approach

The basic formulation of IPET considers the
WCET as the maximized objective function of an
Integer Linear Programming (ILP) problem:

WCET = max
∑

v∈V
tv xv (1)

where xv is the occurrence number of BB v on the
longest path and coefficient tv is the execution time
of BB.

The WCET objective function is bound by struc-
tural constraints representing the aspect of the pro-
gram execution. They encompass, at least, con-
straint representing the structure of the CFG: ε is
executed once and a BB is executed as many times
it is entered or left:

xε = 1

∀v ∈ V, xv =
∑

w∈SUCC(v)

xv→w =
∑

w∈PRED(v)

xw→v

where xv→w is the execution number of edge v →
w ∈ E on the longest path, SUCC(v), respectively
PRED(v), are the set of successors, predecessors,
of v ∈ V in CFG G.

If G contains a loop Lh (a loop headed by BB
h ∈ V), we have also to bound the count of back-
edge traversals (BACK(h) provides the set of back
edges of G sinking to h) with N , the maximum
number of iteration of Lh:

∑

v→h∈BACK(h)

xv→h ≤ N

The ILP problem is then maximized by an ILP
solver and the result is the estimated WCET of the
program.

2.2 Execution Graphs

The IPET formulation of the previous paragraph
uses coefficient tv as the execution time of BB v ∈ V ,
that are the result of running the instructions of the
BB on the micro-architecture (pipeline and acceler-
ation mechanisms). This paper uses the Execution
Graph (XG) [9, 14] approach to compute tv.

An XG GX = (VX , EX) models the traversal of
the pipeline by the bundles of a BB v: the set of
vertices, VX = Bv×S, denoted [b/s], represents the
occupation of bundle b ∈ Bv in the pipeline stage s ∈
S. The edges EX = VX × VX represents the timing
dependency between two vertices of VX . Examples
of XG edges include but are not limited to pipeline
order, instruction order or data dependencies.

Example: Figure 2 shows the XG created from
the sequence of two BB in the partial CFG shown
in Figure 1. As target platform with write buffer

2

b1/PF (1) 0 b1/ID (1) 1

b2/PF (1) 1

b1/RR (1) 2

b2/ID (1) 2

b1/E1 (1) 3

b2/RR (1) 3

b1/E2 (1) 4

$r12

b2/E1 (1) 4

b3/E1 (1) 5

$r0

b4/RR (1) 5

$r12

b4/E1 (1) 6

$r8

b1/E3 (1) 5

b2/E2 (1) 5

b1/E4 (1) 6

b2/E3 (1) 6 b2/E4 (1) 7

b3/PF (1) 2 b3/ID (1) 3 b3/RR (1) 4

$r16

b3/E2 (1) 6 b3/E3 (1) 7 b3/E4 (1) 8

b4/PF (1) 3 b4/ID (1) 4

$r0

b5/RR (1) 7

$r0 b4/E2 (1) 7 b4/E3 (1) 8 b4/E4 (1) 9

b5/PF (1) 5 b5/ID (1) 6

$r2

b5/E1 (1) 8 b5/E2 (1) 9 b5/E3 (1) 10 b5/E4 (1) 11

b6/PF (1) 6 b6/ID (1) 7 b6/RR (1) 8

$r4

b6/E1 (1) 9 b6/E2 (1) 10 b6/E3 (1) 11 b6/E4 (1) 12

b7/PF (1) 7 b7/ID (1) 10 b7/RR (1) 11 b7/E1 (1) 12

$r9

b7/E2 (1) 13 b7/E3 (1) 14 b7/E4 (1) 15

Figure 2: The XG without considering PFB and WB

and prefetch buffer we use the MPPA core k1b.
k1b implements a 7-stage pipeline, that is, S =
{PF, ID, RR, E1, E2, E3, E4 } for which de-
tails are given later in the paper. This example
illustrates the usual types of arrows in XG: (a) the
solid vertical arrows represents the sequential flow
of bundles in the program, (b) the solid horizontal
arrows represents the order of pipeline stages and
(c) the slashed arrows represents data dependencies.
The slashed arrows are applicable when a bundle
uses the content of a register produced by another
bundle: it links the vertex where the register value
is computed to the vertex where it is used.

Not illustrated in Figure 2 but used later in the
paper, the XG edges may be solid or slashed. Solid
edges, [bi/si] → [bj/sj] means that [bj/sj] starts
just after the end of execution of [bi/si]. A slashed
edge, [bi/si] 9 [bj/sj], means that [bj/sj] can start
as soon as [bi/si] starts.

The XG is used to compute the starting and the
ending times of each vertex (a) considering the first
vertex starts at time 0 and (b) a vertex can only start
when all its predecessors have started (slashed edge)
or ended (solid edge): the default duration of each
stage is considered to be 1 cycle. As the XG does
not contain any cycles, a calculation following the
topological order of the graph is enough to obtain
the start time of each vertex.

A naive approach to compute block time would
consider that the block times is the difference be-
tween the starting time of the first bundle of the
block and the ending of its last bundle: yet, this
would lead to a significant overestimation as, be-
cause of the pipeline, the block executions overlap.
Instead, we prefer to build an XG for a block (body)
and each of predecessors (called prefixes) in the
CFG (as in Figure 1). From there, the block time
is more precisely defined as the difference between
the ending time of last vertex of the body and the
ending of the last vertex of the prefix.

To use a time based on the predecessor blocks,
the Equation 1 is reformulated as:

WCET = max
∑

v→w∈E
tv→w xv→w (2)

where tv→w is the time computed with v considered
as the prefix and w as the block.

2.3 Support of variable execution
times

The times tv→w computed in the previous para-
graph assume that the execution time of a bundle
in a pipeline stage is fixed: 1 cycle. Yet, in order to
ensure a good execution performance, acceleration
mechanisms are introduced to counterbalance the
relative slowness of the memory. These mechanisms
(instruction cache, data cache, etc) make memory
accesses on a statistical basis: most of the time,
they allow faster accesses (hit) and, more rarely,
they have to perform a slow access to the memory
(miss).

In order to account for such an effect e, called
an event, one has (a) to bound the number of oc-
currences of hits, xh,ev→w, and misses, xm,ev→w, and (b)
to get the time in cycles of this access, th,ev→w and
tm,ev→w. th,ev→w and tm,ev→w are usually constants with
th,ev→w = 1 and tm,ev→w depending on the hardware
properties. On the opposite, an analysis, that de-
pends on the acceleration mechanism itself, must
be performed to obtain xh,ev→w and xm,ev→w. An event
is made of elements including th,ev→w, tm,ev→w, xh,ev→w,
xm,ev→w, and the component of the XG (a vertex or
an edge) that each event applies to. An activation
of an event indicates that the XG component time
is set to tm,ev→w.

Until now, we have just considered an event alone.
Yet, a single BB may exhibit several events based on
the effects of acceleration mechanism triggered by
the bundles composing the BB. To soundly support

3

timing anomalies, we have to consider all combina-
tions of activation / inactivation of events produced
within the BB. The all possible combinations of
events, Cv→w, for a sequence of BB v → w, the
Equation 2 is rewritten to:

WCET = max
∑

v→w∈E

∑

c∈Cv→w

tcv→w xcv→w (3)

where tcv→w and xcv→w respectively represent the
time and the count of occurrences of configuration c
along the WCET path. New constraints on xcv→w
must be set up to cope with the occurrences variables
of each event e of v → w, that is xh,ev→w and xm,ev→w.

The remaining of the paper analyzes xh,ev→w, xm,ev→w,
th,ev→w and xm,ev→w for two accelerations mechanisms:
the PFB and the WB.

3 Capturing the PFB in XG

As the VLIW pipeline consumes several instruc-
tions words at each cycle, a PFB is used to increase
the throughput of instruction fetching from the in-
struction cache (IC). Assuming that most of the
code is sequential, the PFB speculatively loads as
many instructions as possible to amortize possible
miss times in the IC. However, when a branch is
performed, its content is discarded for refilling the
actual instructions of the branching target, which
introduces a delay in execution.

To summarize, possible delays from the PFB are
due to: (1) the loading of the speculative instruction
which may in turn trigger IC misses, and (2) clearing
the PFB and refilling instructions from the actual
target address. In this section, we will use the
example illustrated in Figure 2 to show the behaviors
of the PFB and how to capture them into the XG.

3.1 The relationship between the IC
and the PFB

Due to the VLIW feature in k1b, one or more
instructions are combined to form a bundle. The
IC is organized into 64 sets of 64-byte cache blocks
(CB). Figure 3(a) illustrates how our example is
located in the IC. Note that each block in Figure
3(a) is of 1 word, and some instructions may span
over more than one word, e.g. the i2 4, for which
we use i2 41 and i2 42 to present the parts of the
instruction. We use different colors to show the
words are in different CBs. Words which are not
part of the prefix nor the body are shaded and
identified in the form of sn to show how the PFB
behaves.

k1b is equipped with a 48-byte prefetch buffer
(PFB) organized as a set of 4 FIFOs, each FIFO
consisting of 3 stages (elements). The size of each
element is 1 word (4 bytes). The PFB fetches

instructions from the IC in a request-reply manner.
The data provided by the IC, to the PFB, may
be an incomplete (partial) bundle, a full bundle,
or multiple bundles whose total size is of 4 words.
The PFB does not have any knowledge of the data
received, in other words, it is bundle-unaware.

When each FIFO of the PFB has at least one
available space, the PFB fetches 4 words from the
IC on each request with a specified address. Each
word provided by the IC will be fetched to the desig-
nated FIFO according to its address. For example,
the word of instruction i1 1 located at the address
0x1250 will be assigned to the first FIFO, i1 2 at the
address 0x1254 will be stored in the second FIFO
and so forth.

Since only the prefix-body pair of BBs is con-
sidered when creating the corresponding XG, the
state of the PFB at the beginning of the prefix is
assumed with the worst-case scenario, i.e. the PFB
is full. The words in the PFB will be taken by
the ID stage, one after another, along with loading
the prefix into the PFB. This leads to the state
shown in Figure 3(b), which the PFB is filled by
the instructions of the prefix.

3.2 From the PFB to the ID stage

Along with the fetching process, the ID stage
extracts a bundle from the PFB, which in turn
frees spaces for the next fetch. However, the newly
available spaces may not be sufficient for the PFB to
request the data from the IC. Figure 3(c) shows such
a case: even though bundle b1 (i1 1 to i1 3), which
occupies the first elements of the 3 FIFOs, is fed
to the ID, the 4th FIFO is still full and thereby no
request will be sent to the IC. Once b2 is extracted
from the PFB, i4 3 will then be fetched, along with
s1-s3 as shown in Figure 3(d). Once bundle b3 is
fully entered into the PFB given that b2 leaves the
PFB (extracted by the ID). Such a relationship
between b2 and b4 is called a contention . Note
that in Figure 3(d) s4 to s7 are also fetched into the
PFB to capture the worst-case scenario where the
pipeline does not consume instructions faster than
the PFB fetches them. Similarly, the extraction
of b3 does not provide sufficient space for the next
fetch, as shown in Figure 3(e).

Figure 3(f) shows that once bundle b4 is transfered
to the ID, data s8 to s11 are loaded into the PFB.
Even though data s1-s11 are of the same color as i4 3,
they are shaded because they will be abandoned
once the function call (i4 1) takes place. To address
such a behavior, we call the loading of s1-s11 to the
PFB speculation throughout this paper.

Function calls as well as branches will make the
PFB clears its content and start to request the data
of the target address from the IC. We identify this
behavior as branch . Note that the first instruction

4

...

Instruction Cache

i1_2 i1_3 i2_1i1_1

0x1240

i2_3 i2_41 i2_42i2_2

i3_2 i4_1 i4_2i3_1

(a)

s1 s2 s3i4_3

s5 s6 s7s4

s9 s10 s11s8

i5_32 i6_1 i7_1i5_31

s13 s14 s15s12

s17 s18 s19s16

s21 s22 s23s20

..
.

s12

s13

s14

s16

s17

s18

3
Stage

i7_1s15s19

2 1
1

2

3

4

FI
FO

(i) b6 in ID

s12

s13

s14

s16

s17

s18

s20

s21

s22

3
Stage

s15s19s23

2 1
1

2

3

4

FI
FO

(j) b7 in ID

i4_3

s1

i4_1

s4

s5

s2s6

3
Stage

i4_2s3s7

2 1
1

2

3

4

FI
F
O

(e) b3 in ID

s4

s1

s2

s8

s5

s6

s9

s10

3
Stage

s3s7s11

2 1
1

2

3

4

FI
FO

(f) b4 in ID

i5_31

i5_32

i5_1

s12

s13

i6_1

s16

s17

s14

3
Stage

i5_2i7_1s15

2 1
1

2

3

4

FI
FO

(g) fill b5-b7

s12

s13

i6_1

s16

s17

s14s18

3
Stage

i7_1s15s19

2 1
1

2

3

4
FI

FO

(h) b5 in ID

i2_2

i2_3

i2_41

i3_1

i3_2

i4_1

3
Stage

i2_1i2_42i4_2

2 1
1

2

3

4

F
I
F
O

(c) b1 in ID

i3_1

i3_2

i4_1

i4_3

s1

s2

s4

s5

s6

3
Stage

i4_2s3s7

2 1
1

2

3

4

(d) b2 in ID

i1_1

i1_2

i1_3

i2_2

i2_3

i2_41

i3_1

i3_2

i4_1

3
Stage

i2_1i2_42i4_2

2 1
1

2

3

4

(b) fill b1-b4

i5_1 i5_2

FI
FO

FI
FO

C
B
9 0x1250

0x1260

0x1270

0x1280

C
B
1
0 0x1290

0x12a0

0x12b0

0x0d00

C
B
5
2 0x0d10

0x0d20

0x0d30

0x0d40

C
B
5
3

0x0d50

..
.

Figure 3: The layout of the IC and the state of the PFB when fetching

of the body BB, i5 1, is stored in the 3rd FIFO
according its address. The ID is aware of the cur-
rent program address, hence the correct FIFO will
be used for bundle extraction. As result, in Fig-
ure 3(g), b5-b7 (i5 1-i 1) are fetched into the PFB,
and similarly s12-s19 are fetched as the speculation.
Figure 3(h) to (j) illustrate the state of the PFB as
the BODY is progressively extracted to the ID. As
in (j), since the conditional branch (bundle b7, or
the instruction i7 1) is executed in the RR stage, the
PFB will not be cleared when the bundle reaches the
ID. Meanwhile, the speculative s20-s23 (shaded in
blue) are fetched into the PFB, as another example
of speculation. Finally, note that bundles b6 and
b7 are loaded into the PFB together: we call such
relationship a chunk . In contrast to the contention,
bundles in the same chunk are loaded into the PFB
with delay.

3.3 Formulating the PFB for XG

Before formulating the behavior of the PFB, the
accesses to the IC must be first identified by the IC
analysis. The analysis also determines whether the
requests from the PFB to the IC will cause an IC
hit or miss. We are interested in possible IC misses
which introduce delays in the execution.

We first introduce some helper functions to sim-
plify the formulas describing the PFB:

1. chunk(bi), returns the chunk in which bi re-
sides.

2. chunkHead(bi), returns true if a bundle is the
head of the associated chunk.

3. nextChunk(bi), provides the next chunk from
the current chunk contains bi.

4. latency(v), sets the latency of an XG vertex.
5. contention(bi, bj), determines if bi and bj are

in contention.

bi
ID

CBm (64 bytes)

PFB (48 bytes)

remain(bi)(a1)

bi+1

ID

CBn (64 bytes)

PFB (48 bytes)

remain(bi+1)(b1)

bi

RR

(a)

(b)

Figure 4: Calculate the number of CBs can fit into the
PFB for (a) bi enters the ID, and (b) bi enters RR and
bi+1 enters ID

6. speculation(bi), provides a set of CBs which
might be accessed due to the speculation.

7. remain(bi), gives the remaining size (in byte)
from the end of the bi (non-inclusive) till the
end of its associated CB.

8. |bi|, provides the size of bi.
9. CBcross(bi), determines if bi crosses two CBs.

The formulas applied on the XG that captures
the behaviors of the PFB are categorized into: (1)
chunks, (2) contention, (3) branch, (4) speculation,
and (5) the access time of the IC. In the formulas,
we use [bi/stage] to represent a vertex, a 9 for a
slashed arrow, and a → for a solid arrow in the XG.
For chunk:

(1a) [PF/bi]→ [PF/bi+1] |
(chunk(bi) = chunk(bj)) ∧ chunkHead(bi)
In order to propagate the cost within the chunks
in XG, a solid line is required for the first bundle
(head) of the chunk and the next chunk.

(1b) [bi/PF] 9 [bi+1/PF] |

5

b1/PF (18) 0 b1/ID (1) 18

b2/PF (1) 18

(1c)

b1/RR (1) 19

b2/ID (1) 19

b1/E1 (1) 20

b2/RR (1) 20

b1/E2 (1) 21

$r12

b2/E1 (1) 21

b3/E1 (1) 22

$r0

b4/RR (1) 39

$r12

b4/E1 (1) 40

$r8

b1/E3 (1) 22

b2/E2 (1) 22

b1/E4 (1) 23

b2/E3 (1) 23 b2/E4 (1) 24

b3/PF (1) 19

(1c)

b3/ID (1) 20

b4/PF (18) 20

(2) contention b3/RR (1) 21

$r16

b3/E2 (1) 23 b3/E3 (1) 24 b3/E4 (1) 25

(1c)

b4/ID (1) 38

$r0

b5/RR (1) 58

$r0 b4/E2 (1) 41 b4/E3 (1) 42 b4/E4 (1) 43

b5/PF (18) 39

(1c) (3a) branch

b5/ID (1) 57

$r2

b5/E1 (1) 59 b5/E2 (1) 60 b5/E3 (1) 61 b5/E4 (1) 62

b6/PF (1) 57

(1c)

b6/ID (1) 58 b6/RR (1) 59

$r4

b6/E1 (1) 60 b6/E2 (1) 61 b6/E3 (1) 62 b6/E4 (1) 63

b7/PF (0) 58

(1a)

b7/ID (1) 61 b7/RR (1) 62 b7/E1 (1) 63

$r9

b7/E2 (1) 64 b7/E3 (1) 65 b7/E4 (1) 66

Figure 5: The XG including effects from PFB and the IC misses

(chunk(bi) = chunk(bj)) ∧ ¬ chunkHead(bi)
Since the bundles in the same chunk are fetched
into the PFB together at the same time, a
slashed arrow is used to capture this feature.

(1c) [bi/PF] → [bi+1/PF] | chunk(bi) 6=
chunk(bi+1)
This captures the loading sequence of the bun-
dles in the different and consecutive chunks.
This arrow also carries the latency, if any, for
loading the next chunk.

(1d) [bi/PF]→ [bj/PF] |
chunkHead(bi) ∧ chunkHead(bj) ∧ (bi 6= bj) ∧
(nextChunk(bi) = chunk(bj))
This is a specialized case of (1c) in when bi is
the only bundle in the chunk and bj is the next
bundle of bi.

(1e) l([bi/]) = 0 | ¬ chunkHeader(bi)
As for the non-head bundles in a chunk, the
latencies of the corresponding XB vertices will
be set to 0, as they are loaded into the PFB at
the same time without any delay in between.

For contention:

(2) [bh/ID]⇒ [bi/PF] |
chunkHead(bi) ∧ contention(bh, bi)
This tells that, as soon as that bh enters the ID
stage, bi will be pushed into the PFB. Because
the rest of the chunk will share the same timing
latency, according to the formula (1e), therefore
it is not necessary to create the slashed arrows
to the other bundles of the same chunk.

For branch:

(3a) [bi/ID] → [bi+1/PF]
The target of the unconditional branches or the
function calls are determined at the ID stage.

(3b) [bi/RR] → [bi+1/PF]
Similarly, the conditional or the indirect
branches require one extra cycle to compute
the target address, therefore the creation of the
solid arrow from the RR.

For speculation:

(4) l([bi/PF] → [bi+1/PF]) = sum(TIC k),
k ∈ speculation(bi)
Given that bi contains a branch instruction,
and the PFB can fit k CBs before it is emptied
due to branching. The total IC access time for
k CBs are associated with the arrow indicating
the cost of the speculation before loading the
branch target into the PFB.

We use Figure 4 to illustrate the scenarios of
the speculation when the bundle containing the
branching instruction that leaves the PFB. The
number of the speculative CB accesses are computed
as the follows:

For unconditional branches:
ceil(max(0, |PFB| − remain(bi)) / |CB|)

For conditional or indirect branches:
ceil(max(0, |PFB| + |bi+1| − remain(bi)) / |CB|)

As shown in Figure 4(a), the PFB contains bi
and the remaining of the associated CB. Once
bi enters the ID, the available space of the PFB,
a1, can be computed as |PFB| − remain(bi).
The number of the CBs can fit into a1 is simply
a1 / |CB|. We use the ceil function to round-up the
integer result. For indirect branches, as depicted
in Figure 4(b), the next bundle bi+1 enters the ID
while bi enters the RR. The available space (b1)
can be calculated as |PFB|−remain(bi+1) while
remain(bi+1) = remain(bi) − |bi+1|, we leave the
rest for the readers.

For the access time of the IC:

(5) l([bi/PF]) = TIC | CBcross(bi) ∨ (i = 0)
The latency of accessing a CB will be associ-
ated with the vertex with possible IC misses
determined by the IC analysis.

Figure 5 illustrates the resulted XG that takes
the PFB’s behaviors into account, where the newly

6

augmented vertices and arrows are in red with the
corresponding formulas. The latencies of the vertices
[b1/PF], [b4/PF], and [b5/PF] are set to 18 cycles,
which is the IC miss penalty, according to the rule
(5). [b7/PF]’s latency is set to 0 due to the rule
(1e). The cost of the body becomes 66-43=23 cycles
instead of 15-9=6 cycles in the original XG.

4 Capturing the WB in XG

A write buffer (WB) is used to reduce the time
that takes to write data to the slower main memory
preventing stalling the pipeline. Eventually, the
data is written to the main memory following a
specific retirement policy (such as FIFO or LRU).
In this paper, we focus on a WB with an LRU
(least recently used) retirement policy. We also
consider that data can be updated directly in the
WB. According to [5], such configuration is more
predictable to use in

real-time systems. This also corresponds to the
adopted WB in k1b used by our motivating example.

4.1 Description of the write buffer

The WB operates with the write-merge policy. On
each store, the WB checks if it already contains the
data associated to the store address. If so, the entry
is updated and marked as the most recently used
(MRU). If the WB does not contain such address
and it is not full, an unoccupied entry is taken and
marked with MRU. If the buffer is full, then the
LRU entry is evicted to the main memory (MEM).

The WB works closely with the data cache (DC).
For example, when a DC-miss occurs, the contents
of the WB is checked to see if it contains the data as-
sociated with the load address. If so, to ensure data
coherence, the contents of the WB is flushed to the
MEM, prior to the DC refill from the MEM. Other-
wise the WB stays untouched and the DC performs
the cache-refill without delay. However, if an evic-
tion due to store was in the process of writing to the
MEM, the WB flush and DC refill needs to wait the
completion of the eviction. For better performance,
the critical-word first (or CWF) is featured to en-
able later instructions to obtain the loaded value as
soon as it is available to the processor. However,
such a feature will introduce a possible delay to any
following store/load instructions that tries to access
the MEM. A load instruction with a DC-hit will
have no effect on both WB and DC, where the data
is read directly from the DC and made available on
stage E2.

Figure 6 illustrates the behaviors of the WB and
the DC in one automaton. The represented WB
consists of eight 64-bit entries. Notations DC h
and DC m indicate the hit or the miss of the DC
respectively. Similarly WB h and WB m represent

whether the address to load is present (hit) or not
(miss) in the WB. Five states are identified: (1) not-
full, where the WB contains less than 8 entries, (2)
eviction, when the WB is full and the LRU entry is
to evict to the MEM, (3) refill, when load with DC-
miss and miss in WB, (5) purge+refill, similar to the
refill, with the flush due to the hit in WB, and (5)
evict+refill, which is created due to the concurrent
activities of the WB and the DC, represents the
scenario when a store occurs after a refill resulted
by DC m and WB m such that |WB| = 7. The
WB has to wait for the CWF delay to perform the
eviction.

The costs of accessing the MEM in the above
scenarios are identified as the following:

1. te: evicting the LRU entry to the MEM.
2. tp(n): purging n occupied entries to the MEM
3. tr: refilling the DC by loading from the MEM
4. tc: the penalty of the critical-word first loading

4.2 WB Transition Graph

The contents of the WB plays a crucial role in
estimating the access time to the MEM, i.e., the
occupancy decides the flush time, and the contained
addresses determine whether the WB needs to be
flushed. To accurately capture the state of the WB,
two analyses are performed: first, the address anal-
ysis to determine the targets of the stores, which
are the entries of the WB; then the DC analysis to
determine the activity of the DC and consequently
the state transitions according to the mentioned
automaton. The operations of the WB depend on
its previous state, where the building of the XG
only considers the prefix and the body BBs. It is
then essential to collect the possible configurations
of the WB, so that its actual behavior can be ex-
tracted and used when considering a segment of
the program. Here we introduce the Write Buffer
Transition Graph, WBTG, to represent the global
configuration of the WB.

The WBTG = (VWB , EWB , εWB) where: (i)
VWB = (ACCmem,WBconf) are vertices associated
with memory accesses and the resulting WB config-
uration. (ii) EWB = (VWB × VWB , T rans) are the
edges connecting two WBTG vertices and the possi-
ble WB/DC state transitions. (iii) εWB is the entry
point of the WBTG, which is not associated to any
memory access, is associated with the initial configu-
ration of the WB. We assume that, initially, the WB
is full and each entry contains the address top (any
value) so that the worst-case scenario can be cap-
tured with a combination of DC-miss and WB-hit.
The construction of the WBTG is done by propagat-
ing the WB configurations throughout the memory
accesses. The WB/DC state transitions are deter-
mined by referring the aforementioned automate.

7

eviction
|WB| = 8

not-full
|WB| ≤ 7 store ⋀ |WB| < 7

store ⋀ |WB| = 7 refill
|WB| ≤ 7

load DC_m ⋀ WB_h /
 tr

purge+refill
|WB| = 0

load DC_m ⋀ WB_h /
 tp(|WB|)

store / te

load DC_m ⋀ WB_m /
 te+tr

load DC_m ⋀ WB_h /
 te+tp(|WB|-1)+tr

store ⋀ |WB| < 7

load DC_m ⋀ WB_m /
 tc+tr

load DC_m ⋀ WB_h /
 tc+tp(|WB|)

evict+refill
|WB| < 8

store ⋀ |WB| = 7

store

load DC_m /
 tc+tr

store /
 tc+te

load DC_m ⋀ WB_m /
 tc+te+tr

load DC_m ⋀ WB_h /
 tc+te+tp(|WB|-1)+tr

Figure 6: The automaton showing the behaviors of the WB and the DC

main BB 1
0x125c STORE @ 0xc000000c NC

[T;T;T;T;T;T;T;0xc0000008]

init state
[T;T;T;T;T;T;T;T]

main BB 1
0x1270 STORE @ 0x5739 NC

[T;T;T;T;T;T;0xc0000008;0x5738]

main BB 1
0x1278 STORE @ 0x0xc0000008 AH

[T;T;T;T;T;T;0x5738;0xc0000008]

icrc BB 1
0x0d18 LOAD @ 0x65e8

NC HIT
[T;T;T;T;T;T;0x5738;0xc0000008]

icrc BB 1
0x0d18 LOAD @ 0x65e8

NC MISS
[]:0

store

eviction eviction

store

eviction eviction

store

eviction eviction

load DC_h

eviction eviction

load DC_m WB_h

eviction purge+refill

Figure 7: The WBTG of the sequence in Figure 2

Each time a new vertex is created, its associated
WB configuration is used to obtain the next WB
configurations in the upcoming memory accesses.
The construction of the WBTG terminates once
there is no more newly created WB configurations.

The partial WBTG for our example is illustrated
in Figure 7. Each vertex is labeled with (for instance,
the vertex below the entry vertex): (1) the BB
(main BB1) where the memory access occurs, (2) the
address of the memory access instruction (0x125c),
(3) the type (store) of the access, (4) the target
address of the access (0xc000000c), (5) the outcome
of the access (NC - not classified), and (6) the WB
configuration where the LRU entry is positioned at
the left and the MRU is at the right.

It is worth noting that both the green and the
red vertices are associated to the same memory
access but with different WB configurations. This
is due to the fact that the outcomes of some of the
memory-load accesses can not be determined by the
DC analysis. Hence they are assigned with category
not-classified (NC). To cover all the possible cases,
we create the green vertex indicating the DC-hit
and the red vertex for the DC-miss.

4.3 Formulating the WB for XG

To account for the behaviors of the WB in the
XG, we apply a similar approach to the one used
for the PFB. The XG that includes the effects from
the PFB and the WB is shown in Figure 8 where
the arrows and the costs, created due to the WB
effects, are green colored (effects from PFBs are in
red).

By referring to the WBTG, the state transition
between two memory accesses can be used to de-
termine the order and the latency between two XG
vertices. For example, from Figure 7 the first store
(at 0x125c) in the main function is in the eviction
state, and the next store (at 0x1270) leads to the
same eviction state, with a cost of te, as shown in
Figure 6. Because the eviction happens in stage E1,
an arrow is created between the two XG vertices,
[b2/E1] and [b3/E1], with latency = te = 17 cycles.
Similarly, an arrow is created between [b3/E1] and
[b4/E1].

Note that the arrow between [b4/E1] and [b6/E3]
has a condition, b6, which indicates that the latency
of this arrow is only valid when the event on b6,
which is a DC-miss when loading, occurs in stage E3.
The state will transit from eviction to purge refill,
by referring to the WBTG, with cost te on the arrow
and the rest of the cost (tp(|WB|−1) + tr) applied
on the target vertex. The arrow from [b6/E3] to
[b7/ID] represents the data-dependency where the
data is made available after the DC refills.

5 Experiments

The Mälardalen benchmarks [1] compiled with
the -O2 flag and are tested on Intel core i7-4810MQ
processor at 2.8 GHz, with the results shown in
Table 1. For each benchmark, we have collected
the WCET, the time for performing the analyses,
the total number of BB and the number of memory

8

b1/PF (18) 0 b1/ID (1) 18

b2/PF (1) 18

(1c)

b1/RR (1) 19

b2/ID (1) 19

b1/E1 (1) 20

b2/RR (1) 20

b1/E2 (1) 21

$r12

b2/E1 (1) 21

b3/E1 (1) 39

$r0

b4/RR (1) 39

$r12

b4/E1 (1) 57

$r8

b1/E3 (1) 22

b2/E2 (1) 22

b1/E4 (1) 23

b2/E3 (1) 23 b2/E4 (1) 24

b3/PF (1) 19

(1c)

b3/ID (1) 20

b4/PF (18) 20

(2) contention b3/RR (1) 21

$r16 evict (17)

b3/E2 (1) 40 b3/E3 (1) 41 b3/E4 (1) 42

(1c)

b4/ID (1) 38

$r0 evict (17)

b5/RR (1) 58

$r0 b4/E2 (1) 58 b4/E3 (1) 59 b4/E4 (1) 60

b5/PF (18) 39

(1c) (3a) branch

b5/ID (1) 57

$r2

b5/E1 (1) 59

b6/E3 (128) 75

evict(17):b6 b5/E2 (1) 60 b5/E3 (1) 61 b5/E4 (1) 62

b6/PF (1) 57

(1c)

b6/ID (1) 58 b6/RR (1) 59

$r4

b6/E1 (1) 60 b6/E2 (1) 61 b6/E4 (1) 203

b7/PF (0) 58

(1a)

b7/ID (1) 203 b7/RR (1) 204 b7/E1 (1) 205

$r9

b7/E2 (1) 206

data-dep:b6

b7/E3 (1) 207 b7/E4 (1) 208

Figure 8: The XG including effects from both PFB and WB and events

accesses for each benchmark, followed by the num-
ber of the WBTG vertices created. We are able to
obtain the WCETs for 20 out of 35 benches. The
binaries of 3 benchmarks (expint, fibcall, and ns)
only contain a single return value due to compiler
optimizations. We tested these 3 benchmarks com-
piled with -O0 (non-optimized) flag. Due to a large
numbers of events, resulted from the combinations
of IC- and DC- misses, we were not able to com-
pute the WCETs for 13 benchmarks (marked with
§). The binaries of the 4 benchmarks (cover, duff,
fac, and recursion, marked with ¶) contain irregular
CFG structures which are currently not handled by
our framework OTAWA [2]; however we were able
to estimate the WCETs by switching to the -O0
flag for 2 of these 4 benchmarks (cover and fac).

6 Related works

The static analysis of acceleration mechanisms
of a pipeline represents a significant set of publi-
cations on WCET analysis. Roughly, they may
be classified as working on graphs or on categories.
The graph approach has mainly be applied on the
earlier definition of IPET problem to model, in the
ILP system, the effects of the caches [11, 12] but
they were more recently used to model the complex
behavior of branch predictors [13]. They consist in
using a graph whose vertices are the possible states
of the mechanism and edges are the transition be-
tween these states. As the graph is the result of
possible executions of the mechanism on the CFG
paths, (a) the transitions are related to the ILP
variables and allow bounding the occurrences of
long-time accesses (like misses) and (b) it may be
translated into the ILP as it is done for the CFG.
The main drawback is the possible explosion of the
graph size and the resulting increase of the ILP
system size.

On the opposite, the category approach classifies
the behavior of the considered mechanism consider-
ing a small set of categories. These categories are
then translated into the ILP with a limited set of
constraints and variables, preventing the ILP size

Bench WCET time BB Accs |WBTG|
adpcm§ 369 677 5,948

bs 981 0.052 10 1 3
bsort100 3,097,290 0.06 14 7 130

cnt 6,030 0.14 21 13 153
compress§ 148 167 98,306

cover¶ 32,716 3.43 216 397 1,548
crc 189,786 0.52 53 23 572

duff¶

edn§ 107 102 59,372
expint∗ 129,056 0.36 96 16 56

fac¶ 834 0.08 9 4 12
fdct 12,151 59.51 12 29 83
fft1§ 1,661 761 4,043

fibcall∗ 2,751 0.09 12 24 76
fir 59,964 0.53 37 23 275

insertsort 12,223 0.06 8 10 49
janne 1,093 0.06 8 0 4

jfdctint 22,511 101.96 10 33 109
lcdnum 762 0.06 9 3 11

lms§ 1,119 533 5,871
ludcmp§ 336 167 249,124
matmult 2,387,321 0.82 29 20 1,050
minver§ 347 1,980 244,628
ndes§ 64 113 17,026
ns∗ 46,727 0.32 23 35 125

nsichneu§ 756 2,400 11,737
prime 98,009 0.11 55 10 25
qsort 904,275 38.98 35 33 453
qurt§ 2,102 912 5,060

recursion¶

select 104,345 167.60 30 31 222
sqrt 34,567 5.90 189 47 271
st§ 1,543 589 4,431

statemate§ 321 604 18,548
ud§ 107 174 18,582

Table 1: The WCETs for the Mälardalen benchmarks
§: too many events ¶: irregular structure ∗: optimized

blowup of graph approach. These approaches have
been successfully developed and applied for instruc-
tion and data caches [6, 7], multi-level caches [8],
branch prediction [4], write-back caches [3], etc. The
downside of the approach is that too complex be-
haviors have to be categorized as Not Classified and
the resulting bound of long-time event occurrences
leads to an overestimation. This may come from
the program itself or from the intrinsic behavior
of the mechanism. For example, the analyses of
round-robin and pseudo-LRU replacement policies
for the cache are less precise than the LRU policy.

9

The PFB analysis proposed here does not use any
CFG-level analysis as the effects are local to the BB:
expressing them in the XG is enough to cope with
the PFB even if this causes a little overestimation
for the prefix BB. Yet, it relies on the analysis of
the instruction cache and even modifies it a bit
to account for speculative block loading. On the
opposite, analyzing the WB requires a complex
CFG-level analysis requiring data cache analysis.
Yet, the use of the graph to calculate the WCET:
the built graph is the same as used in the graph
approach but the full graph is not translated to
the ILP system: an approximation is performed
to limit the quantity of additional variables and
constraints.

7 Conclusion

Execution Graphs provide an efficient and precise
approach to compute the execution time of an in-
struction block in a pipeline, considering the overlap-
ping with preceding blocks. This paper applies suc-
cessfully this approach to model the VLIW pipeline
of the Kalray Bostan MPPA including effects of
instruction and data caches as well as two specific
acceleration mechanisms, the Prefetch Buffer and
the Write Buffer. These components have a straight
impact on the performances of the pipeline but re-
quire a special processing, which consists of XG
tuning and modeling their behavior along the exe-
cution paths of the program.

The application to the Mälardalen benchmark
suite is successful in most cases. In the future, we
plan to relax the encountered shortcomings. First,
the well-known issue of size blowup of graphs mod-
eling an acceleration mechanism can be fixed or
reduced considering more abstract states at the cost
of precision loss: the abstraction level may be tuned
according to the size of the graph or the importance
of the information.

Another important limitation concerns the pro-
duction of events that, in turn, causes the number
of times to compute for a BB to grow. Either, we
can try to limit as much as possible the number
of events by aggregating correlated events; yet, the
soundness of the calculation might be preserved,
that is, to maintain the right support of timing
anomalies. Or the block time calculation method
must be improved to support so many events: (a)
blocks with too many events may be split, at the
cost of loosing precision, (b) more correlations be-
tween events must be found that means, in turn, to
improve the precision of static analyses producing
the events or (c) the XG calculation algorithm could
take into account the time variations.

In the end, the precision of WCET calculation
by static analysis requires to cope with the full
complexity of the pipeline meaning precise static

analyses and support of the time variation of blocks.
The XG approach seems to be a promising solution
to this problem.

References

[1] The mälardalen wcet benchmarks: Past, present
and future.

[2] C. Ballabriga, H. Cassé, C. Rochange, and P. Sain-
rat. Otawa: an open toolbox for adaptive wcet
analysis. In SEUS, pages 35–46, 2010.

[3] Tobias Blaß, Sebastian Hahn, and Jan Reineke.
Write-back caches in WCET analysis. In ECRTS,
pages 26:1–26:22, 2017.

[4] A. Colin and I. Puaut. Worst case execution time
analysis for a processor with branch prediction.
Technical Report PI-1236, IRISA, March 1999.

[5] Robert I. Davis, Sebastian Altmeyer, and Jan
Reineke. Analysis of write-back caches under fixed-
priority preemptive and non-preemptive scheduling.
technical report. Technical report, University of
York, 2016.

[6] C. Ferdinand, F. Martin, and R. Wilhelm. Applying
compiler techniques to cache behavior prediction,
1997.

[7] C. Ferdinand and R. Wilhelm. On predicting data
cache behavior for real-time systems. Lecture notes
in computer science, pages 16–30, 1998.

[8] D. Hardy and I. Puaut. WCET analysis of
multi-level non-inclusive set-associative instruction
caches. RTSS’08, 2008.

[9] X. Li, A. Roychoudhury, and T. Mitra. Modeling
out-of-order processors for software timing analysis.
In Real-Time Systems Symposium, 2004., pages
92–103, 2004.

[10] Y.-T. S. Li and S. Malik. Performance analysis of
embedded software using implicit path enumeration.
In Workshop on Languages, Compilers, and Tools
for Real-Time Systems, pages 88–98, 1995.

[11] Y.-T. S. Li, S. Malik, and A. Wolfe. Efficient mi-
croarchitecture modelling and path analysis for
real-time software. Real-Time Systems Symposium,
pages 254–263, December 1995.

[12] Y-TS Li, Sharad Malik, and Andrew Wolfe. Cache
modeling for real-time software: Beyond direct
mapped instruction caches. In Real-Time Systems
Symposium, 1996, pages 254–263, 1996.

[13] C. Maiza and C. Rochange. History-based schemes
and implicit path enumeration. In WCET, 2006.

[14] C. Rochange and P. Sainrat. A context-
parameterized model for static analysis of execu-
tion times. In Transactions on High-Performance
Embedded Architectures and Compilers II, pages
222–241. Springer, 2009.

10

	Manycore
	Using execution graphs to model a prefetch and write buffers and its application to the Bostan MPPA

