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Summary 

Pituitary neuroendocrine tumors (PitNETs), are common, with five main histological subtypes: 

lactotroph, somatotroph, and thyrotroph (POU1F1/PIT1 lineage); corticotroph (TBX19/TPIT lineage); 

and gonadotroph (NR5A1/SF1 lineage). We report a comprehensive pangenomic classification of 

PitNETs. PitNETs from POU1F1/PIT1 lineage showed an epigenetic signature of diffuse DNA 

hypomethylation, with transposable elements expression and chromosomal instability (except for 

GNAS-mutated somatotrophs). In TPIT lineage, corticotrophs were divided in three classes: the USP8-

mutated with overt secretion, the USP8-wild-type with increased invasiveness and increased 

epithelial-mesenchymal-transition, and the large silent tumors with gonadotroph trans-differentiation. 

Unexpected expression of gonadotroph markers was also found in GNAS-wild-type somatotrophs (SF1 

expression), challenging the current definition of SF1/gonadotroph lineage. This classification 

improves our understanding and impacts clinical stratification of patients with PitNETs. 

 

Keywords 

Pituitary Neuroendocrine Tumors (PitNETs), genomic, transcriptome, exome, methylome, miRnome, 

chromosome alterations, outcome.  

 

Significance 

PitNETs are common, with important morbidity. We report a multi-genomic characterization of 

PitNETs, based on a series of 134 tumors covering the whole clinical spectrum. Pituitary lineage was 

the main determinant of unsupervised genomic classification (before aggressiveness). New molecular 

entities were identified, impacting prognosis and treatments. Diffuse DNA hypomethylation was 

identified in POU1F1/PIT1 lineage. The association with chromosomal instability and expression of 

transposable elements points towards an original association of genomic instability with lineage 

differentiation (and not with aggressiveness). Furthermore, gonadotroph markers were identified in 

subsets of corticotrophs and somatotroph PitNETs, blurring the current limits of gonadotroph lineage. 
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These valuable genomic data are available to the community and should pave the way to several future 

clinical and pathophysiological studies.  
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Introduction 

Pituitary neuroendocrine tumors (PitNETs), affect up to 5% of the general population (Asa et al., 

2017). The most common PitNETs belong to the lactotroph lineage, followed by gonadotroph, 

somatotroph, corticotroph, and, more rarely, thyrotroph-lineage tumors, which express and/or secrete 

prolactin, gonadotrophins, growth-hormone (acromegaly), corticotrophin (Cushing's disease), and 

thyrostimulin (central hyperthyroidism), respectively. Endocrine diseases related to these secretions 

induce an important morbidity, potentially leading to death in case of severe and uncontrolled 

secretion. A majority of PitNETs develop locally. Some PitNETs invade or compress adjacent 

structures and, more rarely, give rise to metastases (Molitch, 2017). Recently, the term “adenomas” 

referring to these tumors was changed for “PitNETs”, better reflecting this potential loco-regional and 

distant aggressiveness (Asa et al., 2017). 

First-line treatment includes pituitary surgery, along with medical treatment for specific PitNETs 

subtypes: dopamine agonists for lactotrophs and somatostatin analogs for somatotrophs. Radiotherapy 

and systemic chemotherapy may also be proposed (Molitch, 2017). When complete surgery is not 

achievable, the prognosis of a remaining tumor cannot be established from clinical or pathological 

data. Histo-prognostic classification of PitNETs is a subject of debate (Rindi et al., 2018). World 

Health Organization (WHO) released its latest histo-prognostic classification in 2017 (Lloyd et al., 

2017). 

Pituitary tumorigenesis is still poorly understood. Rare monogenic familial PitNETs are mostly related 

to MENIN and AIP germline mutations. Recurrent somatic mutations are limited to GNAS, encoding 

the PKA-cAMP pathway activator Gsα, in somatotroph (Spada et al., 1990), and USP8, encoding 

ubiquitin-specific peptidase 8, in corticotroph (Ma et al., 2015; Reincke et al., 2015) PitNETs, both 

occurring in one third of cases. PitNETs have been characterized by various genomic approaches. 

Exome sequencing has not reported any common recurrent mutations beyond USP8 and GNAS (Bi et 

al., 2017; Song et al., 2016). Chromosomal profiling has shown common extensive chromosomal 

alterations, contrasting with the generally benign behavior of PitNETs (Pack et al., 2005; Salomon et 

al., 2018). Transcriptome analyses have identified specific somatotroph and corticotroph signatures 
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(Salomon et al., 2018) and aggressiveness signatures were proposed (Salomon et al., 2018). The 

MiRnome shows several differentially expressed miRNAs (Bottoni et al., 2007; Cheunsuchon et al., 

2011). The DNA methylome shows differentially methylated genes (Duong et al., 2012; Salomon et 

al., 2018) and discrepant methylation patterns between functioning and non-functioning PitNETs 

(Ling et al., 2014; Salomon et al., 2018). Most studies have consisted of mono-omic analyses and 

supervised comparisons, based on disputable clinical and morphological criteria. However, one recent 

study by Salomon et al. integrated exome, methylome, and transcriptome analyses in a series of 37 

PitNETs, including somatotroph, corticotroph and non-functional PitNETs (Salomon et al., 2018).  

Beyond PitNETs, various other types of human tumors have been extensively explored using 

pangenomics, providing highly valuable sources of data for a better understanding of these tumors and 

the development of new therapies (Cancer Genome Atlas Research Network et al., 2013; Zhang et al., 

2019). In contrast, PitNETs have not yet been properly characterized. Here, we combined various 

omics analyses on a series of 134 PitNETs of high quality and purity, carefully collected from a single 

expert center. We included all histological, secretory, and aggressiveness types, with extensive clinical 

characterization. Our aim was to provide a molecularly unbiased classification, further deciphering the 

pathways responsible for tumorigenesis and providing extensive molecular data from a single set of 

PitNETs. 
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Results 

 

Patients with PitNETs 

A total of 134 patients were included (Table S1), with a similar number of female and male patients, a 

median age of 49 y.o. (range: 15 to 84). Median tumor size was 20 mm (range: 6 to 50). This series 

covered all PitNETs types, including 35 (26%) corticotroph, 29 (22%) gonadotroph, 23 (17%) 

somatotroph, 16 (12%) lactotroph, and 8 (6%) mixed GH-PRL PitNETs. Rare types were also 

represented, including 8 (6%) null-cell, 6 (4%) thyrotroph and 9 (7%) plurihormonal PIT1-positive 

PitNETs. Different levels of aggressiveness were also represented, including 60 (45%) patients in 

remission after surgery, 48 (36%) patients with persistent disease, 12 (9%) patients with resistant 

disease and 14 (10%) patients with aggressive disease (Table S1). 

 

Mutations and chromosomal alterations in PitNETs 

The mutational landscape was established by combining exome and RNA sequencing (n = 83) or RNA 

sequencing alone (n = 51). Only two genes, GNAS and USP8, were found mutated in >5% of PitNETs, 

as previously reported (Bi et al., 2017; Song et al., 2016) (Table S2). The median number of somatic 

mutations per sample was 67 (14 to 247), with mainly C > T transitions (80%) and trinucleotide 

mutational “signature 1” (84%), as previously reported (Bi et al., 2017; Song et al., 2016). There was 

no difference between histological types (data not shown). 

We identified chromosomal alterations in 86 PitNETs by SNP array. A mean of 23% of the genome 

was altered (0 to 100%; Table S3). Three profiles were identified: (i) PitNETs with extended 

chromosomal losses, (ii) PitNETs with a quiet genome, and (iii) PitNETs with extended chromosomal 

gains (Figure 1A-C). The number of alterations varied depending on secretion type (Anova p value < 

10-4), with less alterations in silent tumors (7% in gonadotroph and null-cell and 1% in silent 

corticotroph PitNETs), compared to secreting tumors (51% in thyrotroph, 49% in lactotroph, 32% in 

secreting corticotroph, 22% in plurihormonal PIT1-positive and 18% in somatotroph; Figure 1D). 

Chromosomal alterations were not related to aggressiveness, neither in the whole cohort (Chi2 p = 
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0.21; Figure 1D), nor in any histological type (data not shown). Homozygous deletions and focal 

amplicons were limited (Table S3). 

  

Epigenetic profiling of PitNETs 

The miRnome of 111 PitNETs was generated by miRNA sequencing. Twelve miRNA clusters with at 

least five miRNAs were identified, combining physical proximity on the genome and correlation of 

their expression (Figure 2A, Table S4). Unsupervised classification based on non-negative matrix 

factorization identified four groups (miR1 to miR4; Figure 2B, C, Table S5), strongly associated with 

tumor type and secretion (Chi2 p values < 10-35 and <10-33, respectively). In particular, POU1F1/PIT1 

lineage tumors were distinct from gonadotroph and corticotroph PitNETs (Figure 2B, Table S5). The 

largest miRNA cluster, MEG3 (85 miRNAs) (Cheunsuchon et al., 2011), was associated with 

secretion (ANOVA p values < 10-25 ; Figure 2C and 2D), with higher expression in POU1F1/PIT1 

PitNETs. An opposite expression pattern was observed for the second largest miRNA cluster, 

MiR532-let7 clusters (17 miRNAs), also associated with secretion (ANOVA < 10-14; Figure 2C and 

2D). 

The methylome of 86 PitNETs of all types was determined by DNA-chip experiments. Unsupervised 

classification using collapsed CpGs (Table S6) and consensus clustering identified three groups (Met1 

to Met3; Figure 3A, B) associated with tumor type and secretion (Chi2 p values < 10-18 and < 10-22, 

respectively). In particular, POU1F1/PIT1-lineage tumors showed global hypomethylation, mainly in 

“open sea” DNA (Figure 3C and D). Among genes that modulate DNA methylation, expression of the 

demethylating enzyme TET2 showed the strongest correlation with methylation in “open sea” DNA 

(Pearson r = -0.4; data not shown). We next studied the link between DNA methylation and 

chromosomal alterations. GNAS-mutated PitNETs showed a combination of hypomethylation and a 

limited number of chromosomal alterations, whereas other PitNETs showed a negative correlation 

between DNA methylation and chromosomal alterations (Figure 3E; Pearson r = -0.39). In these 

tumors, considering transposable elements (TEs) differentially expressed between PIT1-positive and 

PIT1-negative PitNETs, TE expression was higher in hypomethylated tumors (Pearson r = -0.55; 
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Figure 3F, Table S7). In a representation of PitNETs combining DNA methylation, chromosomal 

alterations, and TE expression, PitNETs of the POU1F1/PIT1 lineage were clustered in a group with 

hypomethylation, genome alterations, and TE overexpression (Figure 3G). We may speculate that 

DNA hypomethylation in the POU1F1/PIT1 lineage may induce chromosomal alteration through the 

activation of TEs, as reported in cancer (Anwar et al., 2017), but this remains to be investigated. 

DNA methylation negatively correlated with the cis-expression of 1,164 genes (Pearson r < -0.5; Table 

S8). These genes were enriched in sex steroid-response and protein-secretion signatures (GSEA 

normalized enrichment scores > 2.8). Unsupervised transcriptome classification using these 1,164 

genes generated a PitNET classification strongly reflecting methylome classification and the 

POU1F1/PIT1 lineage (Chi2 p value < 10-15, data not shown). Five miRNA features negatively 

correlated with DNA methylation in cis (Pearson r < -0.5), including the MEG3 cluster, reflecting its 

maternal imprinting, and four miRNAs reflecting the POU1F1/PIT1 lineage (miR-574, miR-195, 

miR-497-5p and let-7b). 

 

PitNETs transcriptome 

We determined the transcriptome of 134 PitNETs by RNA sequencing. Unsupervised classification 

based on non-negative matrix factorization revealed six distinct groups (t1 to t6; Figure 4A and 4B). 

These groups were associated with the 2017 WHO histo-prognostic classification (Chi2 p value < 10-

68), with four noticeable discrepancies. First, the WHO «null-cell subtype» was not distinct from 

gonadotroph tumors in t4 (Figure 4A). Second, two types of corticotroph PitNETs were identified, 

with overt Cushing microadenomas in t1 and silent corticotroph macroadenomas in t3 (t-test p value = 

0.02 for size; Chi2 p value < 10-4 for secretion). Third, mixed GH-PRL clustered together with 

somatotroph PitNETs in t6, apart from lactotroph tumors, found clustered in t2. Finally, sparsely 

granulated somatotroph PitNETs were mainly found in t5, with thyrotroph and plurihormonal PIT1-

positive PitNETs, instead of being clustered with other somatotroph PitNETs in t6 (5/8, Chi2 p value = 

0.016; Figure 4A). 
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Genes driving the transcriptome showed noticeable expression signatures in each transcriptome group 

(Table S9). Enrichment analysis showed high cell cycle and low inflammation in t1 (overt Cushing 

corticotrophs), high MYC targets in t2 (lactotrophs), low epithelial-mesenchymal transition in t3 

(silent corticotrophs), high oxidative phosphorylation in t4 (gonadotrophs), and high interferon alpha 

and gamma in t5 and t6 (thyrotrophs and somatotrophs)(Gene Set Enrichment Analysis (GSEA) 

hallmark FDR p values < 0.05, with normalized enrichment scores > 3; enrichment data not shown). 

USP8-and GNAS-mutated PitNETs were associated with specific transcriptome subgroups in the t1 

and t6 transcriptome groups, respectively (Chi2 p values < 10-4 and 0.02, respectively; Figure 4A), 

with specific signatures distinct from those of their wild-type counterparts (Table S9). Mutation of 

USP8 was associated with signatures of low expression of oxidative phosphorylation, MYC targets, 

inflammation, and epithelial-mesenchymal transition (Table S9).  

The cell composition and differentiation of each PitNET was estimated using a canonical 

transcriptome signature for each pituitary endocrine cell type (Table S10). Forty-five PitNETs (34%) 

showed a mixture of ≥ 2 cell types (Figure 4C, Table S11), mostly GH-PRL PitNETs, featuring a 

separated somatotroph and lactotroph compartment. Remarkably, silent corticotroph PitNETs (7/8, 

88%) displayed both corticotroph and gonadotroph signatures (t3 cluster; Figure 4C), as previously 

suggested by some authors (Cooper et al., 2010; Suzuki et al., 2008). This was confirmed by the 

shared expression of gonadotroph marker GATA3 (Mete et al., 2019) by immunohistochemistry 

(Figure 4D). The diffuse positivity for GATA3, ACTH, and TPIT in these tumors suggests their co-

expression by the same tumor cells (Figure 4D). Finally, most sparsely granulated somatotroph and 

plurihormonal PIT1-positive PitNETs (5/8 and 5/9, respectively) displayed a thyrotroph signature (t5 

cluster; Figure 4C). 

Among transcription factors (Figure 4E, Table S9), gonadotroph marker NR5A1 (SF1) was also 

expressed in a subset of somatotroph PitNETs, corresponding to those with no GNAS mutation (Chi2 p 

value = 0.003; Figure 4E).  

 

Pangenomic classification of PitNETs 
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Somatic mutations, chromosomal alterations, and the miRNome, methylome, and transcriptome 

(Tables S1-S6 and S9) were combined into a single analysis, using multiple-factor analysis. This 

multi-omic projection of PitNETs identified the POU1F1/PIT1 lineage as the main separator (Figure 

5A and 5B). Transcriptome classification combined with GNAS/USP8 mutations statuses better fit the 

molecular groups than the 2017 WHO histo-prognostic classification (Figure5A and 5B; Bayesian 

Information Criterion (BIC) values: -7.723 and -6.265 for the 2017 WHO and the transcriptome 

classifications respectively). 

 

Clinical relevance of pangenomic classification 

In corticotroph PitNETs from t1 transcriptome group, USP8-wild-type PitNETs appeared more 

aggressive, compared to USP8-mutated PitNEts (Fisher exact p value = 0.018; Figure 4A). In these 

tumors, sphenoid invasion was more common (Fisher exact p value = 0.007). In contrast, there was no 

difference for cavernous invasion (Fisher exact p value =1), nor for MIB1/Ki67 labeling index 

(Wilcoxon p value = 0.26). The increased invasiveness of USP8-wild-type PitNETS was further 

supported by their transcriptome signature, showing an increased epithelial-mesenchymal-transition 

signature (GSEA hallmark FDR p value <10-3; Figure 6A, Table S9). 

Somatostatin agonists are major treatments for somatotroph PitNETs, and also used for corticotroph 

PitNETs (Molitch, 2017). Somatostatin receptor subtypes showed variable expression between 

molecular groups (Kruskal Wallis p value <10-13 and <10-15 for SSTR2 and SSTR5 respectively; Figure 

S1A and Figure 6B, Table S9).  Notably, for corticotroph PitNETs, expression of SSTR5 was higher in 

USP8-mutated PitNETs compared to USP8-wild-type (Wilcoxon p value <10-4; Figure 6B), 

supporting a potential value of USP8 mutation status for predicting response to Pasireotide as 

previously suggested (Hayashi et al., 2016). Dopamine receptor 2 (DRD2) showed the highest 

expression in lactotroph PitNETs (t2), followed by gonadotroph PitNEts (t3) as recently suggested 

(Ben-Shlomo et al., 2017) (Figure S1B). Of note Dopamine receptor 2 expression was quite variable 

among somatotroph PitNETs, with higher expression in GNAS-mutated PitNETs (Fisher exact p value 
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= 0.001), supporting a potential value of GNAS mutation status for predicting response to dopamine 

agonists in somatotroph PitNETs. 

Temozolomide is currently recommended for treating aggressive PitNETs not responding to other 

treatments (Raverot et al., 2018). Temozolomide is degraded by MGMT (O-6-Methylguanine-DNA 

Methyltransferase) (Hegi et al., 2005). MGMT expression varied among molecular groups (Kruskal-

Wallis p value <10-4), but also within groups, and was not associated with aggressiveness (Kruskal-

Wallis p value = 0.52; Figure 6C, Table S9). The association between MGMT expression and response 

to Temozolomide could be evaluated in three patients. Expression level was high in one not 

responding, intermediate in one with partial response, and low in one with complete response (Figure 

6C). No negative correlation was found between MGMT expression and DNA methylation in MGMT 

locus, including its promoter (median correlation coefficient 0.55; range: -0.27 to 0.76). Thus MGMT 

mRNA expression level could be a predictor of Temozolomide response, in line with a previous 

publication using MGMT immunohistochemistry (Bengtsson et al., 2015), but not reproduced so far. 
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Discussion 

This study provides a pangenomic classification of PitNETs. All histological types were represented, 

including subtypes scarcely or even unavailable in previously reported molecular studies, especially 

lactotroph, thyrotroph and plurihormonal PIT1-positive PitNETs. All secretion intensities and all 

levels of aggressiveness were represented as well, thus providing a comprehensive picture of PitNETs. 

This cohort was very carefully characterized clinically, both at hormonal and pathological levels, using 

the most advanced expertise. Collecting such samples at a high quality -pure undegraded frozen 

material- was challenging, owing to small size and rarity of some subtypes. 

Current classifications are empirical, based mainly on histological criteria (Lloyd et al., 2017; Raverot 

et al., 2018). This unbiased molecular classification largely confirms the 2017 WHO classification, 

underlining the biological relevance of pituitary lineage factors for classifying PitNETs as decided for 

the 2017 WHO classification. However, in terms of clinical relevance, identifying aggressive potential 

and predicting the response to medical treatments are still unmet challenges. This extensive molecular 

study helps progress towards this goal. Indeed, the limited propensity for sphenoid invasion and 

limited epithelial-mesenchymal-transition of UPS8-mutated corticotroph PitNETs supports using the 

somatic genotyping of USP8 for determining the outcome. USP8 mutation status could also help 

predicting response to Pasireotide, since the molecular group of USP8-mutated corticotroph PitNETs 

showed higher SST5 expression. Finally, low mRNA level of MGMT could be used for predicting 

response to Temozolomide. Further clinical studies should now confirm these findings. 

This study questions the current definition of gonadotroph lineage. Indeed, the molecular group of 

gonadotroph PitNETs (t4) also included null-cell PitNETs, showing that the definition of gonadotroph 

PitNETs should be extended to this type of PitNETs not expressing SF1. In addition, the molecular 

group of silent corticotroph PitNETs (t3) showed a gonadotroph signature. Previous studies also 

reported the expression of gonadotroph markers in a subset of corticotroph PitNETs (Cooper et al., 

2010; Suzuki et al., 2008). Whether these PitNETs arise from a specific pituitary lineage distinct from 

other corticotroph PitNETs remains to be determined. In mouse models, distinct pituitary cell lineages 

expressing TPIT and proopiomelanocortin have been reported (Drouin, 2016). Finally, expression of 

SF1 was found in GNAS-wild-type somatotroph (t6b), raising the question of specificity of SF1 as a 
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marker of gonadotroph lineage. Taken together, these results point to limits in the current knowledge 

on cytodifferentiation of pituitary tumor cells.  

PIT1 appeared as the main classification driver. The POU1F1/PIT1 lineage was associated with DNA 

hypomethylation, the transcription of differentiation markers, of transposable elements and 

chromosomal instability. It is possible that POU1F1/PIT1 differentiation may be associated with an 

epigenetic switch that induces hypomethylation, potentially via TET2, reflecting the recently reported 

epigenetic switch of TET1 in the gonadotroph lineage (Yosefzon et al., 2017). Functional studies will 

help to understand the direct impact of POU1F1/PIT1 on DNA methylation and more generally on 

chromatin structure, and subsequently the underlying mechanisms. 

Beyond USP8 and GNAS mutations, no obvious driver alteration was identified for a majority of 

PitNETs. Especially a group of 24 PitNETs showed no functional somatic variant and no chromosome 

alteration. Most of these PitNETs were silent (21/24, 87%), including mainly gonadotroph and all 

null-cell (16/24, 66%), and silent corticotroph (4/24; 17%) PitNETs. For these PitNEts, a technical 

failure of genomic alteration detection is unlikely, given the high purity of these samples -inferred 

from transcriptome signatures (Figure 4C). Further characterization of these PitNETs with techniques 

such as whole genome sequencing coupled to chromatin structure analyzes may unravel mutations in 

non-coding regions impacting chromatin opening and/or the binding of specific transcription factors.  

In conclusion, this study showed a robust unbiased molecular classification, with new subtypes not 

previously characterized. The biological mechanisms identified here and the potential clinical 

applications should lead to important improvements in understanding the biology of these tumors, and 

in managing patients with these tumors.  
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Figure legends 

 

Figure 1. Chromosomal alterations in PitNETs. (A) Cumulative proportions of chromosomal gains and 

losses for each indicated patient tumor. (B) Cumulative proportions of chromosomal gains and losses 

by chromosomal location. (C) Heatmap of chromosomal losses and gains in PitNETs. (D) Pathological 

and clinical annotations. The association with chromosomal alteration groups is provided (p (χ2): chi-

square p values). 

See also Tables S1-S3. 

 

Figure 2. The miRNome of PitNETs. (A) miRNA clusters in PitNETs: miRNA clusters were defined 

as consecutive miRNAs showing correlated expression among samples. Correlations are coded in the 

red scale. Clusters are presented in blue. (B) Unsupervised clustering of PitNETs based on their 

miRnome profile, using four NMF (non-negative matrix factorization ranks). The heatmap encodes the 

values of the H decomposition matrix.. (C) Pathological and clinical annotations. The association with 

miRNA groups is provided (p (χ2): chi-square p values). (D) Expression heatmap of the most 

differentially expressed miRNA between the miRNome groups. DESeq normalized counts are 

provided. 

See also Tables S4 and S5. 

 

 

Figure 3. Methylome of PitNETs. (A) Unsupervised hierarchical clustering of PitNETs based on their 

methylome profile. Pathological and clinical annotations are provided. The association with 

methylome groups is detailed (p (χ2): chi-square p values). (B) Methylation heatmap of the top 2,500 

most variable CpG features. Beta-values are reported. *Normal tissue beta-value refers to the mean 
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beta-value of “backbone” CpGs (intergenic and open sea CpGs), previously assessed to be 

approximately 0.8 in 21 normal tissues (Lee and Wiemels, 2016). 

 (C) Repartition of hypomethylated (in blue) and hypermethylated (in red) CpGs in POU1F1/PIT1-

positive PitNETs versus POU1F1/PIT1-negative PitNETs. (D) Scatterplot of POU1F1 expression (x-

axis) and DNA methylation (y-axis; median beta-values of open sea-related CpG clusters). (E) 

Scatterplot of DNA methylation (x-axis) and chromosomal alteration (y-axis). (F) Scatterplot of DNA 

methylation (x-axis) and transposable element (TE) expression (y-axis). **Normalized TE expressions 

are provided for each sample, generated by aggregating the expression of all differentially expressed 

TEs (between POU1F1/PIT1-positive and POU1F1/PIT1-negative PitNETs) into a single TE 

expression value, subsequently normalized by DESeq, after including all other transcripts. (G) 

Principal-component analysis of DNA methylation, genome alteration and TEs. PitNETs are projected 

following components 1 and 2. 

See also Tables S6-S8. 

 

Figure 4. Transcriptome of PitNETs. (A) Unsupervised classification of PitNETs identifies six main 

groups, corresponding to corticotroph with overt Cushing (t1), lactotroph (t2), silent corticotroph (t3), 

gonadotroph (t4), thyrotroph (t5), and somatotroph (t6) PitNETs. Pathological and clinical annotations 

are provided. The association with transcriptome groups is detailed (p (χ2): chi-square p values). (B) 

Heatmap of the six NMF ranks used for generating the unsupervised classification. (C) Proportion of 

gonado-, cortico-, somato-, lacto- and thyrotroph canonical signatures in each PitNET. (D) 20x 

magnification of hematoxylin/eosin staining and immunohistochemistry for the corticotroph-related 

markers ACTH and TPIT and the gonadotroph-related markers SF1 and GATA3 performed on tissue 

sections of corticotroph of overt Cushing (P114), silent corticotroph (P054), and gonadotroph (P098) 

PitNETs. The black bar represents 100 µm. (E) Expression profiles related to the top 50 most 

significantly differentially expressed transcription factors among the six transcriptome groups. 

See also Tables S9-S11. 
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Figure 5. Pangenomic classification of PitNETs. Dots represent individual PitNETs, projected 

according to their MFA (multiple-factor analysis) scores, which integrate all the presented –omics 

data. The two first axes of the MFA are presented on this figure. PitNETs are clustered following 

either their histological types, as defined by WHO 2017 classification (panel A), or their transcriptome 

groups and USP8 and GNAS mutation status (panel B). For each group, the 95% inertia ellipse is 

represented. 

 

Figure 6. Gene expression profiles with potential clinical impact. (A) Vulcano-plot representation of 

differentially expressed genes between USP8-mutated and USP8-wildtype corticotroph PitNETs from 

t1 transcriptome group. In red and in blue: genes over-expressed and under-expressed in USP8-

mutated PitNETs respectively. Circled dots: genes involved in EMT (GSEA hallmark). (B) 

Somatostatin receptor 5 expression in PitNETs. (C) MGMT (O-6-Methylguanine-DNA 

Methyltransferase) expression in PitNETs. ** Mann-Whitney p<0.0001; * Mann-Whitney p<0.01; Ns, 

not significant; ΔΔ complete response to Temozolomide; Δ partial response to Temozolomide; # no 

response to Temozolomide. 

See also Figure S1.  
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STAR methods 

 

Lead contact and materials availability 

Further information and requests for resources and reagents should be directed to and will be fulfilled 

by the Lead Contact, Guillaume Assié (guillaume.assie@aphp.fr). 

 

Experimental model and subject details 

Patient samples 

134 patients with a PitNET were included, representing all subtypes (Table S1). All were operated by 

transsphenoidal surgery at the Foch Hospital, between 2007 and 2016. During surgery, tumor 

fragments were removed by the surgeon and small tumor specimens were carefully selected in the 

middle of the tumor to avoid any contamination by normal tissue, then rapidly –within 15 min- snap-

frozen into liquid nitrogen and subsequently stored at -80°C. The remaining samples were formalin-

fixed, and paraffin embedded for histological examination and immunohistochemical study. 

Signed informed consent for molecular analysis of tumors and for access to clinical data was obtained 

from all patients, and the study was approved by the Ethics Committee Ile de France 8 (ID RCB 2010-

A00618-31).  

Extensive hormone exploration was performed before surgery following standard pituitary guidelines 

(Freda et al., 2011). 

A pituitary MRI was performed before surgery for all patients, read by a senior radiologist (A.B.). The 

following criteria were assessed: size in the three dimensions (height, width and depth), cavernous 

sinus invasion, sphenoidal invasion, and optical chiasm status. 
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Method details 

Tumor sample collection and characterization 

Tumor samples were collected directly by the neurosurgeon (S.G. and B.B.) under endoscopy, 

selecting the most representative fragments with minimal contamination and necrosis. These samples 

were directly snap-frozen in liquid nitrogen and stored at -80°C. In parallel, for all patients, 

histological examination of tumor specimens was performed by senior pathologists (C.V. and M.B.), 

and revised by a single senior pathologist (C.V.). Histological subtype was defined according to WHO 

2017 classification of endocrine tumors. The following criteria were assessed: mitotic count 

(mitoses/10HPF), histological invasion of dura-mater, bone tissue and respiratory mucosa, and by 

immunohistochemistry: ACTH, PRL, GH, FSH, LH, TSH-, along with PIT1, TPIT, GATA3, SF1, 

cytokeratin 8 (CAM5.2), Ki67 (MIB1), and p53, using fully automated IHC/ISH slide staining 

instrument BenchMark XT (Roche -Ventana Medical System, Inc.-, Tucson, AZ, USA). The 

antibodies features are the following: 

Antibody Provider  Reference  Clone  Host Specie  Dilution  Ag-retrieval   Incub (min) 

ACTH  DAKO   M 3501   02A3  mouse   1/2000  None   32 
Beta-LH  DAKO   M3502   C93   mouse   1/50  CC1 short  32 
Beta-TSH DAKO   M3503   42   mouse   1/300  None   20 
Beta-FSH DAKO   M3504   C10   mouse   1/50  CC1  short  32 
Prolactine DAKO   A0569   PROL  rabbit poly  1/300  None   20 
hGH  DAKO   A 0570   GH   rabbit   1/3000  None   40 
CAM 5.2 BECTON  345779   CAM5.2  mouse   pre-dilut  CC1  short  32 
PIT-1  NOVUS BIO NBP1-92273  POU1-F1 rabbit   1/500  CC1 standard 60 
T-Pit  ATLAS AB  AMAb91409 CL6251  mouse   1/200  CC1  standard 32 
SF-1  ABCAM  Ab217317  EPR19744 rabbit   1/500  CC1 long  60 
GATA3  ROCHE   7604897    GATA3  mouse   pre-diluted CC1 standard 32 
Ki67  DAKO   M7240   MIB-1  mouse   1/50  CC1 short  32 
p53   DAKO   M7001   DO-7  mouse   1/50  CC1 short  24 
 

 

These tumor specimens were used for integrated genomic analyses, including mRNA sequencing 

(n=134), miRNA sequencing (n=111), exome sequencing (n=83), SNP arrays (n=86), DNA 

methylation arrays (n=86). 
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DNA and RNA extraction 

Tumor samples (10–50 mg) were powdered under liquid nitrogen. DNA was extracted and purified 

following proteinase K digestion, using DNeasy columns (Qiagen, Hilden, Germany). DNA 

concentrations were determined using a Qubit 3 fluorometer (Thermofisher, Waltham, MA, USA). 

RNA and miRNA were extracted using RNAble (Eurobio, Les Ulis, France) and cleaned by RNeasy 

column (Qiagen). Aliquots of RNA were analyzed by electrophoresis on a Bioanalyzer 2100 (version 

A.02 S1292; Agilent Technologies, Santa Clara, CA, USA) and quantified using a Nanodrop ND-1000 

(Thermofisher). Stringent criteria for RNA quality were applied to rule out degradation. 

 

Exome sequencing and variants calling 

Whole‐exome sequencing was performed using NimbleGen MedExome capture (Roche NimbleGen, 

Madison, WI, USA) from 1 μg of high quality genomic DNA, followed by sequencing of libraries 

using paired-end mode (2x 75bp) on a Nextseq 500 platform (Illumina, San Diego, CA, USA), at the 

Genomics Platform of the Cochin Institute. Reads were aligned on hg19 (GRCh37) using BWA 

V0.7.17 (Li and Durbin, 2009). Variant calling was performed using GATK V4.0.8.1 (McKenna et al., 

2010). Another variant calling was generated from RNA sequencing data (Table S2). Sequence 

variants were annotated using ANNOVAR (April, 16th 2018) (Wang et al., 2010).  

For somatic mutation counts and mutational signatures analyses, samples were included only if both 

exome and RNA sequencing data were available (Table S2). Variants were filtered if rare 

(EXac<=1%), sufficiently represented (allelic ratio ≥30%, and supported by ≥4 reads), present in RNA 

sequencing, and previously reported in Cosmic (Sondka et al., 2018). Mutational signatures were 

explored using the Wellcome Trust Sanger Institute mutational signatures framework (Alexandrov et 

al., 2013) implemented in the DeconstructSigs v.1.8.0 R package (Rosenthal et al., 2016). Significance 

of variants was further explored using MutsigCV 1.41 (Lawrence et al., 2013). 

For identifying genes recurrently mutated, the whole cohort was used. Of note, for 51 samples, no 

exome was available. For these samples, variant calling was performed from RNA sequencing data, 
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using the previous criteria. Variants were further filtered if “functional” (exonic or splicing, non-

synonymous and not predicted as benign by Sift and Polyphen2 annotations from ANNOVAR), and 

affecting genes previously reported as mutated in PitNets exomes (Bi et al., 2017; Ronchi et al., 2016; 

Song et al., 2016; Välimäki et al., 2015). Filtered variants were visually validated using Integrative 

Genome Viewer (V2.4.10) (Robinson et al., 2011). Counts of recurrence for each gene were calculated 

from these filtered variants (Table S2). 

 

SNP array analysis 

SNP array data were generated using the Infinium® HumanCore-24 v1.0 BeadChip (Illumina). SNP 

array hybridization was performed by Post-Genomic Platform of Sorbonne University following 

manufacturer recommendations. Genome Alteration Print (GAP) method was used to call altered 

chromosomal segments and to estimate the proportion of cells for each alteration (Popova et al., 2009). 

Consecutive segments belonging to the same alteration were merged. All chromosomal alterations 

were visually validated, by plotting B-allele frequency (BAF) and signal intensity LogR ratio (LRR) 

(data not shown).  

Samples were classified into three categories “Lost”, “Quiet” and “Gained”, depending both on the 

number of alterations and the predominance of either chromosomal losses or gains (>1% of the 

genome lost, >1% of the genome gained and <1% of the genome altered for “Lost”, “Gained” and 

“Quiet” respectively). 

Homozygous deletions were called based on low copy number, defined by LRR lower than 3x the 

sample standard deviation. Amplicons were defined by ≥5 DNA copies. When genes were found in 

these regions, the impact on expression was assessed using a robust Z-score on RNA-sequencing data, 

comparing each sample with other PitNETs of similar histotype and with the entire PitNET cohort. 
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DNA methylation profiling 

Whole-genome DNA methylation was performed at the Post-Genomic Platform of Sorbonne 

University, using the Infinium® MethylationEPIC BeadChip (Illumina), featuring 850,000 CpG sites.  

Raw data were processed with Minfi (v1.24.0) (Aryee et al., 2014). Probes were filtered using default 

parameters and beta-values were extracted, then normalized with the “Funnorm” function (Fortin et 

al., 2014). Adjacent CpGs were collapsed into CpG features, using the “cpgCollapse” function with 

default parameters. 

Unsupervised classification was performed with Pheatmap 1.0.10 and ConsensusClusterPlus 1.42.0 

(Wilkerson and Hayes, 2010) on beta-values, using hclust function and Euclidean distance, based on 

top 2500 more variable CpG features (based on standard deviation after exclusion of sex 

chromosomes) and 5000 iterations. 

 

MiRNA profiling 

Small RNA (<100 bases in length) were purified from total RNA using miRNeasy kit (Qiagen), then 

sequenced. Libraries were prepared at the Genomics Platform of the Cochin Institute, following the 

TruSeq small RNA protocol (Illumina), starting from 1 µg of high quality total RNA. Single read (1 × 

75 bp) sequencing was performed on a Nextseq 500 platform (Illumina). FASTQ sequences were 

aligned on miRBase v.2052, then counted with STAR (v.2.5.2a) (Dobin et al., 2013). Counts were 

normalized with DESeq v1.30.0 (Anders and Huber, 2010).  

Adjacent miRNAs were collapsed into miRNA clusters when falling within 1 Mb and showing a 

Pearson correlation coefficient ≥ 0.5. A graphic representation of all miRNA clusters was generated 

using the LDheatmap package 0.99-5 (Shin et al., 2006). Subsequent analyses were performed using 

miRNA clusters, along with individual miRNAs not belonging to any cluster. Expression of miRNA 

clusters was represented by a tag-miRNA, selected as the one showing the highest correlation with the 

other miRNAs within the cluster. 
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The top 150 most variable miRNA clusters/individual miRNAs were selected based on their standard 

deviation. Groups with similar miRNA abundance profiles were identified using unsupervised non-

negative matrix factorization consensus clustering using the NMF R package v0.21 (Gaujoux and 

Seoighe, 2010), using default parameters. The best rank was chosen from both cophenetic and average 

silhouette width score profiles. A clustering run was then performed, with the chosen k=4 ranks and 

1000 iterations. Plots were generated with Pheatmap v1.0.10. Differential miRNA clusters/individual 

miRNAs between NMF groups were identified using the Kruskal-Wallis test. MiRNA transcripts 

targets were obtained using miRTarBase v6 (Chou et al., 2016), filtering those with experimental 

validation. 

 

mRNA profiling  

Total RNA was extracted using RNAble (Eurobio), cleaned-up with RNeasy columns (Qiagen) and 

sequenced. The libraries were prepared at the Genomics Platform of the Cochin Institute, following 

the TruSeq Stranded mRNA protocol (Illumina), starting from 1 µg of high quality total RNA. Paired 

end (2 × 75 bp) sequencing was performed on a Nextseq 500 platform (Illumina). 

FASTQ sequences were aligned on hg19 (GRCh37) human reference genome with STAR (v.2.5.2a) 

(Dobin et al., 2013). Read counts  were aggregated by genes, then normalized with DESeq v1.30.0 

(Anders and Huber, 2010).  

The top 1500 most variable genes were selected, based on their standard deviation. Groups with 

similar mRNA abundance profiles were identified using unsupervised non-negative matrix 

factorization consensus clustering using the NMF R package v0.21 (Gaujoux and Seoighe, 2010), 

using default parameters. The best rank was chosen from both cophenetic and average silhouette width 

score profiles. A clustering run was then performed, with the chosen k=6 ranks and 200 iterations. 

Plots were generated with Pheatmap v1.0.10. Differentially expressed genes between NMF groups 

were identified using the Kruskal-Wallis test. For each NMF group, a gene expression signature was 

generated by comparing this group with all other groups, limiting the NMF group sizes to the size of 
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the smallest group by random sampling, using DESeq v1.30.0 (Anders and Huber, 2010). Gene-set 

enrichment analyses were performed using GSEA v2.2.3 (Subramanian et al., 2005) preranked 

method, using the hallmark annotation. The lists of transcription factors and GPCRs were obtained 

from Lambert et al. (Lambert et al., 2018) and Alexander et al. (Alexander et al., 2017), respectively. 

Transposable elements (TE) were identified after a new alignment of RNA sequencing data with 

STAR (Dobin et al., 2013), keeping multi-mapped reads. TE were then counted using TEToolkit 

V2.0.3 (Jin et al., 2015), then normalized using DESeq (including all transcripts) (Anders and Huber, 

2010). TE read counts and differential expression between PIT1-positive and PIT1-negative PitNETs 

are provided in Table S7. TE differentially expressed were aggregated either by families, by classes or 

into a single TE value, by summing the corresponding read-counts. For each aggregation, a specific 

DESeq normalization was performed, including all mRNA transcripts in addition to aggregated TE. 

 

Multi-omic classification 

Few methods can simultaneously integrate several related datasets. Amongst them, the Multiple Factor 

Analysis (Escofier and Pagès, 1994; Rajasundaram and Selbig, 2016) (MFA) is widely used today. It 

consists of balancing the influence of different datasets in a weighted Principal Components Analysis 

(PCA). This method allows a general picture of the consensus among datasets to be established, as 

well as the relationships between consensus and single datasets to be identified. MFA was performed 

on 75 samples with all omics data in R software version 3.5.2 with the ade4 package (Dray and 

Dufour, 2007). After MFA projection, samples were labeled using either the transcriptome 

classification with USP8/GNAS mutation status or the WHO 2017 histo-prognostic classification. The 

accuracy of these two classifications were compared using Bayesian Information Criterion (BIC) 

values, generated with the HDclassif R package (Bergé et al., 2012). 

 

Quantification and statistical analysis 
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Calculations were performed using R statistical software. Comparison between groups were assessed 

using parametric or non-parametric tests depending on the number of observations and the distribution 

for each variable. When normality assumption was verified, group comparisons were analyzed using 

Student’s t-test or parametric analysis of variance (Anova) for quantitative variables and chi-square 

test for qualitative variables. In case of non-normal distribution or small number of observations, 

group comparisons were assessed using Mann-Whitney or Kruskal-Wallis test for quantitative 

variables, and Fisher’s test for qualitative variables. Correlations were assessed using the Pearson 

coefficient. 

All p values were two-sided, and the level of significance was set at p < 0.05. 

 

Data and code availability 

Data and Code Availability Statement 

MiRNA and mRNA read counts are available at the European Bioinformatics Institute (EMBL-EBI) 

under accession numbers E-MTAB-7969 and E-MTAB-7768 respectively. Methylome data are 

available under EMBL-EBI accession number E-MTAB-7762. Sequencing data (exome, mRNA and 

MiRNA sequencing) has been deposited at the European Genome-phenome Archive (EGA) which is 

hosted at the EBI and the CRG, under accession number EGAS00001003642. 
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