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A remark on memory effects in constrained fluid systems

Charlotte Perrin∗

January 8, 2020

Abstract

The goal of this note is to put into perspective the recent results obtained on memory
effects in partially congested fluid systems of Euler or Navier-Stokes type with former
studies on free boundary obstacle problems and Hele-Shaw equations. In particular, we
relate the notion of adhesion potential initially introduced in the context of dense sus-
pension flows with the one of Baiocchi variable used in the analysis of free boundary
problems.

Introduction

The general topic of this note is the mathematical modeling and analysis of partially congested
flows, namely compressible flows submitted to the maximal density threshold

0 ≤ ρ ≤ 1.

From the application standpoint, such constraint arises naturally in the modeling of collective
motion or mixtures, in that latter case the density ρ refers to the volume fraction of one phase.
A common denominator of the free-congested fluid models is the continuity equation

∂tρ+ div(ρu) = 0

where u is the velocity of the flow. In the unconstrained case with no density constraint, the
velocity would be defined as a desired velocity (the velocity of an agent if alone in the case of
collective motion), or be prescribed by Darcy’s law (flows in porous media), or even evolves
according to the principle of conservation of momentum (Euler or Navier-Stokes equations).
To fit with the maximal density constraint, the velocity u needs however to be such that

div u ≥ 0 where ρ = 1.

Associated to this constraint on the divergence of the velocity field, it is common to introduce
a Lagrange multiplier p which satisfies, together with ρ, the unilateral constraint (or exclusion
constraint)

0 ≤ ρ ≤ 1, p ≥ 0, (1− ρ)p = 0. (1)

The last equality expresses the activation of p in the congested (or saturated) domain {ρ = 1},
while in the free domain where ρ < 1, p = 0. Gathering these equations, we obtain a fluid
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model describing both the free phases where ρ < 1 and the congested phases where ρ = 1. In
the context of Navier-Stokes (or Euler if S = 0) dynamics, the system takes the form

∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u) +∇p− div S = ρf

0 ≤ ρ ≤ 1, p ≥ 0, (1− ρ)p = 0

where S = S(∇u, ρ, p) denotes the viscous stress tensor depending on ∇u, but possibly also
on the density and the pressure p. Mathematical results on such free-congested Euler/Navier-
Stokes systems are reviewed in the previous article [23]. If, alternatively, the velocity is
given by Darcy’s law, i.e. u = −∇p, the associated free-congested system (called Hele-Shaw
equations in the following) reads{

∂tρ = div(ρ∇p) +G

0 ≤ ρ ≤ 1, p ≥ 0, (1− ρ)p = 0

where G is a possible additional reaction term. This system is really close to macroscopic
equations used in the modeling of crowd motion (we refer to [19] and to the review paper
[27]). There, the source term is replaced by an advection term:{

∂tρ+ div(ρ(ufree −∇p)) = 0

0 ≤ ρ ≤ 1, p ≥ 0, (1− ρ)p = 0

where ufree is a free or spontaneous velocity, i.e. the velocity that an individual would follow
if alone.

Going further in the modeling, we investigate in this paper some additional non-local in
time phenomena, i.e. memory effects, that may be activated in the congested domain (see
the system (3) presented in the next section). These memory effects, encoded in the so-called
adhesion potential, were introduced formally for the free-congested Euler system by Lefebvre-
Lepot and Maury [16] and justified from the mathematical viewpoint in the recent studies [21],
[24], [4]. These results are reviewed in the previous paper [23]. The present note completes [23]
insofar as we shine a light on the possible connections with variational tools that have been
introduced for obstacle type problems in the 70’s, connections that were not developed in the
previous synthesis. More precisely, we relate here the notion of adhesion potential introduced
in the context of free-congested Euler equations with the so-called Baiocchi variable which is
commonly used in the study of free boundary problems and especially for Hele-Shaw systems.
We do not present here any original theoretical result but we are convinced that this new
(up to the knowledge of the author) connection between the notion of adhesion potential and
the concept of Baiocchi transform, could bring some new perspectives to the analysis of both
Hele-Shaw models and constrained Euler (or Navier-Stokes) systems.

The note is organized as follows: in Section 1 we present the concept of adhesion potential
for the free-congested Euler equations. Section 2 is devoted to obstacle type problems and
their formulation in terms of variational inequalities. We introduce from a general viewpoint
the Baiocchi transform which enables to reduce a certain type of free boundary problems to
obstacle problems. Finally, in the last Section 3, we illustrate the usefulness of the Baiocchi
variable in the Hele-Shaw setting.
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1 Memory effects in constrained Euler systems, a brief review

We briefly review in this section the recent results obtained in [16], [24] and [4], our goal here
is to highlight two aspects of the notion of adhesion potential: on the one hand the adhesion
potential seen as a residual effect of singular lubrication forces; on the other hand the adhesion
potential seen as a result of a projection of a free or spontaneous dynamics onto the set of
admissible dynamics for the maximal density constraint. As said before, these results have
been already presented in the recent synthesis [23], and we refer to it (and papers [16], [22],
[24] and [4]) for the precise statements of the results and more details concerning the technical
tools that are involved in the mathematical analysis.

1.1 Suspension flows: singular bulk viscosity and adhesion potential

The starting point of the analysis of memory effects in suspensions flows (i.e. mixtures com-
posed by solid particles immersed in a viscous liquid) is the one-dimensional macroscopic
model derived by Lefebvre-Lepot and Maury in [16]. Their system reads

∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2)− ∂x
(

ν

1− ρ
∂xu

)
= ρf

(2)

whose unknowns are: the density ρ of solid particles (which is supposed to remain between
0 and 1 if the particles are hard spheres) and the velocity of the mixture u. The system
consists in pressureless Euler equations with an external forcing f and a “dissipation” term
representing the lubrication forces exerted by the viscous liquid (whose viscosity is denoted ν)
on the grains. Note that the singularity of the viscosity term plays here the role of a barrier:
formally, it prevents the density to exceed the threshold value 1.
Considering now the case where ν = ε, the intensity of the lubrication forces becomes more
and more negligible as ε→ 0. Lefebvre-Lepot and Maury formulate then the conjecture that
the solutions (ρε, uε) of (2) should converge towards solutions of the free-congested system

∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2) + ∂xp = ρf

∂tγ + u∂xγ = −p
(3)

where the potential γ, called adhesion potential, satisfies the complementary relation

(1− ρ)γ = 0, γ ≤ 0, 0 ≤ ρ ≤ 1. (4)

The last equation of system (3) expresses the fact that the pressure p is the total time derivative
of the potential −γ, while the complementary relation (or unilateral constraint) (4) says that
both variables γ and p vanish outside the congested domain. In the saturated zone where they
activate, the potential γ keeps track (through the integral in time of p) of all the history of the
external forcing f , which justifies the concept of memory effects. We emphasize the fact that
these memory effects are here related to the maximal constraint that is imposed of the density:
γ captures the amount of compression that the fluid is exposed to but cannot accommodate
due to the constraint ρ ≤ 1. Illustrations of these memory effects can be found in the seminal
paper of Maury [18] on an analogous microscopic system, and in [24] for solutions of (3)-(4).
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Coming back to the singular limit ε→ 0, it appears that the pressure p in (3) can be seen
as the formal limit of the lubrication term −λε(ρε)∂xuε where we have defined the singular
“bulk viscosity” λε(ρ) = ε(1− ρ)−1. The conjecture is the following: where ρε tends to 1, the
divergence of the velocity field (here ∂xuε in 1D) tends to 0 and compensates the possible blow
up of λε(ρε). At the approximate level, it is then natural to define an approximate potential
γε = γε(ρ) such that the following equation holds (at least in the sense of distributions):

∂tγε(ρε) + ∂x(γε(ρε)uε) = λε(ρε)∂xuε. (5)

This equation is actually just a reformulation of the mass equation (using the concept of
renormalized solutions) where the function γε is related to λε via the relation

λε(r) = −(rγ′ε(r)− γε(r)).

Note in particular that when ρ is close to 1:

γε(ρ) ∼
ρ→1

ε ln(1− ρε).

Formally, Equation (5) should tend to the last equation of system (3) as ε → 0. Although
the conjecture of Lefebvre-Lepot and Maury [16] has not been proved yet, the limit ε→ 0 is
established in [4] and [21] for closely related systems including an additional viscosity term
ensuring the estimates that allow to get some weak compactness on the sequence (weak)
solutions (ρε, uε)ε.
The results presented in [4], [21] and [22] justify in particular the limit from (5) towards the
adhesion potential equation in system (3):

Theorem 1.1 (Perrin [22]). Let Ω be the one-dimensional torus. Assume the relation (5) and
appropriate initial data. From (ρε, uε)ε solutions of the system{

∂tρε + ∂x(ρεuε) = 0

∂t(ρεuε) + ∂x(ρεu
2
ε)− ∂x(λε(ρε)∂xuε)− µ∂x((ρε − γε(ρε))∂xuε) = 0

one can extract a subsequence (ρε, uε,−λε∂xuε, γε)ε converging weakly to (ρ, u, p, γ) a weak
solution of 

∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2) + ∂xp− µ∂x((ρ− γ)∂xu) = 0

∂tγ + u∂xγ = −p
0 ≤ ρ ≤ 1, (1− ρ)γ = 0, γ ≤ 0

In [21], it is shown that the adhesion potential is actually a key tool to justify the existence
of solutions to a model of incompressible flow with pressure-dependent viscosity. The potential
γ, limit of γε(ρε), can then be seen as an additional state variable which keeps track of the
“micro-structure” of the system, i.e. how close from 1 is the approximate density ρε. The
singular limit ε→ 0 is a particular case of transition from soft congestion models (compressible
models with singular pressure and/or viscosity laws) towards hard congestion models (coupling
free and congested dynamics)
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1.2 Potential resulting from the projection on admissible dynamics

The second aspect that we want to highlight on the adhesion potential is in relation with
a projection process, the projection of the spontaneous (or free) velocity onto the set of
admissible velocities for the constraint ρ ≤ 1. This aspect is developed in the study [24]
where a Lagrangian point of view is adopted. Considering an initial ρ0 ∈ P2(R), absolutely
continuous with respect to the Lebesgue measure and such that ρ0(x) ≤ 1 a.e. (here and
hereafter we identify the probability measure with its Lebesgue density), the Lagrangian point
of view consists in describing the dynamics by means of the transport map Xt ∈ L2

ρ0(R) which
is such that

ρt = (Xt)#ρ0.

The set of admissible transport maps, i.e. the maps Xt such that the associated ρt satisfies
the maximal constraint, is then a closed convex set K̄ of L2

ρ0(R). Given an initial data
(ρin = ρ0, u

in), the study [24] shows that there exist weak Eulerian solutions to (3)-(4) which
are constructed from the (Lagrangian) trajectories t 7→ Xt defined as the projection in L2

ρ0(R)
of the “free trajectory” (governed by the initial data and the external force f) onto the convex
set K̄:

Xt = PK̄

(
X0 +

∫ t

0
U free
s ds

)
where X0 = Id and U free

t = U in +

∫ t

0
f(s,Xs) ds.

Under reasonable assumptions on the external force f (f ∈ L∞(R+; Lip∩L∞(R))), Xt is shown
to be uniquely defined for all times t. Associated to the condition Xt ∈ K̄, the Lagrangian

velocity Ut =
dXt

dt
defined for a.e. t, is also constrained to belong a set of admissible velocities,

namely the velocities which are constant in the congested domain. This set of admissible
velocities is a subspace of L2

ρ0(R) and one proves that Ut is actually the orthogonal projection
of the free velocity U free

t onto the subspace of admissible velocities.
We then define the Lagrangian potential Γt which is such that

∂yΓt = PAdm(U free
t )− U free

t = Ut − U free
t .

Thanks to the projection operator properties, it is shown that Γt ≤ 0 and Γt = 0 outside the
congested domain. Coming back to the Eulerian standpoint and defining for a.e. t the triplet
(ρt, ut, γt) such that

ρt = (Xt)#ρ0, Ut = ut ◦Xt, Γt = γt ◦Xt,

one can check that the weak formulations of the equations (3)-(4) are satisfied. This justifies
in the Lagrangian setting what was claimed in the previous paragraph: in the congested
domain, the potential Γt tracks the whole history of the action of the external force f which
is integrated in the free velocity U free

t .
Concretely, these memory effects can be observed in the following situation illustrated

numerically in [24]: consider initially two separated congested blocks and apply to the system
a compressing external forcing f in such a way that the blocks collide at a certain time t∗1.
From that collision time, the adhesion potential is activated and decreases while the external
constraint is still compressing the system. We reverse at a time t∗2 the action of f which tends
now to decompress the system. Then, the adhesion potential increases and goes back to 0.
At time t∗3, when it is identically 0, the blocks split. Hence, there is a waiting time before
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the start of the “decongestion” process, the time (interval between t∗2 and t∗3) necessary for the
adhesion potential to go back to 0.

Remark 1.2. (Case with no external force, recovering of the initial constrained Euler system)
If f = 0, one can show a retention property (i.e. the congested domain can only grow) and
we guarantee the non-negativity of the time derivative of −Γ, that is the non-negativity of
the pressure P . As a consequence, we obtain a weak solution of the initial constrained Euler
system in which the equation on the adhesion potential is hidden:

∂tρ+ ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2) + ∂xp = 0

0 ≤ ρ ≤ 1, p ≥ 0, (1− ρ)p = 0

2 Variational inequalities and unilateral constraints

The previously studied free-congested Euler system falls into the class of free boundary prob-
lems associated to an unilateral constraint (cf (1)). Within this class, a certain type of free
boundary problems maybe be solved via variational inequalities, directly or indirectly after an
appropriate transform, the so-called Baiocchi transform introduced by Baiocchi in the 70’s.
The objective of this section is to recall some basic notions in relation with free boundary
problems and variational inequalities. The interested reader is referred to [17] for an introduc-
tion to variational inequalities and to [26] (and the references therein) for details concerning
the general theory on obstacle type problems.

2.1 Canonical example: the obstacle problem

We consider an elastic membrane whose position at equilibrium is denoted u = u(x) for x ∈ Ω
and which is constrained to lie above an obstacle, i.e. u ≥ ψ where ψ is a given function. At
the boundary, we assume that u|∂Ω = g where g ≥ ψ|∂Ω. The function u is then the unique
solution of

min
v∈Kψ,g

{∫
Ω

|∇v|2

2
dx−

∫
Ω
f v dx

}
,

where Kψ,g is formally the convex set of functions which satisfy the constraint v ≥ ψ and such
that v|∂Ω = g. The previous Dirichlet integral represents the elastic energy of the membrane
corresponding to the graph of v. Equivalently, it is well-known that the previous minimization
problem can be rewritten under the form of the following elliptic variational inequality:

u ∈ Kψ,g and
∫

Ω
∇u · ∇(v − u)dx ≥

∫
Ω
f · (v − u)dx ∀v ∈ Kψ,g. (6)

It can be shown that under reasonable assumptions on the data f , g and ψ, there exists a
unique solution.

Theorem 2.1 (Rodrigues [26] Chapter 4.2). Let Ω ⊂ Rn be an open bounded set with Lipschitz
boundary ∂Ω. Let f ∈ Lp(Ω) with p large enough, g ∈ H1/2(∂Ω), ψ ∈ H1(Ω) and ψ ≤ g on
∂Ω. Then there exists a unique solution to the obstacle problem

u ∈ Kψ,g =
{
v ∈ H1(Ω), v ≥ ψ, v = g on ∂Ω

}∫
Ω
∇u · ∇(v − u)dx ≥

∫
Ω
f · (v − u)dx ∀v ∈ Kψ,g (7)

6



The previous solution admits a characterization in terms of projection. Indeed, let g̃ ∈
H1(Ω) be such that g̃|∂Ω = g, ‖g̃‖H1(Ω) ≤ C‖g‖H1/2(∂Ω), and consider the translated variables
ψ̃ = ψ − g̃, ũ = u− g̃. One can show that the unique solution of (7) is such that

ũ = PKψ̃,0 l, (8)

where l is the unique solution (Riesz-Fréchet theorem) of∫
Ω
f v dx−

∫
Ω
∇g̃ · ∇v dx =

∫
Ω
∇l · ∇v dx, ∀ v ∈ H1

0 (Ω).

Let us now give important some properties satisfied by the solution u which lead to the
complementary equation associated to the obstacle problem.

Proposition 2.2 (Figalli [9] Section 3). The solution u of the obstacle problem (7) with zero
external force (f = 0), g and ψ of class C1, satisfies

∆u ≤ 0 in Ω,

∆u = 0 in {u > ψ} ∩ Ω.

The previous result can be extended to non-zero external forces f ∈ L∞(Ω) (with optimal
regularity C1,1 of the solution u under a Dini continuity assumption on f , see for instance [5]),
and we get the following complementary problem

u ≥ ψ, −∆u ≥ f, (u− ψ)(−∆u− f) = 0 a.e.. (9)

We refer to [9,10] for further theoretical results on difficult and actual issues raised by the
obstacle problem such as: the regularity of the interface, analysis of the blow up at singular
points and extensions to the time-evolution case (parabolic obstacle problem). The rest of
this subsection is devoted to formal rewritings of the obstacle problem.

As a consequence of the complementary problem (9), we can see the obstacle problem
as a free boundary problem between the coincidence set (also called contact set) A where
u = ψ and its complement, the noncoincidence set, Ac = Ω \ A where u > ψ. In its strong
formulation the free-boundary problem reads

−∆u = f in Ac

u = g on ∂Ω

u = ψ,
∂u

∂n
=
∂ψ

∂n
on Φ = ∂A ∩ Ω

(10)

where n denotes the exterior unit normal vector to Ac. Note that we prescribe two boundary
conditions at the interface Φ and one could think that the problem is a priori over-determined:
one do not impose both Dirichlet and Neumann conditions for the Laplacian. Actually, this
over-determination compensates the fact that the interface is unknown.

Suppose that u is a C1 solution of (10) with ψ = 0 and assume that the interface Φ does
not intersect the boundary ∂Ω. For an arbitrary direction ξ, |ξ| = 1, one can show (see [26]
Section 1.3) that the function

p = ∇u · ξ (11)
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satisfy the free boundary elliptic problem−∆p = ∇f · ξ in {u > 0}

p = 0,
∂p

∂n
= −fξ · n on Φ = ∂{u > 0}

(12)

Hence, free boundary problems (12) which are such that the gradient of the solution p can be
continuously extended through the interface, can be reduced to the classical obstacle problem
via the inverse transformation of (11). We extend this approach in the next subsection.

2.2 Reduction to the obstacle problem via the Baiocchi transform

To introduce the concept of Baiocchi’s transform, let us consider the following generic elliptic
free boundary problem which extends (12):{

−div(k∇p) = ϕ in A

p = 0, k ∂p∂n = ζ · n on Φ = ∂A ∩ Ω
(13)

completed by some boundary conditions at ∂A ∩ ∂Ω. A weaker formulation of this problem
reads {

supp p ⊂ A
−div(k∇p) = ϕ1A + ζ · ∇1A in D′(Ω)

(14)

To find a solution to this problem, the general idea of Baiocchi is to:

• find (pseudo-) differential operators D1 and D2 such that

− div
(
k∇(D1◦)

)
= (ϕ+ ζ · ∇)(D2◦) (15)

• find a regular solution (w,A) such that

D2w = 1A, with supp w ⊂ A (16)

If we find such D1,2 and (w,A), then p = D1w is a solution of (14). Let us assume that one
ensures that w ≥ 0 (for instance by a maximum principle) and set A = {x ∈ Ω, w > 0}. Then
the solution w of (16) solves the complementary problem

w ≥ 0, 1−D2w ≥ 0, w(1−D2w) = 0 (17)

which can be related to a variational inequality. As a consequence, we are led to study an
obstacle type problem for the variable w, usually called Baiocchi variable. The (integral)
operator D−1

1 is the Baiocchi transform. For the 2d dam problem initially considered by
Baiocchi in [1] (see also [26]), D2 = ∆ and D1 is (up to a multiplicative constant) ∂y the
derivative with respect the vertical coordinate, so that the Baiocchi transform is the integral
over the vertical. In general, the operator D2 is not an ordinary elliptic operator and may
include integro-differential terms coming from the external force f and/or ζ. Similarly, non-
trivial boundary conditions at ∂Ω lead to difficult issues.

In this way, thanks to the Baiocchi transform, we reduce Equations (13), with a priori
a highly irregular interface, to an obstacle type problem, a priori easy solve, on which the
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issue of the regularity of the interface seems to be more accessible since w should be more
regular than p. A natural question which remains is then to know in which sense the initial
free boundary problem on the variable p is solved. In other words, do we ensure sufficient
regularity on w to define p by the inverse Baiocchi transform, and give sense to Equations
(13).

3 Application to Hele-Shaw equations

We propose to illustrate the notion of Baiocchi variable on the system of Hele-Shaw. Initially
it models a Stokes flow between two parallel flat plates, but the Hele-Shaw system was also
intensively used in recent studies for the modeling of tissues growth. Here, the model will be
essentially seen as the limit of the Porous Media Equation in a certain asymptotics. Other
points of view could have been adopted, for instance the system can be also seen as the zero
specific heat limit of the Stefan problem. In that case too, the Baiocchi transform turns out
to be a crucial tool in the analysis of the model and we refer the interested reader to [28], [3].
The goal of this section is to show that the Baiocchi variable, defined as the time integral of
the pressure, plays for the Hele-Shaw equations a similar role as the adhesion potential for the
free-congested Euler equations. In particular we want to exhibit analogous phenomena as in
Section 1: waiting times, recording of external constraints exerted via a boundary condition
or a source term, etc.

3.1 Porous Media Equation and Hele-Shaw asymptotics

The classical Porous Media equation reads

∂tρ = ∆P (ρ) with P (ρ) = ργ . (18)

This diffusion equation can be also seen as a continuity equation complemented with the Darcy
law

∂tρ+ div(ρu) = 0 with u = −∇p(ρ)

where ρp′(ρ) = P ′(ρ). Considering the asymptotics γ = γn → +∞, we are formally led to the
limit equation

∂tρ = ∆P (19)

where P lies in the monotone graph (or Hele-Shaw graph):

P =


0 if 0 < ρ < 1

∈ [0,+∞) if ρ = 1

∅ if ρ > 1

(20)

Equations (19)-(20) form the so-called Hele-Shaw system which has to be supplemented by
the initial data ρ|t=0 = ρ0 and boundary conditions. Let us define the Baiocchi variable

w(t, x) =

∫ t

0
P (s, x)ds (21)

introduced by Duvaut [7] for Stefan problems. We have formally

∂t(ρ−∆w) = 0, (22)

9



that is
ρ(t, x) = ρ0(x) + ∆w(t, x).

Since P ≥ 0 satisfies (20), and since we have the constraint ρ(t, x) ≤ 1, w should solve the
complementary problem (see Remark 3.1)

ρ0 + ∆w ≤ 1, w ≥ 0, (1− ρ0 −∆w)w = 0, (23)

together with boundary conditions if the problem is set on a bounded domain Ω. Hence, the
Hele-Shaw system (19)-(20) is naturally linked with the classical obstacle problem presented
in the previous section.

Remark 3.1. The only delicate point to get (23) is actually the last equality, namely (1− ρ)w =
0. We have used the fact that, due to (20), we already ensure formally the same equation on
P , i.e.

(1− ρ)P = 0. (24)

Then, we invoke a retention property which states that for fixed x:

P (t0, x) > 0 =⇒ P (t, x) > 0 for all t ≥ t0.

Thanks to this property, we deduce that P (t, x) = 0 if and only if w(t, x) = 0, and we
can replace P by w in (24). This retention property can be rigorously proved by using the
Aronson-Bénilan inequality satisfied by the solutions of the Porous Media equation (25) and by
passing to the limit γ → +∞. From another standpoint, the retention property says that the
congested domain can only grow over time. Conversely, note that this is the growing property
of the congested domain which allowed us in Remark 1.2 to guarantee the non-negativity of the
pressure in the constrained Euler system (given that the adhesion potential is non-positive).

The passage to the Baiocchi variable has lead to the notion of variational solutions of the
Hele–Shaw problem introduced by Eliott and Janovskỳ [8] in the early 80’s. In [12] and [13],
Gil and Quiros relate the variational solutions to weak solutions, while the link with viscosity
solutions is established in [15]. The latter study, not developed in the next subsections,
is concerned with homogenization limit of Hele-Shaw equations with space-dependent free
boundary velocities. The concept of Baiocchi variable helps there in the determination an
explicit formula for the homogenized free boundary velocity.

3.2 Effects of inconsistent initial data and boundary conditions

Inconsistent initial data, the mesa limit. Let n ≥ 1, and ρn be a solution of the
Porous Media equation {

∂tρn = ∆(ργnn ) in Rn

ρn(0, x) = ρ0(x)
(25)

As n → ∞, assuming that 0 ≤ ρ0 ≤ 1, a result of Bénilan and Crandall [2] ensures the
convergence of (ρn)n towards the stationary profile (ρ, P ) given by

ρ(t, x) = ρ0(x) and P (t, x) = P0(x) =

{
0 if 0 < ρ0(x) < 1

∈ [0,+∞) if ρ0(x) = 1

10



We are interested here in the case where

‖ρ0‖L∞ > 1,

initial condition which is incompatible with the limiting graph (20). Actually, it can be
shown that the limit n→ +∞ selects the projection of ρ0 onto a mesa which is the “closest”
compatible density profile.

Theorem 3.2 (Caffarelli, Friedman [6]). Assume that

ρ0 ∈ L1(Rn) ∩ L∞(Rn)

and suppose in addition that ρ0 is star-shaped. Let (ρn)n be a sequence of solutions of (25).
Then, as n→ +∞,

ρn −→ ρ̄ weakly-* in L∞loc

(
(t1, t2)× Rn

)
∀ 0 < t1 < t2 < +∞,

where
ρ̄(t, x) = ρ̄(x) = ρ0 + ∆w̄ (26)

and w̄ is the unique solution of the obstacle problem

(1− ρ0 −∆w̄)w̄ = 0, w̄ ≥ 0, 1− ρ0 −∆w̄ ≥ 0. (27)

Observe that the limit ρ̄ is stationary whereas the approximate density ρn is not. Note
in addition that the convergence takes place far from t = 0. The behavior of ρn as t → 0+

and n → +∞ has been investigated later by Friedman and Höllig in [11]. Their idea is to
introduce an appropriate time rescaling and use of the Baiocchi variable to characterize the
very fast transition from the initial inconsistent density ρ0 to its projection ρ̄. More precisely,
they set

τ = tγn , ρ̃n(t, x) = ρn(τ, x)

and prove that
ρ̃n −→ ρ̃ weakly-* in L∞loc((0,∞)× Rn)

where ρ̃(t, ·) = ρ0 + ∆w̃(t, ·) and w̃(t, ·) is the unique solution of the obstacle problem(
1

t
− ρ0 −∆w̃

)
w̃ = 0, w̃ ≥ 0,

1

t
− ρ0 −∆w̃ ≥ 0. (28)

In other words, in the initial time boundary layer, the rescaled solution ρ̃(t, ·) is the projection
the ρ0 into a mesa of height 1/t. It is important to note that while t ≤ t̃ = 1/‖ρ0‖L∞ , the
solution of the previous complementary problem (28) is w̃ = 0 and therefore ρ̃(t, x) = ρ0(x)
for 0 ≤ t ≤ t̃. Namely, one has to wait a certain amount of time (inversely proportional to
‖ρ0‖∞) before the collapse of the initial data begins.
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Coupling with boundary conditions. Going further and considering non-trivial bound-
ary conditions g at ∂Ω, the limit solution ρ is no more stationary. In [13], Gil and Quiros,
study the behavior of the solution ρn of (18) with a boundary condition at ∂Ω. They prove
that

ρn(t, ·)→ ρ(t, ·) strongly in L1(Ω) for all t > 0

Pn = ργnn → P strongly in L1((t1, t2)× Ω) for all 0 < t1 < t2

where (ρ, P ) is solution to the Hele-Shaw problem with initial data ρ̄ defined in (26), and
boundary condition P (t, x) = g(x), x ∈ ∂Ω. Moreover, the limit (ρ, P ) is given by

ρ(t, ·) = ρ0(·) + ∆w(t, ·), P = ∂tw for t > 0, (29)

where the Baiocchi variable w(t, ·) satisfies the complementary problem (23) supplemented by
the time dependent boundary condition

w(t, x) = tg(x) on ∂Ω. (30)

Therefore, the whole dynamics of the problem is encoded in the obstacle problem and the
boundary condition (30) satisfied by the Baiocchi variable. Note that if ρ0 is inconsistent as
in the previous paragraph, then there is again a time boundary layer and we have no more
(21) but

w(t, x) = w(0+, x) +

∫ t

0
P (s, x)ds

where w(0+, x), defined as the solution w̄ of (27), keeps track of the projection of the initial
density ρ0 onto a mesa.

3.3 Effect of a growth source term

Numerous recent mathematical studies about modeling of tissues (or tumor) growth are based
on the following Hele-Shaw type equation which involves an additional source term

∂tρ = ∆P + ρG(P ) with P =


0 if 0 < ρ < 1

∈ [0,+∞) if ρ = 1

∅ if ρ > 1

(31)

and the complementary equation

P (∆P +G(P )) = 0. (32)

In this system, the additional source term G(P ) models cell proliferation, proliferation which
is limited by the value of the pressure P . Typically, G ∈ C1 is such that

G′ < 0 and G(PM ) = 0 for some PM > 0.

The threshold pressure PM , called homeostatic pressure, is the smallest pressure that prevents
the multiplication of the cells. Under some compatibility conditions on the initial data (in
particular consistent to avoid the problem of initial time boundary layer), Perthame et al.
[25] proved the convergence as n→∞ of the solutions ρn of the Porous Media Equation (18)
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with the source term G(P (ρn)) towards solutions of (31) (see also [14] where a similar result
is obtained for a singular approximate pressure).
Following this study, Mellet et al. analyzed further in [20] the issue of the regularity of the free
boundary Φ(t) = ∂{P (t, ·) > 0}. Without entering precisely into the details of their study,
which goes far beyond the scope of the present note, let us just explain why the Baiocchi
transform is a cornerstone of [20]. The idea is to identify through the Baiocchi variable w an
obstacle type problem. The solution w is then shown to satisfy the optimal regularity C1,1

for the obstacle problem (see references given in Section 2.1), regularity which consequently
yields additional regularity on the pressure and thus on the free boundary.

Let us just identify here the relevant obstacle problem. Similarly to the transformation
(21) which leads to (22)-(23), we look for a transformation that accounts for the new source
term G(P ) and will lead to an obstacle type problem. One defines the variable

w(t, x) :=

∫ t

0
e−G(0)sP (s, x)ds ≥ 0 (33)

with which equation (31) rewrites

∂t
(
e−G(0)tρ−∆w

)
= ρ
(
G(P )−G(0)

)
e−G(0)t.

Note that t 7→ ρ0e
G(0)t corresponds to the “free” (with pressure P = 0) evolution which is

supposed to be satisfied outside the congested domain. Therefore (cf Lemma 2.4 in [20]), the
following equality holds

∆w(t, ·) = e−G(0)tρ(t, ·)− ρ0(·) +

∫ t

0
e−G(0)sρ(s, ·)

(
G(0)−G(P (s, ·))

)
ds.

In the congested domain where ρ = 1 we have then

∆w(t, ·) = e−G(0)t − ρ0(·) +

∫ t

0
e−G(0)s

(
G(0)−G(P (s, ·))

)
ds =: F (t, x),

which allows us to identify the desired obstacle problem associated with the Hele-Shaw system
(31).

Theorem 3.3 (Mellet et al. [20]). For all times t ≥ 0, the Baiocchi variable w(t, ·) introduced
in (33) is the unique solution in H1(Rd) of the obstacle problem

w(t) ≥ 0, −∆w(t) + F (t) ≥ 0, w(t)
(
−∆w(t) + F (t)

)
= 0. (34)

The function x 7→ F (t, x) is then proved in [20] to be Dini continuous which gives the
desired optimal regularity on w(t, ·). We emphasize the fact that this the passage to the
obstacle problem, that is the passage the the Baiocchi variable, which enables in [20] to
characterize the dynamics and the regularity of the free boundary.

Conclusion

We have introduced in this note two variables, the adhesion potential in the context of free-
congested Euler equations, and the Baiocchi (or Duvaut) variable for Hele-Shaw equations.
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Despite the structural differences between the Euler equations and the Porous Media Equation,
the two variables have been shown to share similar properties and to play both a crucial role
in the complex dynamics of congested domains. Being both defined as the time integral of
the pressure, they are activated only where ρ = 1. In these congested regions, they keep track
of the history of the external (boundary condition, external forcing) and/or internal (growth
source term) compression constraint, compression that the fluid cannot accommodate due to
the maximal density constraint. The activation of the two variables can be understood in both
cases as the result of the projection of a “spontaneous” dynamics (dictated by the external or
internal forcing) onto the set of admissible dynamics for the constraint ρ ≤ 1. From another
point of view, when free-congested systems are seen as limits of a fully compressible system
(soft congestion equations with singular bulk viscosity for the free-congested Euler equations;
Porous Media Equation with stiff pressure for the Hele-Shaw system), the two variables are
limits of singular terms and appear to be essential in the justification of the limit process.
Hence, if the apparition of memory effects in free-congested Euler systems might surprise at
first sight, it turns out to be natural when, by comparison with the Hele-Shaw system, one
thinks in terms of Baiocchi transform.
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