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Abstract

The use of full-field displacement measurements in mechanical testing has increased dramatically over the last two

decades. This is a result of the very rich information they provide, which is enabling new possibilities for the

characterization of material constitutive parameters for inhomogeneous tests often based upon inverse approaches.

Nonetheless, the measurement errors limit the accuracy of the identification of the constitutive parameters and their

possible spatial resolution. The question addressed by this work is the following: can a filtering of the displacement

measurement improve the results of the identification of elastic properties? The discussion is based on the study of

a numerical example where the elastic parameters of an elastic structure with inhomogeneous properties are sought

from synthetic data representative of in-plane full-field data. The displacement data are first filtered through a

diffuse approximation algorithm, based on a moving least-squares approximation. Then, the identification of the

elastic parameters is performed by an inverse approach based on the minimization of a cost function, defined as the

least-squares gap between the experimental data and their numerical counterpart (finite element model updating).

Within this framework, a first-order analysis is proposed in order to characterize the errors in the identified

parameters, the measurement error characteristics being known. Results from raw and filtered displacement data are

compared and discussed, filtering improving the identification for lower spatial resolution. The choice of the norm

to define the gap between the experiment and the calculation is also discussed. For practical use and to take

advantage of the proposed first-order methodology, two different ways can be considered: applying the

methodology to a numerical example, representative of the experimental setup, to determine whether or not a

filtering is valuable, and estimating the uncertainties of the identified parameters at the end of the identification

process of an experimental characterization.
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1. Introduction

The recent development of digitized full-field measurements

opens new ways of characterizing materials in solid mechanics

(Hild and Roux 2006, Kobayashi 1987), thanks to their

richness, especially in the case of heterogeneous tests. Indeed,

such tests are more and more performed by testing structures,

heterogeneous materials or specimens under complex loading,

where full-field measurements come fully into play. In

particular, the identification of the elastic properties is

frequently performed at various scales of observation, for

example for composite materials (Gras et al 2012, Leclerc

et al 2009), metallic materials (Zavattieri et al 2009), MEMS

(Amiot et al 2006) and so on.

In this context, numerous identification methods were

adapted or fully dedicated to the exploitation of full-field

measurements in the framework of linear elasticity (Avril

et al 2008b) in order to characterize the elastic properties of

heterogeneous materials such as composites. Some procedures

require strain fields whereas others deal with displacements.

However, the measurement errors cannot be ignored and

may impair the identification results, especially in elasticity

where signal-to-noise ratios are low. It could be all the more

problematic when differentiating displacement data if strain

fields are required, except for the case of techniques which

provide the displacement derivatives directly, such as the grid

method (Badulescu 2010) and the shearography technique

(Francis et al 2007). Indeed, small measurement errors may

induce large errors in the computed derivative (Geers et al

1996), because of the noise differentiation.

Many identification approaches manage uncertainty

well, using different ways. We can cite the reconditioned

equilibrium gap method (EGM) (Ben Azzouna et al 2011,

Claire et al 2002, Roux and Hild 2008), which avoids noise

differentiation, the virtual field method (VFM) (Grédiac et al

2006), based on the virtual work principle and allowing us to

construct optimal virtual fields with respect to measurement

perturbations, the integrated digital image correlation (I-DIC)

(Réthoré et al 2009) which filters perturbations by performing

image correlation with the addition of mechanical constraints

and also the modified constitutive relation error (MCRE)

method (Ben Azzouna et al 2013, Deraemaeker et al 2002,

Feissel and Allix 2007, Ladevèze et al 1994) which takes

into account both measurement perturbations and constitutive

equation errors in the identification process. A review

of recently developed methods for constitutive parameter

identification based on kinematic full-field measurements is

available in Avril et al (2008b).

Among identification methods, finite element model

updating (FEMU) is the most intuitive and is used in a very

large set of fields. Since it is based on the minimization of

the least-squares gap between the experimental data and a

standard finite element (FE) calculation, its implementation

is straightforward and does not require special developments

(Collins et al 1974, Cottin et al 1984, Hemez and Farhat

1993, Kavanagh and Clough 1971, Pagnacco et al 2005).

Nevertheless, a standard FEMU approach proposes no

particular treatment of measurement perturbations. In this

paper, we discuss if the identification results by a FEMU

approach can be improved by filtering the displacement

measurements. A second question concerns the type of input

data for the identification and the choice of the norm of the

cost function.

To address the central question, we propose to perform a

study on a numerical example, where some synthetic data

are created from a 2D FE calculation taking into account

a representative measurement random error. Within this

framework, we can compare the identification results from

raw and filtered data for the characterization of heterogeneous

elastic properties. The filtering of the measurements is

performed upstream of the identification stage. The choice

here is to use a filtering approach based on local weighted

least-squares minimization using a polynomial diffuse

approximation (DA) (Avril et al 2008a, Nayroles et al 1991a).

The identification is then performed with a FEMU method,

leading to the minimization of a cost function with respect

to the sought Lamé coefficients. Then, we should be able

to define the relationship linking the identification error to

the measurement error. We propose to characterize that

relation through a first-order analysis. For practical use, the

proposed first-order methodology can be applied as a pre-

assessment study on a numerical example representative of

the experimental setup, in order to determine whether or not

a filtering is valuable. Furthermore, it can be applied to real

test data, at the end of the identification process, in order to

characterize the uncertainties of the identified parameters. For

the sake of simplicity, thiswork only deals with synthetic data

created by FE simulation.

The identification framework is first presented, defining

the direct problem and the identification formulation, and

the main theoretical properties of the filtering approach are

recalled from Feissel (2012). Then, a first-order analysis

connecting the identification error to the measurement

perturbations is detailed and used to investigate the

improvement of the identification of heterogeneous Lamé

coefficients from the filtering through a numerical example.

Eventually, the choice of the least-squares norm of the

minimization step is discussed.

2. Identification framework and filtering method

This section describes the studied inverse problem and the

filtering method used to reduce the perturbation effects

on the identification results. The framework concerns the

identification of distributed elastic properties by using

kinematic measurements.

2.1. Identification framework

2.1.1. Direct problem and measurements. Let us consider

a specimen with elastic isotropic properties, considered as

heterogeneous. As sketched in figure 1, the specimen defined

in a domain � is subjected to a mechanical loading and

governed by the equations of continuum mechanics within

the framework of plane stress assumption.
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Data points

Figure 1. Reference problem related to the identification problem.

In the absence of body forces, the governing equations are

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Equilibrium: div σ = 0 in � (1a)

Kinematic compatibility: ǫ = 1
2
(▽u + ▽

Tu) in � (1b)

Constitutive equation: σ = Cǫ in �, (1c)

with u the displacement vector, and σ and ǫ respectively the

Cauchy stress tensor and the infinitesimal strain tensor that

depends on the displacement u (1b). C is an isotropic stiffness

tensor, defined as a piecewise constant over the domain � and

is described through the Lamé coefficients (λ, μ). For each

homogeneous subset denoted by �k , k ∈ [1, Nc], with Nc

the number of homogeneous subsets, under the plane stress

assumption, the elasticity tensor is written as

C =

⎡
⎣

λ∗
k + 2 μk λ∗

k 0

λ∗
k λ∗

k + 2 μk 0

0 0 2 μk

⎤
⎦

=
Ek

1 − ν2
k

⎡
⎣

1 νk 0

νk 1 0

0 0 1 − νk

⎤
⎦, (2)

where λ∗ = 2 λ μ/λ + 2 μ. Young’s modulus and Poisson’s

ratio are derived from the Lamé coefficients as

ν =
λ

2(λ + μ)
; E = μ

(3λ + 2μ)

λ + μ
. (3)

The Lamé coefficients of all the subsets are collected in a

vector θ , of length denoted by p. θ will be the unknown of the

identification problem.

The above mechanical problem has mixed boundary

conditions, partitioned over two border types:⎧
⎨
⎩

Neumann boundary conditions: σ .n = f
d

on ∂ f � (4a)

Dirichlet boundary conditions: u = ud on ∂u�, (4b)

where f
d

denotes the traction applied on the boundary ∂ f �,

with n the outward unit normal vector, and ud is the applied

displacement on the border ∂u�. Besides, ∂u� and ∂ f � are

defined such that ∂u� ∩ ∂ f � = ∅, so as to support a well-

posed set of boundary conditions.

Simulated displacement measurements, denoted by ũ, are

available in a non-zero subdomain, defined as �m ⊂ �:

u = ũ in �m. (5)

The synthetic measurements are obtained from a reference

FE calculation and an added random error as detailed in

section 2.1.2.

The vector ũ containing displacement measurements is

defined such that ũ ∈ R
2×nmeas for a 2D problem, with nmeas the

number of data points corresponding to a realistic regular data

grid. Displacement measurements can be seen as the sum of a

free-of-error term ũ0 and a perturbation term δũ, so that

ũ = ũ0 + δũ. (6)

2.1.2. Finite element formulation and data construction. A

perturbation term δũ is constructed on the data grid and

added to the free-of-error displacement term. Only inner

displacement measurements are perturbed, whereas the mixed

boundary conditions are assumed to be well known and

reliable.

To implement the identification problem numerically, the

continuous problem (1), (4) is discretized by the finite element

method (FEM) (Dhatt et al 2012). The displacement is thus

described, thanks to the FE shape functions, and can be

expressed as

u(x) = [
(x)]{U} , ∀x ∈ �,

where the matrix [
(x)] collects the FE shape functions and

{U} collects the degrees of freedom (dofs) associated with u.

Then, the discretization of the direct problem leads to a linear

system that can be expressed in a matricial manner as

[K] {U} = {F}, (7)

where [K] denotes the global rigidity matrix and {F} is

the generalized load vector which incorporates the boundary

conditions (4).

Since θ consists of the Lamé coefficients, it can be noted

that the stiffness matrix is linear with respect to θ :

[K] =

p∑

j=1

θ j[K
1
j ], (8)

where [K1
j ] is the constant matrix ∂[K]

∂θ j
.

In the following, synthetic displacements u0 are based on

the previous FE model with the reference elastic properties

θ0. The subscript 0 refers to exact reference quantities. u0 is

described through the vector of the corresponding dofs, {U0},

whose length is denoted by Ndof.

Since the data grid should be representative of a DIC

data grid (regular with a typical size of about 200 × 200), the

measurements should not be defined on the FE mesh. Hence, a

projection of u0 from the FE mesh to the data grid is necessary

and is performed, thanks to a transfer operator �. The last

is based on the FE shape functions and yields the values of

the FE displacement field at the points of the data grid. The

synthetic displacement measurements are finally collected in

the vector {Ũ} such that

{Ũ} = [�]{U0} + {δŨ} = {Ũ0} + {δŨ}, (9)

where δŨ is a vector corresponding to the error between the

measurements and the FE model. It is usually made of three

parts.

(i) A measurement random error term characterized by

its covariance matrix [C]. In practical cases, such a

covariance matrix depends on the DIC algorithm (Sutton
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et al 2009) and can be determined experimentally.

Later, a reasonable hypothesis for the representation of

{δŨ} is to take random perturbations of white noise

type. Nevertheless, the study can be performed for any

covariance matrix related to a DIC study.

(ii) A measurement systematic error term inherent to the DIC

technique and the acquired images (Bornert et al 2009).

Such an error is not taken into account in the following

numerical study.

(iii) A model error, related to an improper choice of the FE

model in practical cases. Here, it is chosen to use the same

FE model for the creation of the measurements and for

the identification step. Hence, the model error is not taken

into account.

As a consequence, we propose to study the effect of

filtering on the identification results in cases with a random

error but no systematic error (neither from the measurement

nor the model). It is considered that systematic error in the

input data would lead to a bias in the identification results, with

or without filtering, and that the filtering will mainly modify the

identification errors associated with the measurement random

error.

2.1.3. Identification problem. The identification problem

consists in finding the constitutive parameters θ by confronting

the direct problem (1), (4) with the measurement data (5). It is

addressed as an inverse problem (Bonnet and Constantinescu

2005).

The inverse method adopted in this study is a least-squares

formulation where the solution θopt of the identification

problem is minimizing the discrepancy between simulated

and measured data. Since it requires FE simulations, such an

approach is usually known as a FEMU. Here, the cost function

to be minimized only covers the displacement measurements.

The discrete identification problem can be presented in a

monolithic manner as

find ({U}, θ ) minimizing:⎧
⎨
⎩
J ({U}, θ ) = 1

2
([�]{U} − {Ũ})T[B]([�]{U} − {Ũ}) (10a)

under the constraint: [K(θ )]{U} = {F}, (10b)

where J is the cost function expressing the least-squares

formulation gap between the measurement and model, and

[B] is a matrix related to the chosen norm of the cost function.

Solving problem (10) usually consists in minimizing J

with respect to θ , where {U} is estimated through (10b) and

is thus not dealt with as a minimization under constraint.

Nevertheless, we keep here the above monolithic form which

allows a practical first-order development in section 3.1.

2.2. The diffuse approximation as a filtering method

The study of the filtering effect on the identification results is

based on the use of the DA for filtering. Let us note that such

a study can be performed for any other filtering tool since it is

characterized in terms of error. The DA was first developed for

solving partial differential equations (Nayroles et al 1991b,

Prax et al 1996, Sadat and Prax 1996), and then applied to

R

Data points xi

Reconstruction point x

Figure 2. Reconstruction from the neighborhood of each point.

optimization problems (Breitkopf et al 2002, Nayroles 1994)

and field transfer (Brancherie et al 2006, Villon et al 2002). It

has recently been applied to strain field estimation from full-

field displacement data in Avril et al (2008a). The latter was

first developed for 2D space measurements and then applied

to spacetime data in Feissel et al (2011).

It consists in the reconstruction of a continuous field from

a cloud of data points. In our context, the starting point is a

displacement field obtained by a 2D-DIC technique, during a

mechanical test.

The displacement is measured on a regular data grid,

where xi is the position of the ith data point and ũ(xi)

the corresponding displacement data, i ∈ [1, nmeas]. ũ(xi)

is described through its Cartesian coordinates (ũ(xi), ṽ(xi))

associated with the directions of the data grid. For each

coordinate ũ and ṽ, an approximated field is reconstructed

as presented in the following for ũ. The approximated field is

denoted as uap(x) and is written as the product of a vector of

coefficients a(x) and beforehand chosen shape functions, such

that

uap(x) = p(x) a(x), (11)

where a is to be determined and p(x) is a vector containing

the functions of the approximation basis. The choice here is to

use a degree 2 polynomial basis:

p(x)T =

{
1 x y

x2

2
xy

y2

2

}
, (12)

where x and y are respectively the horizontal and vertical

Cartesian coordinates of the considered point. In each

reconstruction point x, a(x) is the solution of local-weighted

least squares, defined on a neighborhood of x, denoted as V (x):

min
a(x)

1

2

∑

xi∈V (x)

w(x, xi)(p(x − xi)
Ta(x) − ũ(xi))

2, (13)

with w(x, xi) a weighting function with a local span implicitly

defining V (x):

w(x, xi) = wref

(
x − xi

Rx

)
wref

(
y − yi

Ry

)
. (14)

wref refers to a third-order spline approximating a Gaussian

function but with a local span in [−1, 1].

Rx and Ry are the radii at each reconstruction point x, in the

x and y directions, as illustrated in figure 2. In the following,

we will consider Rx = Ry = R constant all over the data grid. R
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constitutes a main parameter allowing the adjustment between

the approximation error and the random error as detailed in

section 2.3.

In a matricial form, equation (13) can be written at

any x as

min
{a}

1
2
[[P]{a} − {Ũx}]

T[W ][[P]{a} − {Ũx}], (15)

where [W ] is a diagonal matrix made up of the weighting

functions w(x, xi), [P] is a matrix made up of p(x − xi) lines

and {Ũx} is a vector containing the data corresponding to the

points in V (x).

We deduce the linear system satisfied by the solution {a}

of equation (15), which is written as

{a} = [PTWP]−1[P]T[W ]{Ũ}. (16)

If the projection basis is of degree 1 or more, the reconstructed

field and its first derivatives in a diffuse manner at point x are

given by the first three components of the vector {a}:

a1(x) = uap(x); a2(x) =
δuap

δx
(x); a3(x) =

δuap

δy
(x),

where
δuap

δx
and

δuap

δy
are the diffuse first derivatives referring to

an estimation of the exact derivatives. We choose to perform

a reconstruction for each data point of the measured field ũ.

Hence, we should solve problem (15) at each data point. The

reconstruction is performed for the two components of ũ and

the discrete reconstructed field is collected in {Uap}.

Let us underline that the presented approximation

approach is linear and {Uap} is obtained by applying a

reconstruction matrix [Mu] on a given measured displacement

vector {Ũ}:

{Uap} = [Mu]{Ũ}. (17)

[Mu] is made up from the lines of (16) corresponding to the first

coefficient a1 of the reconstruction points taken into account. In

our case, it is a (2 nmeas ×2 nmeas) matrix when considering the

global reconstruction operator. Moreover, if the reconstructed

strain field {ǫap} is needed, we can deduce them subsequently

from the first-order diffuse derivatives, leading to a similar

reconstruction operator:

{ǫap} = [Mǫ]{Ũ}, (18)

where [Mǫ] denotes the reconstruction matrix of strains and is

deduced from the lines of (16) associated with a2 and a3.

In summary, the parameters controlling the diffuse

reconstruction are the degree of the projection basis and the

radius R of the weighting function. The next section describes

the errors when reconstructing a displacement field {Ũ} using

the DA method.

2.3. Approximation error and random error

Considering a displacement described as the sum of an exact

displacement and random measurement perturbations (6),

the reconstructed displacement field uap at each point xi is

written as

uap(xi) = u0(xi) + δuk(xi)︸ ︷︷ ︸
approximation error

+ δub(xi)︸ ︷︷ ︸
random error

, (19)

where

• u0 is the exact field.

• δuk is the approximation error and is associated with the

reconstruction of the exact field. It is related to the loss of

mechanical information.

• δub is the random error on the reconstructed field

characterized from the reconstruction of measurement

perturbations alone.

As the span R is increased, the random error is reduced but

the approximation error is increased. There is a trade-off to be

found for the choice of R, aiming at reducing the random error

while maintaining an acceptable level for the approximation

error. Due to the linearity of the reconstruction, the two types

of errors can be studied separately. In fact, this decomposition

cannot be done on a real case since the exact field remains

unknown, but it allows us to characterize the displacement

reconstruction from a theoretical point of view.

It can be shown that the approximation error is related to

the n + 1 Taylor remainder of the exact field, when dealing

with a polynomial basis of degree n (Feissel 2012). An error

estimator for the Taylor remainder is necessary to characterize

it but is still to be developed. On the other hand, the random

error is directly linked to the raw field perturbations, denoted

by {δŨ}, through the reconstruction matrix [Mu]:

{δUb} = [Mu]{δŨ}. (20)

When measurement perturbations can be described from a

statistical point of view, so can be the random error.

Measurement random error is usually characterized

through a covariance matrix [C] as mentioned in section 2.1.1.

Its expression is written as

[C] = 〈{δŨ}{δŨ}T〉 = σb
2[C0], (21)

where the notation 〈 〉 corresponds to the expectation, σb is the

standard deviation describing the random error magnitude and

[C0] is the spatial correlation matrix. Such information can be

known from the chosen 2D-DIC algorithm (e.g. CORRELIQ4

(Hild and Roux 2006)).

From (20), the covariance of {δUb} can easily be estimated:

Cov({δUb}) = σb
2[Mu][C0][Mu]T. (22)

In the following, we will characterize the link between these

errors and the induced identification error from a FEMU

approach, so that we can discuss the suitability of filtering

for the identification purpose.

3. Theoretical study of the identification error

3.1. Identification problem

In order to characterize the effects of filtering on the

identification results, we propose to characterize analytically

the relationship between the identification error and the

measurement perturbations from a first-order analysis. Such

a first-order study can be performed in several ways. The

sensitivity matrix is computed analytically, using the EGM

in Amiot et al (2006) and the FEMU approach in Gras et al

(2012). Here, we choose to base our study on a perturbation
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analysis of the optimality problem associated with (10). Such

an approach, within the framework of adjoint problems,

remains general and could allow us to perform the study

for nonlinear problems. To that purpose, let us start from the

identification problem (10).

To solve it, a Lagrangian is introduced:

L = J({U}, θ ) − {�}T([K(θ )]{U} − {F}). (23)

Then, the Lagrangian stationarity
(

∂L
∂�

, ∂L
∂U

, ∂L
∂θ

)
= (0, 0, 0)

leads to the following optimality system with respect to

({U}, {�}, θ ):⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[K]{U} = {F} (24a)

[K]T{�} = [�]T([B]([�]{U} − {Ũ})) (24b)

{�}T
[
K1

j

]
{U} = {0}, ∀ j ∈ [1, p]. (24c)

In order to set up the relationship between the

identification error and measurement perturbations, a first-

order analysis of the perturbation of the solution of (24) with

respect to a perturbation on the measurements is performed as

detailed in section 3.2.

3.2. First-order analysis

For a set of perturbed measurements, the identification error,

denoted by {δθ}, is defined as the difference between the p

identified material properties and the reference values (free-

of-error).

The starting point consists in seeking the relationship

between the identification error {δθ} and the measurement

perturbations {δŨ} based on a first-order approximation. A

sensitivity matrix is thus introduced:

{δθ} = [Sθ ]{δŨ} + o({δŨ}). (25)

In order to determine the sensitivity matrix [Sθ ], we propose

here to construct it column by column. Each column is

determined via solving problem (24) at the first order, by

perturbing successively each component of {Ũ}. Let us

therefore introduce the pinpoint perturbation δũ, defined as

{δŨ} = δũ{ei}, ∀i ∈ [1, 2nmeas], (26)

where the index i denotes the considered measurement degree

of freedom, 2nmeas is the total number of measurement dofs for

a 2D problem and {ei} is a unit vector defined as ei(l) = δli,

with δli the Kronecker delta. Therefore, for such a defined

perturbation, the first-order development of the identification

error with respect to δũ is written as

{δθ} = {Sθ
.i}δũ + o(δũ), ∀i ∈ [1, 2nmeas], (27)

where {Sθ
.i} = [Sθ ]{ei} is a p × 1 vector and corresponds to the

ith column of the sought sensitivity matrix [Sθ ].

In the same manner, sensitivity matrices are introduced

for {U} and {�}:
⎧
⎨
⎩
{U} = {U0} + {Su

.i}δũ + o(δũ) (28a)

{�} = {�0} + {S�
.i }δũ + o(δũ), (28b)

where
{
Su

.i

}
and

{
S�

.i

}
have Ndof lines denoting the total number

of FE dofs.

From equations (8) and (27), the first-order writing of the

symmetric global rigidity matrix takes the following form:

[K(θ )] = [K(θ0)]︸ ︷︷ ︸
=
def

[K0]

+

p∑

j=1

[
K1

j

]
Sθ

jiδũ + o(δũ). (29)

Now, let us make a first-order development of the optimality

system (24) by taking into account the development with

respect to δũ and partitioning each equation in order 0 and

order 1, neglecting higher order terms. From equations (28a)

and (29), (24a) is written as⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

[K0]{U0} = {F} (30a)

[K0]{Su
.i} +

p∑

j=1

[K1
j ]Sθ

ji{U0} = {0}. (30b)

Using equations (28) and (29), (24b) becomes⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[K0]T{�0} = [�]T[B] ([�]{U0} − {Ũ0})︸ ︷︷ ︸
={0}

= {0} (31a)

[K0]T{S�
.i } +

⎛
⎝

p∑

j=1

[
K1

j

]
Sθ

ji

⎞
⎠

T

{�0}

= [�]T[B]([�]{Su
.i} − {ei}), (31b)

where the free-of-error measured term {Ũ0} is assumed to be

equal to the projection of the reference displacement vector on

the data grid (9).

In the same way, equation (24c) takes the following form:

⎧
⎨
⎩

{�0}
T
[
K1

j

]
{U0} = {0}, ∀ j ∈ [1, p] (32a)

{S�
.i }

T[
K1

j

]
{U0} + {�0}

T
[
K1

j

]
{Su

.i} = {0}, ∀ j ∈ [1, p].

(32b)

Bringing together the zero-order equations (30a), (31a) and

(32a) leads to ⎧
⎨
⎩

{U0} = [K0]−1{F} (33a)

!{�0} = {0}. (33b)

The zero-order equations correspond to the optimality

problem for the exact measurements, with the reference

parameters θ = θ0, leading to (33b).

By using equations (30b), (31b), (32b) and (33b), one

obtains the following order 1 system:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{Su
.i} = −[K0]−1

p∑

j=1

[
K1

j

]
{U0}S

θ
ji (34a)

{S�
.i } = [K0]−1[�]T[B]([�]{Su

.i} − {ei}) (34b)

{S�
.i }

T[
K1

j

]
{U0} = {0} ∀ j ∈ [1, p]. (34c)

By introducing⎧
⎨
⎩

{
U1

j

}
= [K0]−1

[
K1

j

]
{U0} (35a)

[
U1

m

]
=

[{
U1

1

}
, . . . ,

{
U1

p

}]
, (35b)
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equation (34a) can be expressed as

{Su
.i} = −

p∑

j=1

{
U1

j

}
Sθ

ji = −
[
U1

m

]
Sθ

.i. (36)

We then obtain the following linear system on {Sθ
.i}:[

U1
m

]T
[�]T[B][�]

[
U1

m

]
{Sθ

.i} = −
[
U1

m

]T
[�]T[B]{ei},

∀i ∈ [1, 2nmeas]. (37)

Thus, solving the system (34) for {δŨ} = δũ{ei} yields the

equation satisfied by the ith column of the sought sensitivity

matrix. Taking into account these equations for all i, [Sθ ] is

obtained as

[Sθ ] = −
([

U1
m

]T
[�]T[B][�]

[
U1

m

])−1[
U1

m

]T
[�]T[B]. (38)

In summary, the sensitivity matrix yields the first-order relation

between measurement perturbations and the identification

error.

3.3. Characterizing the identification errors—bias and

variance

The aim of this theoretical study is to discuss and compare

the robustness of the identification results with and without

filtering on a numerical example. The definition of an

enhancement criterion is thus necessary. A criterion based on

the calculation of the bias and the variance of the identification

error without and with a filtering step is set up.

Let us write the first-order analytical expressions of both

bias and variance of the identification error {δθ} using the

previous developments.

Let us also consider a given measurement perturbation

vector {δU}. From relationship (25), both the bias and the

covariance are expressed at the first order as follows:

• Bias of {δθ}:

〈{δθ}〉 = [Sθ ]〈{δU}〉 (39)

• Covariance of {δθ}:

Cov({δθ}) = 〈({δθ} − 〈{δθ}〉)2〉

= [Sθ ] Cov({δU})[Sθ ]T. (40)

The quality of the identification is assessed by computing

the standard deviation and the bias of the identification error for

two types of displacement data measurements for the inverse

problem.

(1) Raw field {Ũ} (without filtering).

The measurement field is constructed using a reference

FE simulation, and mixed with artificial perturbations, as

described in section 2.1.2. In the following, the latter are

created from a Gaussian white noise characterized by a

zero mean and a given standard deviation σb summed up

as

{δU}∼ N (0, σb
2[Id]), (41)

where [Id] is the identity matrix.

(a) Mean of the identification error 〈{δθ}〉raw.

Since measurement perturbations are centered, the

mean of the identification error is equal to zero:

〈{δθ}〉raw = {0}. (42)

Figure 3. Enhancement criterion for the filtering assessment.

Table 1. Expression of the bias and the covariance for two types of
data.

Without filtering With filtering

〈{δθ}〉 {0} [Sθ ]δUk

Cov({δθ}) σ 2
b ([Sθ Sθ T

]) σ 2
b ([Sθ MuMu

TSθ T
])

(b) Covariance of the identification error Cov({δθ})raw.

Using equation (40), the covariance of the

identification error is written as

Cov({δθ})raw = [Sθ ]〈{δU}{δU}T〉[Sθ ]
T

= σb
2([Sθ ][Sθ ]

T

). (43)

(2) Reconstructed field {Uap} (with filtering).

The second measurement type is the approximated field

reconstructed from the raw field by the DA. According to

section 2.3, we dispose of both approximation and random

errors after the reconstruction step, when dealing with a

numerical example. Thus, the error in the reconstructed

field is characterized by a mean value corresponding to

the approximation error δUk and the covariance of the

random error (41):

{δUap} = {δUk}︸ ︷︷ ︸
approximation error

+ {δUb}︸ ︷︷ ︸
random error

∼ N (δUk, σb
2[Mu][Mu]T). (44)

(a) Mean of the identification error 〈{δθ}〉DA.

Due to the approximation error, we are saddled with

a non-zero mean of the identification error:

〈{δθ}〉DA = [Sθ ] δUk. (45)

(b) Covariance of the identification error Cov({δθ})DA.

The covariance is calculated in the same way as

previously, so that

Cov({δθ})DA = [Sθ ]〈{δUb}{δUb}
T〉[Sθ ]

T

= σb
2([Sθ ][Mu][Mu]T[Sθ ]

T

). (46)

In the end, the proposed analysis boils down to the

calculation of the bias and the covariance of the identification

error with and without DA filtering. Its recap is given in table 1.

In order to compare the identification results with and

without filtering, an enhancement criterion is proposed for

each parameter θ j. Filtering improves the identification if the

error bar of the identification with filtering is included in the

one without filtering. This implies
{
〈δθ j〉DA + (σ j j)DA − (σ j j)raw < 0 (47a)

〈δθ j〉DA − (σ j j)DA + (σ j j)raw > 0, (47b)

with σ j j = Cov ({δθ}) j j. The criterion is illustrated in figure 3.
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Figure 4. Standard deviation as a function of the synthetic
perturbation level.

3.4. Validation of the theoretical analysis

In order to validate the proposed first-order analysis, it

is compared to a Monte Carlo approach where 1000

identifications were performed from 1000 random samplings

of Gaussian white noise added to the exact measurements.

The corresponding case test consists of a homogeneous

square plate clamped in the load direction on its left-hand side

and subjected to parabolic traction on the opposite side.

For the sake of simplicity, only a homogeneous μ is sought

while λ is assumed to be known. A 100×100 measurement grid

is constructed and the identification is performed within the

framework detailed in section 2.1. Such an inverse problem

with reliable boundary conditions is robust to measurement

perturbations, due to the perturbations averaging on the whole

domain during the identification process.

In order to significantly affect data, the prescribed

perturbation levels reach 500% of the mean value of the

displacement field.

Figure 4 shows the standard deviation of the identification

error of μ as a function of the displacement perturbations for

both analytic and Monte Carlo approaches. It can be seen that

the first-order results fit well the Monte Carlo results, which

validates the proposed approach.

It is then possible to proceed to the study of the effect of

the DA filtering and the choice of an adequate least-squares

norm on the identification results.

4. Effects of filtering on the identification results

In this section, the first-order analysis proposed in section 3.2 is

applied to the identification of elastic properties from synthetic

data, coupling the FEMU approach (section 2.1.3) with the

DA filtering (section 2.2). The corresponding numerical test

involves non-uniform strain fields in the studied region, and

heterogeneous properties are sought.

4.1. Data construction and identification framework

The application concerns the example of a square plate with

a centered inclusion. The displacement measurements are

created through a reference calculation, using the FEM under

the hypothesis of plane stress, where the mesh elements are

triangles with linear shape functions. The plate is composed of

two homogeneous isotropic elastic materials (the inclusion and

its outside) with stiffer values for the inclusion properties. The

stiffness tensor is written as a function of the Lamé coefficients

λ and μ.

The measurement grid size is 100 × 100, and Gaussian

white noise with a realistic 5% standard deviation is added

in order to represent the measurement random error. Figure 5

shows the stress fields σxx and σyy generated by the simulation

of a line traction on both right and left sides of the plate,

illustrating the large stress gradients near the inclusion.

We choose to limit the identification to the μ parameter,

outside the inclusion, which is assumed to be a piecewise

constant. Hence, the λ parameter outside the inclusion and

the stiffness of the inclusion are assumed to be known,

which remains valid for the comparison purpose of the study.

Thereby, the sought vector of parameters θ contains the μ

coefficients corresponding to the piecewise constant zones and

its size is equal to the number of constant zones in the plate.

The number of constant zones is a parameter of the inverse

problem. The more it increases, the more ill-posed the inverse

problem is.

As presented in section 2.1.3, the identification is based

on the FEMU method and consists in the minimization of the

quadratic gap between the measurements and the simulated

data. It implies the choice of an associated norm by defining

the weighting matrix [B] in (10a). Such a choice impacts

the identification error (table 1) through the sensitivity matrix

(38). It represents a second inverse problem parameter to be

Figure 5. σxx and σyy stress maps of the tensile simulation.
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(a) (b) (c)

Figure 6. Bias maps for different spans: (a) R = 3, (b) R = 6 and (c) R = 10.

(a) (b) (c)

Figure 7. Standard deviation for different spans: (a) R = 3, (b) R = 6 and (c) R = 10.

studied. First, [B] is chosen equal to the identity matrix, so that

equation (10a) is written as

J({U}, θ ) = 1
2
([�]{U} − {Ũ})T([�]{U} − {Ũ}). (48)

The results are compared, based on the bias and the

standard deviation of the identification error for both raw and

reconstructed measurements. Then, the enhancement criterion

developed in section 3.3 is studied. Since we choose to perform

the identification in a heterogeneous way, all these quantities

are calculated for each constant zone.

4.2. Influence of the problem parameters

4.2.1. Effect of the filtering span. The effect of filtering on

the identification results is studied by considering the DA tool

presented in section 2.2. The filtering parameter is the span

R defining the physical size of the neighborhood for each

reconstruction point (14) and is chosen constant all over the

measurement zone.

Figure 6 shows three maps of the logarithm of the bias

on the identification 〈{δμ}〉DA, normalized by the reference

values of μ, for three different filtering spans. As expected,

the bias increases with the span because of the approximation

error (45).

Figure 7 shows three maps of the standard deviation

computed for three different spans, and points out that the

larger the span the lower the variance, because of averaging of

the random error on a larger area. Furthermore, the standard

deviation is larger at the edges of the plate, due to an increasing

error from the DA (Feissel 2012). It can be noted that the area

with larger bias corresponds to the area near the inclusion,

where the large gradient of the strain field implies a large

approximation error by the DA. The effect of such an error

on the displacement field implies an error in the identified

parameters that remains local. At the end, an adequate span

reflects a trade-off between the bias and the standard deviation.

4.2.2. Effect of the size of the constant zones. The size of

the constant zones is an important parameter of the inverse

problem. As the constant zones become smaller, the number

of unknown parameters increases leading to a more difficult

identification. The μ parameter of a given constant zone is

actually impacting the displacement field in the vicinity of the

considered zone which decreases with the size of the zone,

hence increasing the effect of measurement perturbations.

There is thus a limit to the spatial resolution that can be

expected. This is confirmed by the proposed approach, which

shows that the magnitudes of both the bias and the standard

deviation of the identification error increase as the size of

the constant zones decreases. Figure 8 shows the standard

deviation of the identification error for three different sizes of

constant zones in the case of raw data.

4.2.3. Identification enhancement. In this section, we discuss

the effect of filtering on the identification results in more detail.

As mentioned previously, there is a trade-off to be found

between the bias and the standard deviation to choose the

proper span R. The trade-off depends at least on the size of

the constant zones, the measurement perturbation level and the

local strain gradients. The measurement perturbation level is

fixed to a 5% magnitude, representative of an experimental

random error when dealing with specimens in the elastic

range. The effect of the local strain gradients is illustrated

in figure 9, where the identification results are plotted for

three different constant zones: on the border, near the inclusion

and in a middle zone. In each subfigure, the two border lines

define the error bar of the identification without filtering, from

9



(a) (b) (c)

Figure 8. Standard deviation for different sizes of constant zones (without filtering): (a) large size, (b) middle size and (c) small size.
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Figure 9. Local identification error as a function of the filtering span: (a) border zone, (b) zone near the inclusion and (c) middle zone.

the standard deviation of the identification error. The middle

continuous line represents the bias of the identification error

with filtering, while the dashed lines represent the error bar

around the bias with filtering. All these quantities are here

normalized by the reference value of the Lamé constant μ0.

In the case of figures 9(a) and (b), the bias is dominating

whatever the span R is; hence, the filtering does not enhance

the identification. Figure 9(c) indicates the enhancement of

the identification with filtering all the more when R becomes

larger. From these local results, it is possible to apply the

criterion (47) for each constant zone, leading to enhancement

maps, as illustrated in figure 10. The color key is defined via

a linear color gradient specified by the values 1 and −1, such

that light colors correspond to an enhancement zone, while

dark colors represent a non-enhancement zone.

The following trends can be observed on the proposed

example.

The filtering improves the identification results all the

more when the size of the constant zones is small. For large

constant zones, filtering should not be necessary. Nonetheless,

the identification is not improved by the filtering in the

vicinity of the inclusion, because of large strain gradients in

this area. The best results can be observed in figure 10(c)

corresponding to a span R of 4. However, in spite of an

obvious improvement of the identification by filtering, let us

note that the identification is globally rather inaccurate when

looking at the average error level with or without filtering in

the studied example (figure 9), where the limit of affordable

spatial resolution is reached.

4.3. Choice of the identification norm

In the following section, we study how the choice of the

norm for the least-squares formulation (10a) affects the

identification results. As mentioned in section 4.1, the previous

results correspond to the basic choice of an identity matrix as

a weighting matrix of the cost function. For filtered data, such

a choice leads to a non-zero bias of the identification error.

In order to avoid the identification bias, while keeping the

filtering step, we propose to include it within the identification

step by modifying the weighting matrix [B]. Two additional

norms are therefore tested.

(i) Filtered displacement norm: by filtering both measured

and calculated fields, we get the same approximation error

for the two reconstructed fields. The discrepancy between

the two fields thus becomes free of the approximation

error, yielding a zero bias (45). The cost function (10a)

reads

J({U}, θ ) = 1
2
([�]{U}

− {Ũ})T[Mu]T[Mu]([�]{U} − {Ũ}) (49)

with [B] = [Mu]T[Mu].

The sensitivity matrix (38) takes the following form:

[Sθ ] =
([

U1
m

]T
[�]T[Mu]T[Mu][�]

[
U1

m

])−1

×
[
U1

m

]T
[�]T[Mu]T[Mu]. (50)

(ii) Filtered strain norm: alternatively, the cost function can be

based on the strain fields, considering the sensitivity of the

strain fields to the material properties, disregarding their

inescapable sensitivity to the measurement perturbations.

The only modification to the approach is to replace the

displacement operator [Mu] by the strain operator [Mǫ].

The cost function of the identification problem becomes

J({U}, θ ) = 1
2
([�]{U} − {Ũ})T[Mǫ]T[Mǫ]

× ([�]{U} − {Ũ}) (51)

with [B] = [Mǫ]T[Mǫ].
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(g) (h) (i)

Figure 10. Enhancement maps for various spans and zone sizes: (a) large size (R = 4), (b) middle size (R = 4), (c) small size (R = 4), (d)
large size (R = 6), (e) middle size (R = 6), ( f ) small size (R = 6), (g) large size (R = 10), (h) middle size (R = 10) and (i) small size
(R = 10).
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Figure 11. Local identification error for different cost function norms: (a) [B] = [Id], (b) [B] = [Mu]T[Mu] and (c) [B] = [Mǫ]T[Mǫ].

The sensitivity matrix (38) takes the following form:

[Sθ ] =
([

U1
m

]T
[�]T[Mǫ]T[Mǫ][�]

[
U1

m

])−1

×
[
U1

m

]T
[�]T[Mǫ]T[Mǫ]. (52)

Figure 11 presents the local evolution of both bias and

standard deviation of the identification error as a function of

the filtering span, for a given constant zone. For each norm,

the two border lines delimit the error bar of identification

without filtering, where [B] = [Id]. The middle continuous

line represents the bias of the identification error with filtering

and the dashed lines represent the error bar of the identification

with filtering.

It appears that, in spite of avoiding the bias on the

identification, the new tested norms do not improve the

identification since they increase the standard deviation. An

increase of the filtering span emphasizes this phenomenon.

This can be understood from the fact the filtering blurs both

data and calculation fields, leading to a loss of mechanical

information and a decrease of the sensitivity of the fields with

respect to the material parameters. As a consequence, the gain

associated with the loss of bias is compensated by the loss

associated with the increase of the standard deviation, so that

the alternative norms are not relevant on the studied example.

Let us note that the illustrated deterioration between the norms

is observed all over the plate.
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5. Conclusion

This paper presented a study of the effect of the DA filtering

on identification results based on the FEMU approach. The

emphasis was to discuss the efficiency of a non-mechanical

filter in the presence of a measurement random error. To this

end, the relationship between measurement perturbations and

the identification error was characterized through a first-order

analysis.

The methodology was then applied to a numerical

example where heterogeneous elastic properties were sought.

The identification results with filtered measurements are

satisfactory on the studied example, in comparison to the

use of raw measurements. More precisely, it was shown that

filtering was more effective when the zones with constant

parameters were smaller. Furthermore, it was observed that

the identification results were deteriorated by filtering in the

areas with large strain gradients.

Besides, studying the choice of the cost function norm led

to the conclusion that using displacements rather than strains

was more accurate and that the filtering of the simulated data

was not improving the identification results.

The proposed methodology can be applied in a study

that precedes experimental identification: considering the

numerical modeling of the experiment and taking into account

a realistic random error, the tuning of filtering can be studied

beforehand in order to estimate the expected accuracy and

spatial resolution of the identification results. Then, it could

be used after the identification from real test data as a tool

to estimate the uncertainty level associated with the identified

solution, given the measurement random error and the chosen

filtering parameters.

Furthermore, it was shown in the proposed example that

the errors were increasing near the edges and areas with large

strain gradients; hence, the span R could be spatially adapted

in order to better control the local identification errors.

Finally, the methodology should be applied to the

identification of nonlinear constitutive laws in future works.
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