
HAL Id: hal-02441365
https://hal.science/hal-02441365v1

Submitted on 15 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A service-based modelling approach to ease the
certification of multi-core COTS processors

Frédéric Boniol, Youcef Bouchebaba, Julien Brunel, Kevin Delmas, Claire
Pagetti, Thomas Polacsek, Nathanaël Sensfelder

To cite this version:
Frédéric Boniol, Youcef Bouchebaba, Julien Brunel, Kevin Delmas, Claire Pagetti, et al.. A service-
based modelling approach to ease the certification of multi-core COTS processors. SAE AEROTECH®
Europe, Sep 2019, Bordeaux, France. �10.4271/2019-01-1851�. �hal-02441365�

https://hal.science/hal-02441365v1
https://hal.archives-ouvertes.fr


A service-based modelling approach to ease the certification of

multi-core COTS processors

Frédéric Boniol Youcef Bouchebaba Julien Brunel Kevin Delmas
Claire Pagetti Thomas Polacsek Nathanael Sensfelder

January 15, 2020

1 abstract

The Phylog project aims at offering a model-based software-aided certification framework for aeronau-
tical systems based on multi/many-core architectures. Certifying such platforms will entail fulfilling the
high level objectives of the MCP-CRI / CAST-32A position paper. Among those, two types of anal-
ysis are required: interference and safety analyses. Because of the large size of the platforms and their
complexity, those analyses can lead to combinatorial explosion and to some misinterpretation. To tackle
these issues, we explore a service-based modelling approach that leads to a simplification of the analyses
and to the highlighting of salient properties, making the adaptation of the certification argumentation
efficient.

2 Introduction

2.1 Context

An aircraft is allowed to become operational only if the manufacturer has been issued a type certificate
from the certification authorities. For that to happen, the aircraft manufacturer has to demonstrate the
compliance of their product with the regulatory requirements [EAS17]. An example of accepted mean
of compliance with the requirements is to rely on mature standards. For multi-core-based systems, the
Multi-Core Certification Review Item (MCP-CRI) [EAS16] (also known as the Cast32-A position paper
[Cer16]) provides a set of guidance for software planning and verification on multi-core chips.

Phylog1 is a four years long DGAC (French Civil Aviation) project (2016-2020) that aims at offering
a model-based software-aided certification framework for aeronautical systems based on multi/many-core
architectures. More precisely, its goal is threefold: to structure the certification arguments; to reduce the
amount of textual documentation as much as possible, by replacing it with model(s) wherever possible;
to promote automatic analysis and to replace parts of the testing with formal methods, as recommended
by the DO333 [RTC11].

2.2 Phylog approach

When making a case before a certification authority, an applicant has to provide all the elements related
to the design of the system and the Verification and Validation (V&V) operations that have been carried
out. All of these elements are generally referred to as an assurance case. To reach this objective, we have
defined a certification framework based 1. on justification patterns to express any argumentation; 2. and
on formal and automatic analyses to support the proof of the argumentation.

The idea is to organize any argumentation around structured graphical notations diagrams. More
precisely, justification patterns are templates specifically dedicated to the expression of a structured
reasoning based around a set of evidences. We have translated most of Cast32-A objectives as generic
justification patterns. The basics of this approach have been defined for the certification of IMA systems
in [BBD+16, Pol16]. The use of generic justification patterns for the Cast32-A has been partially
presented in [BBB+18b].

1http://w3.onera.fr/phylog/

1



A justification pattern comes with a series of evidences that support the reasoning. Among these ev-
idences, two types of analyses are required by the MCP-CRI: interference analysis and safety analysis.
Because of the large size of multi-core platforms and their complexity, those analyses can lead to combi-
natorial explosion and some misinterpretation. We have presented a topological interference analysis in
[BBB+18a, BPS19] and a preliminary safety assessment analysis in [DPC19].

2.3 Contributions

The purpose of this paper is to unify both analyses and to provide a more accurate representation of
multi-core processors. The main idea is to abstract a platform as a set of services (e.g. execute, load) and
a set of intrinsic properties (e.g. partitioning). This leads to the consideration of 1. a common model for
any analysis, 2. specific analyses according to the set of properties associated to a platform, 3. dedicated
justification patterns, and 4. a classification of platforms (for re-use of existing justifications).

The outline of the paper is as follows: the next section introduces the MCP-CRI / CAST-32A
expectations and the way Phylog answers these objectives. The section Service-based modeling
approach describes the modeling of any hardware as a set of abstract services and how to define an
interference and a safety analysis.

3 Required justifications

An applicant must master its architecture and control, in any worst case scenario, both the safety effects
and the timing behaviours of the multi-core-based system.

3.1 Terminology

A first step towards profound understanding of a given multi-core platform is the definition of a clear
and formal terminology. For that purpose, we reuse and extend the initiator-target model introduced in
[BR14, JMB16, MJB16, MJB+17]. Thus, a multi-core is composed of four types of components:• Smart initiator components, i.e. components which can initiate single transactions through the

architecture to target components.

• Non smart initiator components, i.e. initiator components which can only initiate dual transactions
(i.e. with two targets at the same time).

• Target components, i.e. end-components targeted by initiators.

• Transporter components, i.e. any intermediate components between initiators and targets.

Example 1 (Component types) Let us consider the simplified representation of the Keystone TCI6630K2L
[Tex13a] from Texas Instruments depicted Figure 1. This platform is composed of:

1. an eight C66 DSP pack, in which each core comes with a dedicated L1 and L2 caches and a memory
extension and protection unit (MPPAX);

2. a four ARM pack, in which each core comes with dedicated L1 caches and a memory management
unit (MMU);

3. a central memory system that gives access to the platform’s SRAM (MSMC SRAM) and an external
DDR. The memory access management is performed by the Multicore Shared Memory Controller
(MSMC);

4. a set of IO peripherals (e.g. GPIO, UART), and utility peripherals (e.g. Boot, Semaphores);

5. a memory transfer peripheral (EDMA);

6. an ultra speed bus (TeraNet) connecting the peripherals, the memories, and the cores.

The components of Figure 1 are coloured according to their type, the color code being: 1. red for smart
initiators i.e. the cores; 2. blue for transporters i.e. the TeraNet, the memory access controllers (MMU,
MPPAX, MSMC, EMIF), and the memories used as caches here ARM L1 since, in this approach, caches
are considered as proxies of the central memory; 3. green for targets i.e. non-cached memories (e.g.
SRAM, C66 L1 and L2, DDR, IO); 4. and orange for non-smart initiators i.e. DMA (EDMA). For the
sake of simplicity, we will consider that peripherals and the EDMA are deactivated, and are therefore
omitted in the remainder of the paper.

2



Memory Subsystem

MPPAX

C66x
CorePac

MMU

ARM
A15

L2 SRAM
L1P

SRAM
L1D

SRAM
L1P L1D

TeraNet

EDMA

PLL

Power Mgt

Semaphors

Boot ROM
G
P
IO

I2
C

U
S
B

3
.0

U
A
R
T

S
P
I

P
C
Ie

S
R
IO

MSMC
Controller

MSMC
SRAM

64-bit
DDR3
EMIF

DDR
Memory

Figure 1: Keystone – simplified view

3.2 Interference analysis

Due to resource sharing, coupling exists at the platform level, which can cause interferences between the
applications. For instance, let us consider again the Keystone TCI6630K2L and let us suppose that one
ARM core and one C66 DSP try to access the MSMC SRAM simultaneously (as shown in Figure 2). As
the MSMC controller can only serve a single transaction at a time, such simultaneous accesses provoke a
contention in the controller. The result of such contentions is an interference between the two initiators
(the ARM and the DSP). Such behaviour is non-deterministic, as at least one transaction can (possibly)
suffer from an (unexpected) delay. Certification requires interference situations to be fully controlled and
mastered in any configuration for safety critical applications. This requirement is called resource usage
3 – RU3 in the MCP-CRI. Moreover, the applicant shall also identify the shared resources and shall
describe a usage domain for each of them (how the resources are shared and how to prevent resource
capabilities from being exceeded). This requirement is called resource usage 4 – RU4 in the MCP-CRI.

The Phylog approach consists in eliciting justification requirements from certification standards and
guidelines. For that, we use a generic notation that allows modularity and hierarchy to help describe
elementary argumentation steps and combinations of steps. An argumentation is then represented as a
justification pattern, whose conclusion is a given objective. The justification patterns are in the tradition
of the design patterns [GHJV95]. If a design pattern gives a generic solution for a type of problem, a
justification pattern organizes the justifications underlying a claim [RXRW15, Hol15, Pol16, DPBF18].
The benefits of justification patterns are that they give an overview of all justification requirements, they
elicit links between justifications, and they list necessary evidence related to the certification. Here, we

3



Memory Subsystem

MPPAX

C66x
CorePac

MMU

ARM
A15

L2 SRAM
L1P

SRAM
L1D

SRAM
L1P L1D

TeraNet

MSMC
Controller

MSMC
SRAM

64-bit
DDR3
EMIF

DDR
Memory

Figure 2: Example of interference

use a simplified version with three concepts: Goal, the property that must be demonstrated; Evidence,
any relevant document or piece of information (for instance calculation results, test reports or expert
judgments); and Strategy, which corresponds to the explanation of how it is possible to conclude the
Goal from the Evidence. Note that, Evidences can be of two types, either final evidences (leading to a
documentation or the results of an analysis) or sub-goals leading to new patterns.

We have defined a justification pattern for several objectives of the MCP-CRI / CAST-32A and
illustrate the RU3 pattern in Figure 3. The top level Goal “Identification of interference and verified
means of mitigation” is precisely the RU3 objective (the text of which has be reduced for readability
of the pattern). It is possible to conclude this Goal because “all interferences were correctly identified”
(evidence on the left) and because adequate mitigation means were designed for all identified interferences
(evidence on the right). The strategy used to conclude here is a check that all identified interferences are
mitigated. This verification can be done manually or automatically, regardless of whether the means of
verification can be certified.

The evidence on the left is a sub-goal that leads to a sub-justification pattern. The sub-goal is
considered to be reached because the interferences were identified with a certain level of confidence
(evidence on the left) and those have been “classified” with respect to their effects on the software hosted
on the platform (evidence on the right). The Strategy is a check that all identified interferences are
classified.

In terms of activities, an applicant has to define a process composed of at least the four following
steps: First, the applicant has to identify all interference channels. In the CAST-32A terminology, an
interference channel is a platform property that may cause interference between independent applications.
Second, the applicant has to classify each interference as either acceptable, tolerable, or unacceptable.
Third, for each unacceptable interference, they have to provide a mean of mitigation which prevents the
system from having catastrophic behaviors. In this context, mitigation signifies that some mechanisms
have been proposed to forbid unacceptable interference or to lower their effect down to acceptable or
tolerable levels. Fourth and final, the applicant has to argue why the means of mitigation are adequate
and why unacceptable interferences will never occur during aircraft operations.

4



RU3: Identification of interference and verified means of mitigation

Check all identified interferences are mitigated (∀i ∈ I, i mitigated)

Interferences I and their effect identified

Check all identified interferences are classified

Identification of all inter-
ference I

Classification of c(i) ef-
fects

i mitigated
(e.g. prevention / block-
ing with run-time mech-
anism; impossible due to
usage domain restriction;
tolerance

∀i ∈ I

∀i ∈ I

Figure 3: Justification pattern for RU3

Example 2 (RU3 satisfaction) Let us consider again the architecture of Figure 2 and let us suppose
that a safety-critical application a1 is running on the first ARM core which only accesses the MSMC
SRAM memory through the MSMC controller.

Identification of interferences The applicant has to first identify all the interferences and, in par-
ticular, those in which the application is involved. Few works have proposed solutions for how to compute
them. Researchers from Thales have proposed an enumerative technique for the Initiator-Target Model
[BR14, JMB16, MJB16, MJB+17] to help identify the interference channels on multi-core chips. Their
model is very simple, but suffers from a combinatorial explosion. In Phylog, we have also proposed
a more efficient yet equivalent method [BBB+18a, BPS19] to compute the interference channels. In-
stead of enumerating all possible interferences, our method generates only representative elements of the
equivalence classes of an equivalence relation.

Classification of interferences For each identified interference, the applicant must derive temporal
properties (e.g. delays). One possibility is to conduct intensive benchmarks [WKRP05, GJlR+15, GlRS18]
to estimate the temporal delays induced by contention. Let us suppose that such an hardware analysis
has shown that 1. the two transactions of Figure 2 generate an unacceptable delay for a1; 2. the delay
generated by two transactions (one from an arm core to the SRAM and the second from the C66x dsp
to the DDR) is negligible.

Mitigation means The applicant has to design and implement mitigation means in order to prevent
unacceptable interferences (such as the one of Figure 2) or to make them acceptable. A mitigation mean
(see Figure 4) could be 1. to prevent the C66x dsp from accessing the MSMC SRAM by configuring the
MPPAX protection unit as a barrier between the dsp and the SRAM, and 2. to design a time driven
execution model on the four arm core pack in order to prevent multiple accesses to the controller.

3.3 Safety analysis

Due to the high integration density, the complexity of internal components and the mix of hardware
/ software inside multi-core chips, their behaviours under random failures are hard to define and to
characterize. Thus, two specific objectives are defined for dependability and safety issues in the MCP-
CRI / CAST-32A. First, the applicant shall argue that the critical configuration settings are static and
are protected against inadvertent changes at run-time. This requirement is called resource usage 2 – RU2
in the MCP-CRI. The applicant shall also identify the possible hardware failures, their impact and the
means of mitigation. This requirement is called error handling – EH in the MCP-CRI.

5



Memory Subsystem

MPPAX

C66x
CorePac

MMU

ARM
A15

L2 SRAM
L1P

SRAM
L1D

SRAM
L1P L1D

TeraNet

MSMC
Controller

MSMC
SRAM

64-bit
DDR3
EMIF

DDR
Memory

U

Figure 4: Example of acceptable interferences

EH: Identification of failure effects and adequate mitigation means

Check all identified failure modes are mitigated (∀fm ∈ Fm, fm mitigated)

Failure modes and their
effects identified

fm is mitigated in fail-safe
manner

Set of justifications for
failure modes (fm)

Figure 5: Justification pattern for EH

As depicted by Figure 5, the argumentation structure for EH is quite similar to the one of RU3. The
top level Goal is EH with a shorten textual description “Identification of failure effects and adequate
mitigation means”. It is possible to conclude this Goal because “all failure modes and their effects were
correctly identified” (evidence on the left) and because adequate mitigation means were designed for all
identified failure modes (evidence on the right). Here again, the strategy used to conclude is a check that
all identified failure modes are mitigated, independently of the quality and certifiability of the means of
verification.

The evidence on the left can be achieved by a safety analysis identifying the failure modes of internal
components and the safety effects of these failure modes without any mitigation means (e.g. FMECA
[Vil92] – Failure Modes Effects and Criticality Analysis). Implicitly again, the classification of the impact
of each failure mode on the software must be assessed. We could have seen the identification as a sub-goal
and split in two sub-branches the justification as in RU3. The evidence on the right can also be achieved
through safety analysis (e.g. MBSA [BVÅ+03] – Model-Based Safety Assessment). In this case, the

6



mitigation means are considered in the analysis: they should ensure the safety objectives with respect to
the failure conditions and they should enforce that the effects of the identified failure modes are handled
in a fail-safe manner (i.e. contained within the equipment on which the multi-core processor is installed).
As identified by [Pro14], performing these safety analyses with classic techniques like FMEAs, Fault-Trees
or Markov chains raises the following challenges:• since multi-core are highly hierarchical and complex systems, their modelling with classic formalisms

will be cumbersome and error-prone.

• classic formalisms require an in-depth knowledge of the multi-core architecture and internal com-
ponents failure modes. Such knowledge is seldom available, since the chip makers will not commit
themselves to provide detailed information about multi-core architectures.

To tackle these challenges, pragmatic model-based safety assessment as proposed in [BBB+18b,
DPC19] can be performed with the first functional level of the multi-core (like the one depicted in
Figure 1) and abstract failures modes based on the services provided by components.

Example 3 (Safety analysis) Let us consider Example , where a safety-critical application a1 is run-
ning on the first ARM core, which only accesses the MSMC SRAM memory through the MSMC controller.
In addition, a second safety critical application a2 executes on a C66 dsp which only accesses the DDR
memory through the MSMC controller. This configuration is compliant with Figure 4 and acceptable with
respect to RU3 (see Example 3).

A safety analysis then consists in modelling the possible hardware failures of the internal components,
and in deriving their effects over applications. For instance, if the MPPAX is erroneous, then a2 cannot
access its data. Even worse, transactions may erroneously be redirected to the MSMC SRAM (see Fig-
ure 2), compromise the SRAM integrity, and violate the interference requirements. Such a situation is
very jeopardizing and appropriate means of mitigation must be developed for this scenario so that it is
handled in a fail-safe manner.

4 Service-based modelling approach

Phylog proposes concrete solutions for an applicant. However, interference and safety analyses are made
quite independently from each other. So far, there is no possible reuse or factorization of knowledge
between two platforms, nor is there a specific approach depending on the multi-core architecture, despite
the fact that they may share common features (as the Keystone and the tms [Tex13b] do).

We claim that an architecture can be abstracted as the services it offers, and that such an approach
will lead to a better understanding and handling of the MCP-CRI / CAST-32A requirements. The
notion of service, as presented in [TMD09, FL13], is widely used in the domain of software architectures.
It has been particularly developed in the context of web services, the main idea being to abstract what
a software component can provide and request (as a service).

4.1 What is a service?

We propose to adapt the service-based approach to model the interactions between software and complex
hardware components. The main difference from the previous software approach is that hardware service
bindings are statically enforced by physical connections. Note that, in this new modelling, CPUs (as
arm cores and C66x dsp) are considered as platform components that provide services to the software
applications hosted on them. From this new point of view, applications are considered as initiator whereas
CPUs are transporter components.

Example 4 For instance, let us consider again the Keystone with the configuration described in Exam-
ple 3. Application a2 may need to read a data stored in the DDR memory. This will be expressed in terms
of services as a load service call. When a2 makes a load service call, the transaction is propagated through
the internal components to reach the DDR and each of these locally provide some services. Figure 6 shows
an extract of the service-oriented Keystone architecture. The load from the dsp communicates with the
load service provided by MPPAX.

We first have to define the set of services offered by a platform. We have identified six basic services
(extended from those of [MJB+17]):• execute: execution of a piece of software on some core;

7



Platform

ARM C66

MMU MPPAX

MSMC

SRAM EMIF

DDR

Software

storeSRAM

authSt

store

store

store

loadSRAM

authLd

load

loadexecute

load

a1

loadDDR

authLd

load

load

load

load

storeDDR

authSt

store

store

a2

execute

store

store

Figure 6: Keystone service-oriented architecture

• load : retrieval of some data from a given target t by an initiator i. In particular, a load generates
a transaction such that there exists a path from i to t.

• store: writing of some data to a given target t by an initiator i. In particular, a write generates a
transaction such that there exists a path from i to t.

• copy : copy of some data from one memory area t1 to another t2 by a non-smart initiator i. In
particular, a copy generates two transactions somehow in parallel such that there exists two paths
from i to t1 and from i to t2.

• time: providing of a real-time reference, i.e. a clock which can be reached and read. If n applications
a1, . . . , an are hosted on the same component which provides a time service, then a1, . . . , an have
the same time reference.

• authorize: forbidding of transactions outside of an authorized address; the set of authorized ad-
dresses is defined at configuration by a table memorized by the service.

Example 5 (Basic services) In the figure 6, a1 executes on an arm. When a1 reads a data from the
SRAM, it calls the load service of ARM, itself using the load service of MMU, which calls the loadSRAM
of the MSMC, which calls the load of the SRAM.

4.2 Why a service-based approach?

Modelling a complex hardware platform as a set of components offering and requesting services helps the
applicant to identify the dependencies between the services provided by internal components. Such an
approach eases and clarifies the two types of analysis requested by the MCP-CRI / CAST-32A. The
idea is to shift the interference and safety analyses to service analyses, allowing the safety & interference
analyses to be performed using the common service-oriented model.

8



4.3 Service-based interference analysis

Existing interference analyses consists in enumerating all combination of transactions (more or less
deeply). An interference analysis applied to a service-based modelling identifies the simultaneous service
calls that may cause a degradation of QoS. Let us consider Figure 6 as a baseline for a more detailed
explanation: the arrows between services denote propagations of transactions from one service to another.
Thus, if there exists a service s reached by two arrows from two services s1 and s2, it means that s can
be used by two transactions from s1 and s2. If the transactions arrive at the same time on s, they will
provoke a contention on s, and one of them will have to wait until s becomes free again. From that point
of view, an interference channel is a service targeted by multiple arrows in the service-oriented platform
model.

Example 6 Back to Figure 6. There are two services targeted by two arrows: loadSRAM and storeS-
RAM. Not represented in the figure is the arbiter inside the MSMC, which routes the requests either
for the SRAM or the DDR. Since the hardware analysis has demonstrated (see example 3) that arbiter’s
temporal effect to be negligible, the conflicts are managed at the SRAM and EMIF levels. Thus, load-
SRAM and storeSRAM services are interference channels between applications a1 and a2. The solution
proposed in Example 3 consisted in changing the memory allocation used by a2 (running on the C66x
DSP), and in configuring the authorization service hosted by MPPAX to prevent any transaction from
a2 to the SRAM memory. This solution is depicted Figure 7. Although the MSMC component is crossed
by multiple transactions, there is no more services targeted by more than one arrow. Thus, this solution
does not contain any unacceptable interference channels.

Platform

ARM C66

MMU MPPAX

MSMC

SRAM EMIF

DDR

Software

storeSRAM

authSt

store

store

store

loadSRAM

authLd

load

loadexecute

load

a1

loadDDR

authLd

load

load

load

load

storeDDR

authSt

store

store

a2

execute

store

store

Figure 7: Figure 4 service-oriented modeling

4.4 Service-based safety analysis

Example 3 presented the safety analysis in a way that is agnostic of the service approach. A safety
analysis applied to a service-based modelling identifies the physical failures leading to a service failure

9



affecting critical software (i.e. whose failure has an unacceptable safety effect). With the new approach,
the arrows between services are considered as propagations or dependencies (i.e. service s1 requests
service s2) to be provided properly. In addition, the relationship between the components failure modes
and their effect on services must be specified.

Example 7 Let us consider the same failure mode as in Example 3, where the MPPAX fail-erroneous
mode leads to an erroneous load service used by the C66 and, ultimately, by the application a2. Hence, if a2
is a safety-critical application and requests the load service, an analysis of service dependencies discloses
a single point of failure, therefore the applicant has to design appropriate mechanisms to mitigate the
effects of this failure.

4.5 Service-based platform definition

We can now formally define the concept of a service-oriented platform model:

Definition 1 (Platform model) A platform is defined by P = (C,→HW , privilege,→BS , provides, request)
where• C = I ∪ T ∪ O with I the set of initiators, T the set of targets, and O the set of transporter

components. All those sets are disjoint.

• →HW⊆ C2 are the hardware connections between components.

• privilege : T 7→ N is a function which associates a privilege level to each target. A target t can only
be accessed by requests issued from an initiator with a privilege level higher or equal to privilege(t).

• provides : C 7→ 2BS is the function which associates each component with the set of services it can
provide. BS is the set of basic services provided by the components. Each element of BS is an
instance of one of the six basic services defined previously.

• →S⊆ BS2 are the connections between services provides by the components.

• request : I 7→ 22
BS×N is the function which associates each initiator component with the set of

transactions it can issue; a transaction being a path in the service-based architecture, at a privilege
level n.

Example 8 (Platform model) For the sake of readability, let us introduce the following notations:
ld stands for load, st stands for store, ex stands for execute, and at stands for authorize service. The
service-oriented platform of the figure 7 can be modelled as:• I = {a1, a2}, T = {SRAM,DDR}
• O = {ARM,C66,MPPAX,MMU,MSMC,EMIF}

• →HW =


(ARM,MMU), (MMU,MSMC),
(MPPAX,MSMC), (MSMC,EMIF),
(MSMC,SRAM), (EMIF,DDR),
(C66,MPPAX)


• ∀c ∈ C, privilege(c) = 1

• BS =



ldSRAM, stSRAM,
ldDDR, stDDR,
ldEMIF, stEMIF,
ldMMU, stMMU,
ldMPPAX, stMPPAX,
ldC66, stC66,
ldARM, stARM,
exARM, exC66,
ldSRAMMSMC, stSRAMMSMC,
ldDDRMSMC, stDDRMSMC,
atLdMPPAX, atStMPPAX,
atLdMMU, atStMMU,


• provides(c) = {sc′ ∈ BS|c = c′}

10



• →BS=



(ldARM, ldMMU),
(ldMMU, atLdMMU),
(atLdMMU, ldSRAMMSMC),
(ldSRAMMSMC, ldSRAM),
(stARM, stMMU),
(stMMU, atStMMU),
(atStMMU, stSRAMMSMC),
(stSRAMMSMC, stSRAM),
(ldC66, ldMPPAX),
(ldMPPAX, atLdMPPAX),
(atLdMPPAX, ldDDRMSMC),
(ldDDRMSMC, ldEMIF),
(ldEMIF, ldDDR),
(stC66, stMPPAX),
(stMPPAX, atStMPPAX),
(atStMPPAX, stDDRMSMC),
(stDDRMSMC, stEMIF),
(stEMIF, stDDR)



• request(i) =



{({ldARM, ldMMU, if i = a1
atLdMMU, ldSRAMMSMC,
ldSRAM}, 1)}
{({ldC66, ldMPPAX, otherwise
atLdMPPAX, ldDDRMSMC,
ldEMIF, ldDDR}, 1)}

5 Platform properties

Platforms come with a series of features and properties that can be related to the service modeling
point of view. The expected benefit of exhibiting properties is to take advantage of such a knowledge to
simplify the safety and interference analyses. In the following, we discuss four platform properties: (a)
full synchronism, (b) weak synchronism, (c) hardware segregation, (d) partitioning.

5.1 Full Synchronism

Definition 2 Let us consider a platform P and a set of components C = {c1, . . . , cn} of P such that
each ci provides a time reference service, noted timeci . The set C is fully synchronized if and only if
∀i, j ∈ {1, . . . n}2, timeci = timecj , i.e., all components in C have exactly the same time reference (same
clock with same offset).

Platforms 1 Examples of platforms offering group of full synchronized components include the Keystone
TCI6630K2L [Tex13a] from Texas Instruments depicted Figure 1. The local clock of each Cortex-A15
core is sourced from a unique arm PLL Controller shared by the four cores. The signal clocks of the four
cores are then strictly identical, meaning that the four arm cores form a fully synchronized group.

Benefits 1 (Interference analysis) Full synchronism helps implement TDMA (time division multiple
access) execution models, enforcing a unique access to any shared resource at any time, such as the
execution models of [PBB+11, BCNP12, GJlR+15]. This can be used to implement time partitioning
mechanisms, as proposed in Example 3 to prevent simultaneous access from the arm cores to the shared
SRAM. Such reasoning can be generalized with a new pattern. In this new pattern, described in Figure 8,
the goal “ i is avoided” is the RU3 sub-goal: “ i is mitigated”. The sub-goal can be concluded because there
is mathematical proof that S ensures that i is avoided under the full synchronism hypothesis and the fact
that the system is fully synchronous.

Benefits 2 (Safety analysis) From a safety point of view, the failure propagation model assuming syn-
chronization service availability should be simpler than a non-synchronized system, since some simultane-
ous access like failures will be avoided. As a result, the full synchronism property can be used to split the
safety analysis as follows: 1. identify the hardware failures leading to a loss of the property; 2. assess the

11



i is avoided

Application of schedule policy S

Proof of i is prevented
by the TDMA schedule S
of initiators a1. . . an under
full synchronism hypothe-
sis

The initiators a1. . . an in-
volved in i are hosted by
fully synchronized compo-
nents

Figure 8: RU3 mitigation sub-goal with full synchronism

safety issues caused by a loss of the property; 3. perform the safety assessment assuming that the property
is met.

5.2 Weak Synchronism

In some architectures, only a weaker form of synchronism can be achieved.

Definition 3 Let us consider a platform P and a set of components C = {c1, . . . , cn} of P , such that
each ci provides a time reference service, noted timeci . The set C is weakly synchronized if and only if

∀i, j ∈ {1, . . . n}2, d timeci
dt =

d timecj
dt , i.e., the rates of the local clocks of each component ci are identical

whereas their offsets may be different.

Platforms 2 Again, examples of platforms offering groups of weakly synchronized components include
the Keystone TCI6630K2L. The clock of each C66x core is locally sourced from its own PLL controller.
All the PLL controllers of the C66x CorePac can be configured in such a way that all the clock signals
have the same rate. However, the offsets between the clocks cannot be set. They are unknown and only
non deterministically fixed at boot time.

Kalray MPPA [Cor12] is another example of weak synchronous platform. An MPPA Processor is
composed of 16 clusters of 16 cores. Every core of each cluster has access to a local 64-bit Time Stamp
Counter (TSC) driven by a single hardware signal. However, because of the propagation delays of this
hardware signal through the 256 cores, all the TSC are mesosynchronous, i.e., they share the same rate
but might have constant unknown offsets depending on the length of the path followed by the signal to
reach each core.

Benefits 3 (Interference analysis) Even in this case, it remains possible to implement a TDMA ex-
ecution model avoiding interferences, provided that the TDMA schedule is tolerant to all possible offset
values. As previously, this reasoning can be generalized by a new pattern depicted in Figure 9.

5.3 Hardware segregation

A third interesting property is hardware segregation. It occurs when a platform supports the decompo-
sition and isolation of several parts at hardware level.

12



i is avoided

Application of schedule policy S′

Proof of i is prevented
by the TDMA schedule S′

of initiators a1. . . an un-
der weak synchronism hy-
pothesis and the maximal
offset is less than ∆

The initiators a1. . . an in-
volved in i are hosted by
weakly synchronized com-
ponents

∆ ≥ maxi-
mal offset of
clocks of ai

Figure 9: RU3 mitigation sub-goal with weak synchronism

Definition 4 Let us consider a platform P = (C,→HW , privilege,BS,→BS , provides, request). P is seg-
regated if and only if there exist non empty sub-sets C1. . .Cn of C such that C1. . .Cn is a partition of C
and for any i, any initiator from Ci cannot reach (with load or store service) any component in another
part Cj (j 6= i). Formally, P is segregated into C1. . .Cn iff:
(1) C1 . . . Cn is a partition of C,
(2) ∀i = 1 . . . n,∀a : initiator ∈ Ci,∀t 6∈ Ci, a 6→∗HW t.

Platforms 3 An example of platform which can be segregated at hardware level is the Kalray MPPA
Bostan [Cor12]. This processor is composed of clusters communicating through a central network on
chip (NoC). Each router of the NoC can be configured at boot time in such a way that a specified set of
input-output links (of the router) are disabled. It makes it possible to isolate non-interfering parts inside
the processor.

Benefits 4 (Interference analysis) The expected benefit for interference analysis is straightforward.
When a platform meets the hardware segregation property, if two initiators a1 and a2 belong to two isolated
parts, then a1 and a2 cannot interference. Firstly, this allows to reduce the number of interferences to
analyze. Secondly, this makes the separation of analyses possible, as shown in figure 10.

Benefits 5 (Safety analysis) If the segregation mechanisms is trusted (no probable failures considered),
then the segregated resource can be modeled and assessed as two independent systems. This segregation
eases both the modeling and the assessment.

5.4 Partitioning

When hardware segregation is not possible, some platforms support the decomposition and isolation of
several parts by configuration and/or software.

Definition 5 Let us consider a platform P = (C,→HW , privilege,BS,→BS , provides, request). P is par-
titioned if and only if there exist non empty sub-sets of services S1. . .Sn of BS such that S1. . .Sn is a
partition of BS and for any i, any initiator able to request a service in Si cannot request any service in
another part Sj (j 6= i). Formally, P is partitioned into S1. . .Sn iff:
(1) S1 . . . Sn is a partition of BS,
(2) ∀a : initiator, request(a) = ∪{Ai, pi}i with Ai ⊆ BS then ∃j, Ai ⊆ Sj.

Platforms 4 Many platforms offer partitioning capabilities. For instance, Keystone allows partitioning
of cache in SRAM areas. At software level, hypervisor systems such as Xtratum [MRC+09] offers time
and space partitioning.

13



RU3 at P level

Hardware segregation

RU3 at Ci level: Identifi-
cation of interference and
verified means of mitiga-
tion in Ci

C1. . .Cn form an hard-
ware partition of P

∀i = 1 . . . n

Figure 10: RU3 top level with HW segregation

Benefits 6 (Interference analysis) The expected benefit of the partitioning property is similar to the
one of the segregation property. Let us consider a platform partitioned into two set of services S1 and
S2. No connections are allowed between services of S1 and S2. Hence, by definition, two initiators,
respectively a1 and a2, that can only request services, respectively from S1 (for a1) and from S2 (for a2),
cannot interfere. Similarly to the segregation property, the benefit is double: firstly, partitioning leads
to a reduction in the number of interferences to analyze. Secondly, it makes it possible to do separated
analyses (one for each partition).

Benefits 7 (Safety analysis) The partitioning is often paramount for failure containment argumen-
tation. Hence, the partitioning service capabilities, limitations and underlying resource must be clearly
identified. The analyst can benefit from the partitioning service to split the safety assessment (similarly
to the synchronization service) as follows: 1. identify the hardware failures leading to a failure of the
partitioning service; 2. assess the safety issues of the failures of the partitioning service; 3. perform the
safety assessment assuming the partitioning service is available.

6 Conclusion and next work

In this paper, we have presented an improved approach to automate interference and safety analyses. The
main idea is to abstract any platform as the services it offers. We have thus adapted the service-based
approach to model the interactions between software and complex hardware components. The benefits
are numerous and we have illustrated two of them: it provides a common model to support both safety
and interference analyses; it allows the definition of architecture properties in order to simply the analyses
and the justification patterns.

In the future, we will improve the current approach in several ways. First, we will extend the set of
basic services to cover usual features offered by multi-core (e.g. interrupt). Second, we will study any
other platform properties (e.g. symmetry or modularity). Third, we will show how to reuse the analyses
and patterns for platforms with common features.

We will also define formal semantics for the platform model and provide transformations from the
core platform model to the interference model and to the safety model, in order to allow analyses on
dedicated models.

Acknowledgements

The authors would like to thank Ghilaine Martinez for her ideas and suggestions to improve platform
modelling analysis.

14



References

[BBB+18a] Pierre Bieber, Frédéric Boniol, Youcef Bouchebaba, Julien Brunel, Claire Pagetti, Olivier
Poitou, Thomas Polacsek, Luca Santinelli, and Nathanaël Sensfelder. A model-based cer-
tification approach for multi/many-core embedded systems. In 9th European Congress on
Embedded Real Time Software and Systems (ERTS 2018), 2018.

[BBB+18b] Frédéric Boniol, Youcef Bouchebaba, Julien Brunel, Kevin Delmas, Claire Pagetti, Thomas
Polacsek, and Nathanaël Sensfelder. PHYLOG: a model-based certification framework. In
37th AIAA/IEEE Digital Avionics Systems Conference (DASC 2018), 2018.

[BBD+16] Pierre Bieber, Frédéric Boniol, Guy Durrieu, Olivier Poitou, Thomas Polacsek, Virginie
Wiels, and Ghilaine Martinez. MIMOSA: Towards a model driven certification process. In
Proc. 8th Int. Congress on Embedded Real Time Software and Systems (ERTS’16), 2016.

[BCNP12] Frédéric Boniol, Hugues Cassé, Eric Noulard, and Claire Pagetti. Deterministic execution
model on cots hardware. In Proceedings of the 25th International Conference on Architecture
of Computing Systems (ARCS’12), pages 98–110, 2012.

[BPS19] Frédéric Boniol, Claire Pagetti, and Nathanaël Sensfelder. Identification of multi-core inter-
ference. In Proceedings of the 19th IEEE High Assurance Systems Engineering Symposium
(HASE’19), 2019.

[BR14] Vincent Brindejonc and Anthony Roger. Avoidance of dysfunctional behaviour of complex
cots used in an aeronautical context. In 19eme Congrès de Mâıtrise des Risques et Sûreté
de Fonctionnement, 2014.

[BVÅ+03] Marco Bozzano, Adolfo Villafiorita, Ove Åkerlund, Pierre Bieber, Christian Bougnol, Eckard
Böde, Matthias Bretschneider, Antonella Cavallo, C Castel, M Cifaldi, et al. Esacs: an
integrated methodology for design and safety analysis of complex systems. In Proc. ESREL,
pages 237–245, 2003.

[Cer16] Certification Authorities Software Team. Multi-core Processors - Position Paper. Technical
Report CAST 32-A, November 2016.

[Cor12] Kalray Corporation. The MPPA hardware architecture, 2012.

[DPBF18] Clément Duffau, Thomas Polacsek, and Mireille Blay-Fornarino. Support of justification
elicitation: Two industrial reports. In Advanced Information Systems Engineering - 30th
International Conference, CAiSE 2018, Tallinn, Estonia, 2018, Proceedings, Lecture Notes
in Computer Science. Springer, 2018.

[DPC19] Kevin Delmas, Claire Pagetti, and Philippe Cuenot. Multi-core processors: Stepping inside
the box. In under submission, 2019.

[EAS16] EASA (European Aviation Safety Agency). The Use of Multi-Core Processors in Safety-
Critical Applications - CRI, 2016.

[EAS17] EASA. Certification Specifications and Acceptable Means of Compliance for Large Aero-
planes CS-25 - AMC 1309. Technical report, 2017.

[FL13] José Luiz Fiadeiro and Antónia Lopes. An interface theory for service-oriented design. The-
oretical Computer Science, 503:1–30, 2013.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

[GJlR+15] Sylvain Girbal, Xavier Jean, Jimmy le Rhun, Daniel Gracia Pérez, and Marc Gatti. De-
terministic Platform Software for Hard Real-Time systems using multi-core COTS. In 34th
Digital Avionics Systems Conference (DASC’15), 2015.

15



[GlRS18] Sylvain Girbal, Jimmy le Rhun, and Hadi Saoud. METrICS: a measurement environment for
multi-core time critical systems. In 9th European Congress on Embedded Real Time Software
and Systems (ERTS’18), 2018.

[Hol15] C. Michael Holloway. Explicate’78: Uncovering the implicit assurance case in do-178c. In
23rd Safety-Critical Systems Club (SCSC) Annual Symposium, February 2015.

[JMB16] Xavier Jean, Laurence Mutuel, and Vincent Brindejonc. Assurance methods for cots multi-
cores in avionics. In 35th Digital Avionics Systems Conference (DASC’16), 2016.

[MJB16] Laurence Mutuel, Xavier Jean, and Vincent Brindejonc. Investigation of error types asso-
ciated with failures in multicore processors. In 20eme Congrès de Mâıtrise des Risques et
Sûreté de Fonctionnement, 2016.

[MJB+17] Laurence Mutuel, Xavier Jean, Vincent Brindejonc, Anthony Roger, Thomas Megel, and
E. Alepins. Assurance of Multicore Processors in Airborne Systems, 2017.

[MRC+09] Miguel Masmano, Ismael Ripoll, Alfons Crespo, Jean-Jacques Metge, and Paul Arberet.
Xtratum: An open source hypervisor for TSP embedded systems in aerospace. In DASIA
2009. DAta Systems In Aerospace., May. Istanbul 2009.

[PBB+11] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A predictable execution model for cots-based embedded systems. In
17th IEEE Real-Time and Embedded Technology and Applications Symposium RTAS 2011,
pages 269–279, 2011.

[Pol16] Thomas Polacsek. Validation, accreditation or certification: a new kind of diagram to provide
confidence. In IEEE Tenth International Conference on Research Challenges in Information
Science (RCIS’16), 2016.

[Pro14] Tatiana Prosvirnova. AltaRica 3.0: a Model-Based approach for Safety Analyses. PhD thesis,
Ecole Polytechnique, 2014.

[RTC11] RTCA, Inc. DO-333 - Formal Methods Supplement to DO-178C and DO-278A, 2011.

[RXRW15] John Rushby, Xidong Xu, Murali Rangarajan, and Thomas L Weaver. Understanding and
evaluating assurance cases. Technical Report NASA/CR-2015-218802, NASA Langley Re-
search Center, 2015.

[Tex13a] Texas Instruments. TCI6630K2L Multicore DSP+ARM KeyStone II System-on-Chip. Tech-
nical Report SPRS893E, Texas Instruments Incorporated, 2013.

[Tex13b] Texas Instruments. TMS320c6678 Multicore fixed and floating-point digital signal processor.
Technical Report SPRS691D, Texas Instruments Incorporated, 2013.

[TMD09] Richard N. Taylor, Nenad Medvidovic, and Eric Dashofy. Software Architecture: Founda-
tions, Theory, and Practice. Wiley Publishing, 2009.

[Vil92] Alain Villemeur. Reliability, availability, maintainability and safety assessment. John Wiley
& Sons, 1992.

[WKRP05] Ingomar Wenzel, Raimund Kirner, Bernhard Rieder, and Peter Puschner. Measurement-
based worst-case execution time analysis. In 3th Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems (SEUS’05), 2005.

16


