
HAL Id: hal-02441353
https://hal.science/hal-02441353

Submitted on 15 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification of multi-core interference
Frédéric Boniol, Claire Pagetti, Nathanaël Sensfelder

To cite this version:
Frédéric Boniol, Claire Pagetti, Nathanaël Sensfelder. Identification of multi-core interference. 19th
International Symposium on High Assurance Systems Engineering (HASE 2019), Jan 2019, Hangzou,
China. �10.1109/HASE.2019.00024�. �hal-02441353�

https://hal.science/hal-02441353
https://hal.archives-ouvertes.fr

Identification of multi-core interference

Frédéric Boniol Claire Pagetti Nathanaël Sensfelder

November 22, 2018

Abstract

The CAST-32A provides some guidelines to help certify multi-core-based systems in the avionics
domain. One major requirement is to compute all the potential interference and to provide adequate
mitigation means. In this paper, we compare two approaches to identify the interference: the initiator-
target and the Phylog models. The latter is more compact and efficient, despite also covering all of
the problematic conflictual situations.

Keywords: Multi-core, certification, timing interference

1 Introduction

The last decade has seen the emergence of multi-core processors, i.e. chips integrating several cores
linked by a shared interconnect. Although these architectures have been shown to provide huge gains in
performance, they have severe lapses in time predictability [20, 21], one of the key elements of certification
expectations.

1.1 Identification of potential interference

Aeronautic certification authorities, in association with industrial manufacturers, have published the
Multi-Core Certification Review Item (MCP-CRI) [11] (also published as the CAST-32A position paper
[7]), in order to provide a set of guidances for software planning and verification on multi-core chips.

Due to resource sharing, couplings exist at the platform level. These can cause interference between
applications, which, in turn, may lead to unexpected delays, and even the alteration or loss of data.
These three issues are not acceptable in the aeronautics domain and must thus be avoided. In terms of
certification, this entails a four steps process: First, the applicant must identify all interference channels.
In the CAST-32A terminology, an interference channel is a platform property that may cause interference
between independent applications. Second, the applicant must classify the interference as either accept-
able, tolerable, or unacceptable. Third, for each unacceptable interference, they must provide a mean of
mitigation to prevent the system from having catastrophic behaviors. In that context, mitigation signifies
that some mechanisms have been proposed to forbid unacceptable interference or reduce their effect to
acceptable or tolerable levels. For example, if a resource being accessed in parallel by more than two
requesters would lead to a non-acceptable delay, mitigation could take the form of a run-time mechanism
that sequentializes the access. Fourth and final, the applicant must argue why the means of mitigation
are adequate and why unacceptable interference will never occur during aircraft operations.

This requirement is called resource usage 3 in the CAST-32A. In the sequel, we will only focus on
this particular objective and, more precisely, on the identification of interference.

1.2 Objectives and contribution

To the best of our knowledge, few works have proposed solutions for resource usage 3. Researchers from
Thales have proposed the Initiator-Target Model [6, 14, 17, 18] to help identify the interference channels
on multi-core chips. Their model is very simple, but suffers from a combinatorial explosion.

Phylog is a French project (2016-2020), funded by the French civil aeronautic agency (DGAC),
which aims at offering a model-based and software-aided certification framework for aeronautics systems
based on multi/many-core architectures. In [3], we have defined the premises of the Phylog model,
presented the notions of interference channels and transactions, and shown an automated process to find
the interference channels through the use of Weird [4].

1

The objective of this paper is to compare and link the initiator-target and Phylog models. For
that purpose, we start with a formal definition of the initiator-target model (see section 2). We then
refine and formalize our former definition of interference channels (see section 3). We then show that our
representation is more compact than the initiator-target model despite remaining as expressive. Indeed,
our interference channels are the representative elements of the equivalence classes of an equivalence
relation (see section 4). All our formalization and computation are supported by implementations made
in idp [10] (see section 5), used as a replacement for Weird [4].

2 The initiator-target model

The initiator-target model has been introduced in [6] and reused in [14, 17], and [18]. The goal was to pro-
vide a theoretical view for the identification of the interference channels (called performance contentions
in [6]) that can occur in a multi-core processor.

2.1 Overview

According to their definition, a multi-core is composed of three types of components:

• Smart initiator components, i.e. components which can initiate single transactions through the
architecture to target components. Processing cores (CPU) are examples of smart initiator compo-
nents. They can, for instance, initiate memory access transactions to memory controllers.

• Non smart initiator components, i.e. initiator components which can only initiate dual transactions
(i.e., with two targets at the same time). DMA are examples of non smart initiator components.

• Target components, i.e. end-components targeted by smart or non smart initiators.

Intermediate components (such as internal buses) between initiators and targets are simply ignored.

Example 1 Let us illustrate the initiator-target model on the simple architecture shown in Figure 1,
composed of two smart initiators (the two CPUs), two non smart initiators (the two DMAs), and four
targets (the two memory controllers, the PCIe controller, and one L3 cache used as SRAM memory).

bus

cpu1:
smart

initiator

cpu2:
smart

initiator

dma1:
non smart
initiator

dma2:
non smart
initiator

mem1:
target

mem2:
target

pcie
target

L3
target

Figure 1: Architecture P1

Notations 1 For the sake of readability, our figures use the following color code: smart initiators are in
red, non smart initiators are in blue, targets are in gray, and other components are in white.

An interference channel is seen as a combination of single test classes (or single test cases) where an
interference occurs. A single test class is a transaction initiated by an initiator and targeting a target
(for smart initiators) or two targets (in case of non smart initiators).

Example 2 In the architecture depicted Figure 1, cpu1 mem1, cpu2 mem2, and pcie dma1
mem2 are examples of single test classes. The first two may denote either read or write transactions from
cpuk to memk. The last one may denote a data transfer from the PCIe device to the second memory
through the dma1.

(cpu1 mem1) ‖ (cpu2 mem2) ‖ (pcie dma1 mem2)

is a test class composed of three single test classes running in parallel.

2

2.2 Formalization

Let us now introduce a set-based formalization of the initiator-target model.

Definition 1 (Initiator-target model) In the initiator-target model, an architecture P is defined by
P = (C,→) where

• C = SI ∪NSI ∪ T ∪O with SI being the set of smart initiators, NSI the set of non smart initiators,
T the set of targets, and O the set of other components. All those sets are disjoint. In the sequel,
we will note nSI = card(SI), nNSI = card(NSI) and nT = card(T);

• →⊆ C × C are the hardware connections between components.

Definition 2 (Single test class) For an architecture P = (C,→), a single test class for a smart ini-
tiator is a pair (i, t) ∈ SI× T such that there exists a path in P from i to t, i.e. i→∗ t. In the sequel, we
write indifferently (i, t) or i t.

A single test class for a non smart initiator is a triplet (i, t1, t2) ∈ NSI× T × T such that there exist
a path in P from i to t2 and one to t1, i.e. i →∗ t2 and i →∗ t1. In the sequel, we write indifferently
(i, t1, t2) or t1 i t2.

Definition 3 (Test classes) Let P = (C,→) be an architecture. A test class is a set of n single test
classes and disjoint initiators. For instance, a test class tc of size 2 is of form tc = {(i1, t1), (i2, t2)} or
tc = {(i1, t1), (i2, t2, t3)} or tc = {(t1, i1, t2), (i2, t3, t4)} with i1 6= i2. In the sequel, we write indifferently
{(i1, t1), (i2, t2)} or (i1 t1) ‖ (i2 t2).

An interference channel is a test class composed of 2 or more single test classes.

Definition 4 Let P = (C,→) be an architecture. Let us note TCP
∞ the set of test classes and TCP

n those
of size n:

TCP
∞ =

nSI+nNSI⋃
n=1

TCP
n

Proposition 1 (Total number of test classes [6]) The number of all possible test classes of P is:

card(TCP
∞) = (1 + nT)nSI · (1 + n2T)nNSI − 1 (1)

Example 3 Let us once again consider the architecture P1 shown in Figure 1: nSI = 2, nNSI = 2,
nT = 4, →= {(cpu1,bus), (cpu2,bus), (dma1, bus), (dma2,bus), (bus,mem1), (bus,mem2), (bus,L3),
(bus,pcie)}. Applying equation 1 yields:

card(TCP1
∞) = (1 + 4)2 · (1 + 42)2 − 1 = 7224

meaning that the interference analysis may need up to 7224 test classes to be analyzed on this architecture.
Aeronautic certification standards require the assessment of the worst case execution time (WCET) for
the critical software functions running on the cores of the processor. As stated in the introduction,
interference may strongly affect this execution time. It is up to the designer to characterize the severity
of each interference with respect to the execution time of each software function, and, at the end, to show
that all the unacceptable interference (i.e., the ones that induce too high WCETs) are properly mitigated
by appropriate means (e.g., arbiters, time-triggered execution schemes, etc.). In the case of the (rather
small) architecture P1, such an assessment requires the investigation of the 7224 test classes.

2.3 Hypotheses

In the seminal paper, there was no specific rule about the reachability of a target by an initiator. Implicitly,
the authors assumed that all targets were reachable by all initiators. Moreover, they did not make a
distinction on the type of transactions (e.g. read or write). Finally, they assumed a unique path from
any given initiator to any given target, which is not the case in many-cores. Most commercial multi-core
processors satisfy these two hypotheses. Let us formalize them:

• Hyp1. All targets are reachable by all initiators: ∀i ∈ SI ∪NSI,∀t ∈ T, i→∗ t

• Hyp2. There is a unique path from an initiator to any non initiator component: ∀i ∈ SI∪NSI,∀t ∈
O ∪ T , if i→ a1 → . . .→ an → t and i→ b1 → . . .→ bm → t, then n = m and ∀k, ak = bk.

Proposition 2 The reachability relation → satisfying Hyp2 is acyclic and defines a partial order <P :
∀α, β ∈ SI ∪NSI ∪ T ∪O,α <P β ⇔ α→∗ β.

3

3 Phylog model

In the Phylog project, we need to tackle the identification of all interference channels as in Brindejonc
et al.’s approach.

3.1 Overview

We believe that the current initiator-target model is insufficient as is and that it must be enriched.

1. Brindejonc’s approach is a black-box approach: it does not consider internal components. Two
architectures with different topologies may be characterized by the same test classes, even when
their interference differ.

2. Test classes do not necessarily lead to any actual interference between transactions. For instance,
in the architecture P2 depicted Figure 2, the test class (cpu1 mem1) ‖ (pcie dma1 L3)
does not cause any contention as these transactions cross two different buses in parallel without
interfering with each other. Many other test classes in P2 are interference-free as well.

3. Their approach is simple, but suffers from scalability issues: For a T4240 processor, composed of
12 cores (nSI = 12), 3 DMAs (nNSI = 3), 2 memory controllers, 1 PCIe, and 1 L3 cache used as
SRAM memory (nT = 4), there are more than 1012 test cases.

Ideally, the number of test classes to be explored should be as low as possible. We thus propose
grouping them according to the interference they cause on the components.

bus1

bus2

cpu1 cpu2 dma1 dma2

pcie L3

mem1 mem2

Figure 2: Architecture P2

3.2 Transaction model

Definition 5 (Transaction) For an architecture P = (C,→), a transaction is a finite branching word
of components

tr = i · ((b1 . . . bn) + (c1 . . . cm))

with i ∈ SI∪NSI; for all j, bj ∈ O∪T , (bj , bj+1) ∈→ and (i, b1) ∈→. If i ∈ SI, c1 . . . cm = ε is the empty
word; otherwise, for all j, cj ∈ O ∪ T , (cj , cj+1) ∈→ and (i, c1) ∈→.

In the following, we will consider that the branching operator “+” is commutative. That is, tr =
i · ((b1 . . . bn) + (c1 . . . cm)) = i · ((c1 . . . cm) + (b1 . . . bn)).

Example 4 A single test class is a transaction from an initiator to one or two targets. In P1, the single
test class cpu1 mem1 is the transaction cpu1.(bus.mem1 + ε); whereas pcie dma mem2 is the
transaction dma.(bus.mem2 + bus.pcie).

Definition 6 We define a series of useful functions for a transaction tr = i · ((a1 . . . an · b1 . . . bm) +
(a1 . . . an · c1 . . . cp)) with for all l, k bl 6= ck:

• hd(tr) = i (head of the transaction),

• prefix(tr) = a1 . . . an (common prefix of the transaction, possibly empty).

• proj1(tr) = i · a1 . . . an · b1 . . . bm (first branch of the transaction),

• proj2(tr) = i · a1 . . . an · c1 . . . cp (second branch),

4

• lg(tr) = {a1, . . . , an, b1, . . . , bm, c1, . . . , cm} (language of the transaction, i.e., the set of components
involved),

• tl(α1 . . . αn) = αn (tail of a word),

• pred(α1 . . . αn−1 · αn) = αn−1 (penultimate component of a word).

According to hypothesis Hyp2, each tc is modeled by a unique transaction tr in the Phylog model.

Definition 7 (Transactions associated to a single test class) When (i, t) ∈ SI× T , the associated
Phylog transaction is defined as phy(i, t) = tr with hd(tr) = i, tl(proj1(tr)) = t and proj2(tr)) = ε.

When (i, t1, t2) ∈ NSI × T × T , the associated Phylog transaction is defined as phy(i, t1, t2) = tr
with hd(tr) = i, tl(proj1(tr)) = t1 and tl(proj2(tr)) = t2.

Proposition 3 Let P = (C,→) be an architecture satisfying Hyp1 and Hyp2. Let tr = i · ((b1 . . . bn) +
(c1 . . . cm)) be a transaction in P . Then:

1. ∀j 6= k, bj 6= bk (a component can appear at most once in the b branch),

2. either (c1 . . . cm) = ε (in the case of a smart initiator) or ∀j 6= k, cj 6= ck (same as with the b
branch),

3. if there exist j, k such that bj = ck, then j = k and ∀l < k, bl = cl (either the two branches do not
share any component, or they share a common prefix).

4. ∀l, l′ > max{j | bj = cj}, bl 6= cl′ (after the common prefix, if it exists, the two branches do not
share any component).

Proof 1 The first two points come from the acyclic property of the reachable relation →. The third
point is a consequence of hypothesis Hyp2. Let us suppose that there exists a common component α
in the two branches (∃j, l, α = bj = cl), then because of the unicity of the path from i to α, we have
(b1 . . . bj) = (c1 . . . cl). Thus, j = l and bk = ck for all k < l. The fourth point then comes immediately.

i

b1

. . .

bm
(a)
tr = i ·
((b1 . . . bm)+
ε).

i

b1 c1

.

bm cp
(b) tr = i · ((b1 . . . bm) +
(c1 . . . cp)) with ∀l, k, bl 6=
ck.

i

a1

. . .

an

b1 c1

.

bm cp
(c) tr = i · ((a1 . . . an ·
b1 . . . bm) + (a1 . . . an ·
c1 . . . cp)) with
∀l, k, bl 6= ck.

Figure 3: Transaction model

According to the proposition 3, a transaction can be graphically represented by the figure 3. Figure
3(a) shows a transaction made by a smart initiator. Figure 3(b) describes a transaction made by a non
smart initiator without a common prefix. Figure 3(c) describes a transaction made by a non smart initia-
tor with a common prefix. After the prefix, all the components are different. Note that the transaction
Figure 3(b) is a particular case of Figure 3(c) in which the prefix word is empty: (a1 . . . an) = ε.

5

3.3 Test classes revisited – Truncated transactions

A test class, as introduced by definition 3, is a set of single test classes tc1, . . . , tcn issued by n different
initiators.

Definition 8 Let tc = {(i1, t1) . . . (im, tm, t
′
m)} be a test class, the associated Phylog transactions are

phy(tc) = {tr1, . . . , trm} = {phy(i1, t1), . . . , phy(im, tm, t
′
m)}.

The shared components in a set of transactions are then:

Definition 9 Let tc = {tr1, . . . , trn} be a set of transactions, the language associated to tc is defined by:
lg(tc) = lg(tr1) ∪ . . . ∪ lg(trn) and shared(tc) is the set of components involved in all transactions:

shared(tc) = lg(tr1) ∩ . . . ∩ lg(trn)

We define the Phylog test classes as the sets of truncated transactions where the interference-free
parts of transactions are translated as the empty word ε.

Definition 10 (Phylog test class) A Phylog test class is a set of n transactions

ptc = {tr1, . . . , trn}

such that ∃tc = {(ii, ti) . . . (im, tm)(im+1, tm+1, t
′
m+1) . . . (in, tn, t

′
n)} ∈ TCP

∞ with

• ∀k, hd(trk) = ik;

• ∀j ≤ m, trj = trunc(tc, phy(ij , tj)) where trunc(tc, i · (a1 . . . an + ε)) = i · (a1 . . . ap + ε) with p ≤ n
and ap ∈ shared(tc);

• ∀m+ 1 ≤ j ≤ n, ∃k ≤ 3, trj = trunck(tc, phy(ij , tj , t
′
j)) where

trunc1(tc, i · (a1 . . . an + b1 . . . bm)) = i · (a1 . . . ap + a1 . . . ap)
with p ≤ n and ap ∈ shared(tc) and ∀k ≤ p, bk = ak

trunc2(tc, i · (a1 . . . an + b1 . . . bm)) = i · (a1 . . . ap + ε)
with p ≤ n and ap ∈ shared(tc) and bp 6= ap and ∀k, bk 6∈ shared(tc)

trunc3(tc, i · (a1 . . . an + b1 . . . bm)) = i · (a1 . . . ap + b1 . . . bl)
with p, l ≤ n and ap ∈ shared(tc) and bl ∈ shared(tc)

We note Trans the set of Phylog test classes.

Notations 2 When handling truncated transactions generated by smart initiators, we will deliberately
remove the second branch which is empty. For instance, cpu1.bus stands for cpu1.(bus + ε). This con-
traction cannot be applied to truncated transactions generated by non smart initiators, as it would then
be impossible to differentiate the prefix part.

Example 5 In P1, ptc = {cpu1.bus, cpu2.bus} ∈ Trans. Indeed, cpuk.bus can be obtained as the trun-
cation of cpuk · (bus.pcie + ε)).

In architecture P2, ptc = {cpu1.bus1,dma1.(bus1+ε)} ∈ Trans. Indeed, let tc = {(cpu1,pcie), (dma1,pcie,mem1)}
then cpu1.bus1 = trunc(tc, cpu1 · (bus1.pcie + ε)) and dma1.(bus1 + ε) = trunc2(tc,dma1.(bus1.pcie +
bus2.mem1)).

However, in P2, {dma1.(bus1 + ε),dma2.(bus1 + ε)} 6∈ Trans. Indeed, dmak.(bus1.X1 + bus1.X2)
with Xj ∈ {pcie, L3} can only be truncated with trunc1 as dmak.(bus1 + bus1). And the test case
{dma1.(bus1.X1 +bus2.Y2), dma2.(bus1.X2 + bus2.Y2)} with Xj ∈ {pcie, L3} and Yj ∈ {mem1,mem2}
can only be truncated by trunc3 as dmak. (bus1 + bus2).

On the contrary, ptc = {cpu1.bus1,dma1.(bus1+ε),dma2.(bus1+ε)} ∈ Trans. Indeed, the completion
on the DMAs imposes to reach bus2 but this component will not be in the shared component as cpu1 cannot
reach it.

3.4 Interference channel

We can now formally define the notion of interference channel. We distinguish two kinds of interference
channels: the 1-interference channels which involve a single shared component, and the 2-interference
channels which involve two shared components.

6

3.4.1 1-Interference channels

Definition 11 (1-Interference channel) For an architecture P = (C,→), a 1-interference channel is
defined as

(c,
⋃
n

TRn
1)

with c ∈ O ∪ T and

TRn
1 =

⋃

{tr1, . . . , trn} ∈ Trans

∣∣
∀i, tl(proj1(tri)) = c ∧ tl(proj2(tri)) = {c, ε}
∧ ∀i 6= j,
hd(tri) 6= hd(trj)
∧ pred(proj1(tri)) 6= pred(proj1(trj))


An interference channel ends with a shared component c. What happens after is irrelevant, as serialization
occurs at that point and the transactions do not interfere with each other later on. We apply the same
reasoning as in network calculus [16] when packets share a common path on several switches. This is
known as the pay burst only once rule. Thus, interference only occurs on the first component shared
by the n transactions. Note that this could be improved in several ways, such as by considering the
component entailing the worst case delay instead of simply taking the first one, or by grouping successive
components into a super-component.

Example 6 Let us again consider the P1 of Figure 1. There is a unique 1-interference channel with 11
combinations of transactions capable of occurring on the bus:

bus,



{cpu1.bus, cpu2.bus},
{cpu1.bus,dma1.(bus + bus)},
{cpu1.bus,dma2.(bus + bus)},
{cpu2.bus,dma1.(bus + bus)},
{cpu2.bus,dma2.(bus + bus)},
{dma1.(bus + bus),dma2.(bus + bus)},
{cpu1.bus, cpu2.bus,dma1.(bus + bus)},
{cpu1.bus, cpu2.bus,dma2.(bus + bus)},
{cpu1.bus,dma1.(bus + bus),dma2.(bus + bus)},
{cpu2.bus,dma1.(bus + bus),dma2.(bus + bus)},
{cpu1.bus, cpu2.bus,dma1.(bus + bus),dma2.(bus + bus)}


Example 7 Let us consider P2 of Figure 2 and let us focus on bus1 (it is similar for bus2). There are 28
combinations of transactions. The interesting parts are those featuring the dma. Either the second branch
of the transaction reaches bus1, or it is pruned (and replaced by ε). The notation dma2.(bus1 +{bus1, ε})
represents the two transactions dma2.(bus1 + bus1) and dma2.(bus1 + ε) in order to reduce the length of
the table below.

bus1,



{cpu1.bus1, cpu2.bus1},
{cpu1.bus1,dma1.(bus1 + bus1)},
{cpu1.bus1,dma1.(bus1 + ε)},
{cpu1.bus1,dma2.(bus1 + {bus1, ε})},
{cpu2.bus1,dma1.(bus1 + {bus1, ε})},
{cpu2.bus1,dma2.(bus1 + {bus1, ε})},
{dma1.(bus1 + {bus1, ε}),dma2.(bus1 + {bus1, ε})},
{cpu1.bus1, cpu2.bus1,dma1.(bus1 + {bus1, ε})},
{cpu1.bus1, cpu2.bus1,dma2.(bus1 + {bus1, ε})},
{cpu1.bus1,dma1.(bus1 + {bus1, ε}),

dma2.(bus1 + {bus1, ε})},
{cpu2.bus1,dma1.(bus1 + {bus1, ε}),

dma2.(bus1 + {bus1, ε})},
{cpu1.bus1, cpu2.bus1,dma1.(bus1 + {bus1, ε}),

dma2.(bus1 + {bus1, ε})}



7

3.4.2 2-Interference channels

Focusing on 1-interference channels is unfortunately insufficient because of the double branches of trans-
actions issued by non smart transactions. Indeed, those branches can conflict on two components: one
per branch.

Example 8 Let us consider the architecture of Figure 4. The two non smart initiators conflict on b1
and c1. None of them can be excluded in the analysis.

i2

i1

b1 c1

.

bm cp

Figure 4: Architecture P3

Thus, two components can be accessed in parallel by all transactions. We must then define 2-interference
channels. There is no 3 or more-interference channels because the maximal number of branches per
transaction is 2.

Definition 12 (2-Interference channel) For an architecture P = (C,→), a 2-interference channel is
defined as

(c1, c2,
⋃
n

TRn
2)

with c1, c2 ∈ O ∪ T , c1 6= c2 and

TRn
2 =

⋃

{tr1, . . . , trn} ∈ Trans

∣∣
∀i, (tl(proj1(tri)) = c1 ∧ tl(proj2(tri)) = c2)
∧∀i 6= j, hd(tri) 6= hd(trj)

∧ pred(proj1(tri)) 6= pred(proj1(trj))
∧ pred(proj2(tri)) 6= pred(proj2(trj))


Example 9 In P2, depicted in Figure 2, there is a unique 2-interference channel occurring on the buses.

bus1,bus2,
{
{dma1 · (bus1 + bus2), dma2 · (bus1 + bus2)}

}
cpu1

dma1

(IO transfer for F1)

cpu2

dma2

(IO transfer for F2)

F1

pcie↔ L3

F1

pcie↔ L3

F2

pcie↔ L3

F2

pcie↔ L3

Figure 5: An execution scheme for architecture P1

Example 10 There is no 2-interference channel in the P1 architecture. This means that, with our ap-
proach, analyzing the severity of the interference caused by the 11 transactions listed in example 6 is
sufficient, compared to the 7224 test classes of the initiator target model (see example 3). This reduction
comes from a better modeling of the platform and from symmetry properties. The severity of the inter-
ference is evaluated with respect to the expected behavior of the software functions hosted by the platform.

8

To illustrate this, let us consider the following time-triggered execution scheme depicted in figure 5:
(1) cpu1 (resp. cpu2) hosts a software function F1 (resp. F2);
(2) memory mem1 (resp. mem2) is dedicated to F1 (resp. F2), meaning that F1 never tries to access
mem2 and, conversely, F2 never tries to access mem1;
(3) dma1 (resp. dma2) manages input/output transfers of F1 (resp. F2);
(4) input/output data are stored in L3;
(5) F1 and F2 are periodically scheduled in non-overlapping time windows;
and (6) dma1 (resp. dma2) is only activated by F1 (resp. F2).
Then, among the 11 transactions listed in example 6, only the second one ({cpu1.bus,dma1.(bus+bus)})
and the fifth one ({cpu2.bus,dma2.(bus+bus)}) can occur. The potential interference caused by the other
nine transactions are avoided by the execution scheme. Therefore, to meet the certification requirements
it is sufficient to evaluate the WCET of F1 (resp. F2) and the WCET of the dma1 (resp. dma2) transfers
with the interference caused by the second (resp. fifth) transaction. These interference will be said to be
acceptable if these WCETs are smaller than the corresponding time windows planned by the execution
model. Otherwise, they will be said to be unacceptable.

4 Comparison between the initiator-target model and Phylog
model

The Phylog model can be seen as the definition of equivalence classes for the initiator-target model.

Definition 13 (Interference-free test classes) Some test classes listed in TCP
∞ do not lead to an

interference channel:

1. Single test classes, as they do not generate any conflict,

2. Test classes tc such that phy(tc) = (tr1, . . . , trn), n > 1 and shared(phy(tc)) = ∅, that is, no
component is shared by the n transactions.

Test classes satisfying one of these two rules are said to be interference-free.

Example 11 Let us consider P2 once again. The test class {(cpu1,mem1), (dma1,pcie,L3)} is interference-
free: no component is shared by the two transactions (rule 2 of the definition). However, {(cpu1,mem1),
(dma2,pcie,mem2)} is not interference-free, since bus1 is shared by the two transactions.

Let us note that a transaction, as depicted in Figure 3, defines a partial order relation over the
language for the transactions:

Definition 14 For an architecture P = (C,→) and a transaction tr = i·((a1 . . . an ·b1 . . . bm)+(a1 . . . an ·
c1 . . . cp)), let us define the relation <tr over lg(tr) as:

• if (a1 . . . an) 6= ε, then ∀i = 1 . . . n− 1, ai <tr ai+1

• if (a1 . . . an) 6= ε, then an <tr b1

• if (a1 . . . an) 6= ε and if (c1 . . . cp) 6= ε, then an <tr c1

• ∀i = 1 . . .m− 1, bi <tr bi+1

• if (c1 . . . cp) 6= ε, then ∀i = 1 . . . p− 1, ci <tr ci+1

<tr is the order generated by the oriented paths followed by the transaction.

Proposition 4 Let P = (C,→), <P is the partial order (see proposition 2), tc = {tr1, . . . , trn} a
Phylog test class, and S = shared(tc) the set of components shared by all the transactions tri. Let

min(S,<P) = {α ∈ S | ∀β ∈ S, either α <P β or ¬(β <P α)}

be the set of smallest components in S for <P . Then

• either min(S,<P) = ∅,

9

• or min(S,<P) = {α} and ∀tri,∀β ∈ S, α <tri β (meaning α is the first component crossed by all
tri),

• or min(S,<P) = {α, β} and ∀tri,∀γ ∈ S, α <tri γ ∨ β <tri γ (meaning α (resp. β) is the first
crossed in some branches in which β (resp. α) is not involved, as b1 and c1 in Figure 4).

Proof 2 Let us consider tr1 = i · ((a1 . . . am · b1 . . . bp) + (a1 · am · c1 . . . cq)) of tc with bj 6= ck for all j, k.
Remember that S = shared(tc) = lg(tr1) ∩ . . . ∩ lg(trn). Then S ⊂ {a1, . . . , am, b1 . . . , bp, c1, . . . , cq}. Let
us consider 5 cases:

• case 1: S = ∅. Then min(S,<P) = ∅. Meaning tc is interference-free.

• case 2: S ∩ {a1, . . . am} 6= ∅. Then ∃k,min(S,<tr1) = {ak}. Moreover, min(S,<P) = min(S,<tr1

) = {ak}.

• case 3: S ⊂ {b1, . . . bp}. Then ∃k,min(S,<tr1) = {bk}. Then min(S,<P) = min(S,<tr1) = {bk}.

• case 4: S ⊂ {c1, . . . cq}. Then ∃k,min(S,<tr1) = {ck}. Then min(S,<P) = min(S,<tr1) = {ck}.

• case 5: S ⊂ {b1, . . . , bp, c1, . . . cq} and S∩{b1, . . . bp} 6= ∅ and S∩{c1, . . . cq} 6= ∅. Then ∃k, l,min(S,<tr1

) = {bk, cl} with ¬(bk <tr1 cl) and ¬(bk <tr1 cl). Then min(S,<P) = min(S,<tr1) = {bk, cl}.

Example 12 For P2 and its {(dma1,mem1,pcie), (dma2, mem2,pcie)} test class, the associated trans-
actions are

• tr1 = dma1 · (bus1 · pcie + bus2 ·mem1)

• tr2 = dma2 · (bus2 ·mem2 + bus1 · pcie)

S = {bus1,bus2,pcie}, and min(S,<P) = {bus1,bus2}.

Definition 15 (Relation ≡) Let us define the relation ≡ on the Brindejonc et al. test classes. Let tc1
and tc2 be two test classes. Let S1 = shared(phy(tc1)) and S2 = shared(phy(tc2)), then

tc1 ≡ tc2 ⇐⇒
min(S1, <P) = min(S2, <P) ∧ (S1 = ∅ ∨ hd(tc1) = hd(tc2))

Proposition 5 The relation ≡ is an equivalence relationship.

Proof 3 ≡ is reflexive. Indeed, let tc be a test class, min(shared (phy(tc)), <P) is defined in a unique
way.
≡ is symmetric, because we only handle sets.
≡ is transitive: if min(S1, <P) = min(S2, <P) and min(S1, <P) = min(S3, <P) then min(S2, <P) =

min(S3, <P). Same for hd(tci).

Proposition 6 The Phylog interference channels are a representative of the ≡ relation classes. More
precisely, let tc = {(i1, t1) . . . (im, tm, t

′
m)}, let S = shared(phy(tc)).

• if min(S,<P) = ∅, there is no interference channel in Phylog,

• if min(S,<P) = {c}, the associated interference channel in Phylog is a 1-interference channel in
c,∪nTRn

1 , i.e. tr = {tr1, . . . , trm} ∈ TRm
1 with hd(tr) = hd(tc);

• if min(S,<P) = {c1, c2}, the associated interference channel in Phylog is a 2-interference channel
c1, c2,∪nTRn

2 , i.e. tr = {tr1, . . . , trm} ∈ TRm
2 with hd(tr) = hd(tc).

Proof 4 Case interference-free channel: all these test classes are associated to the empty set of Phylog.
Case min(S,<P) = {c} (resp. = {c1, c2}): we apply the truncation of definition 10 where the trans-

actions stop at ap = c (resp. ap = c1 and bl = c2) and then {tr1, . . . , trm} is in TRm
1 (resp. TRm

2).

5 Experiments

In this section, we first illustrate the idp code supporting the interference channels computations. We
then provide some experiments with idp.

10

5.1 Coding the initiator target model

SI, NSI, T and O are represented as types. → is a predicate with two parameters.

Code 1� �
type SInitiator

type NSInitiator

type Initiator contains SInitiator , NSInitiator

type Reactive

type Target

type Component contains Reactive , Target , Initiator� �
A predicate Path computes all paths from SI to T . For our modeling, we chose to hard code the

maximal length of a path. Thus, if a path is shorter, we use NULL to complete the path. For instance, in
P1, if the maximal length is 4, the path from CPU1 to mem1 is represented as Path(CPU1, interconnect,
mem1, NULL) = true.

Code 2� �
!i[Initiator]: !x1[Component]: !x2[Component]:

!x3[Component]: Path(i,x1 ,x2,x3) <-

(Edge(i,x1) & Edge(x1,x2) & Edge(x2 ,x3)).� �
A predicate SingleTestCase computes the single test cases. Again, the length is imposed to 3, because

of the non smart initiator. The test case CPU1 mem1 is represented as SingleTestCase(CPU1, mem1,
NULL) = true.

Code 3� �
!i[NSInitiator]: !t1[Target]: !t2[Target]:

SingleTestCase(i,t1,t2) <-

?x[Component]: ?z[Component]: ?v[Component]:

?y[Component]: ?h[Component]: ?l[Component]:

(Path(i,x,t1 ,z) | Path(i,x,z,t1) | Path(i,t1 ,z,v))

& (Path(i,y,t2,h) | Path(i,y,h,t2)

| Path(i,t2 ,h,l)).� �
Finally, there is one predicate per TCP

n . For instance, test cases of size 2 are coded by CoupleTestCase.

Code 4� �
!i1[NSInitiator]: !t1[Target]: !t2[Target]:

!i2[NSInitiator]: !t3[Target]: !t4[Target]:

CoupleTestCase(i1 ,t1,t2,i2 ,t3,t4) <-

(SingleTestCase(i1 ,t1,t2) &

SingleTestCase(i2 ,t3,t4) & (i1 <i2)).� �
5.2 Coding the Phylog model

We compute an intermediate predicate to combine two transactions composed of a single branch each.
Trans2, still for a maximal of 3 components in a path, is defined below.

Code 5� �
// when the shared component is at the end

!x[Component]: !i1[Initiator]: !i2[Initiator]:

!x1[Component]: !x2[Component]:

!x3[Component]: !x4[Component]:

Trans2(x,i1,x1,x2 ,x,i2 ,x3,x4,x) <-

(Path(i2 ,x3,x4,x) & Path(i1,x1,x2 ,x)

& (i1 < i2) & (x2~=x4)).� �
There is one predicate per TRn

1 . For instance, TR2
1 is coded by combining the two branches of a pair

11

of transactions.

Code 6� �
// case 1 SI and 1 NSI

!x[Component]: !i1[SInitiator]: !i2[NSInitiator]:

!x1[Component]: !x2[Component]: !x3[Component]:

!z1[Component]: !z2[Component]: !z3[Component]:

1Interf2(x,i1 ,x1,x2,x3 ,x4,NULL ,NULL ,NULL ,

NULL ,i2 ,z1,z2,z3 ,z4,z1,z2 ,z3,z4) <-

Trans2(x,i1,x1,x2 ,x3,x4,i2 ,z1,z2,z3 ,z4).� �
There is also one predicate per TRn

2 . The code for TR2
2 is given below.

Code 7� �
!x1[Component]: !x2[Component]: !i1[NSInitiator]:

!i2[NSInitiator]: !y1[Component]: !y2[Component]:

!y3[Component]: !y4[Component]: !y5[Component]:

!y6[Component]: !z1[Component]: !z2[Component]:

!z3[Component]: !z4[Component]: !z5[Component]:

!z6[Component]:

2Interf2(x1,x2,i1 ,y1,y2,y3 ,y4,y5,y6,

i2,z1,z2 ,z3,z4,z5 ,z6) <-

(Trans2(x1,i1 ,y1,y2,y3 ,i2,z1,z2 ,z3)

& Trans2(x2 ,i1,y4,y5 ,y6,i2,z4 ,z5,z6)

& (x1 < x2)).� �
5.3 Some results

idp computes the predicates of the previous examples in less than a second. Increasing the number of
smart initiators, non-smart initiators, targets, or intermediary components does not appear to increase
the execution time. Even when modeling a Kalray MPPA [8] compute cluster, composed of 16 cores,
32 intermediary components, and 16 targets, resolution of those predicates (exposing a total of 1920
interference channels) is still completed in sub-second times.

To ensure their correctness, we have also used idp to compute the ≡ relation classes of the aforemen-
tioned examples, and found them to be compliant with the propositions made in this paper.

6 Related Work

Interference analysis in multi-core processors has received significant attention in recent years. A first
class of these works focuses on the impact of shared hardware resource contention on the execution time
of software application hosted by the processor. For instance, [9] considers a multi-core architecture
composed of a single bus providing access to a shared memory, and it proposes a method to determine
an upper bound on the number of bus requests that software tasks can generate in a given time interval.
Both [5] and [12] focus on measurement techniques based on dedicated stressing benchmarks and hardware
monitors to characterize the architecture and the shared resources that can cause interference between
software applications.

A second class of works focuses on methods to avoid interference. For instance, [2] proposes a
contention-free execution framework to execute automotive software application on many-core platforms.
[19] proposed a similar approach which relies both on a development work-flow, and the use of an exe-
cution model defined as a set of rules to be followed by the designer and asserted through the run-time
in order to enforce specific behaviors. Both [2] and [19] target a TDMA execution model, and use a
Constraint Programming formulation to find an optimal time-triggered schedule on each core.

In order to tackle multi-core aeronautics certification-related issues, several projects have been funded.
One of the first was MULCORS [13], which clearly identified the need to change and adapt the current
certification standard. Since then, several attempts at precisely defining such new recommendation have
been done, such as the Multi-core Certification Review Item (MCP-CRI) [11]. In other parts of the MCP-
CRI, [15] proposed definitions for interference channels, interference sources, and interference targets, and
they proposed a process to reduce the number of interference. A more recent work proposed by [1] tried to
adapt the MCP-CRI certification objectives to COST MCP architectures. For that purpose, they showed
that the MCP-CRI objectives can be grouped into three high level principles: (1) determining the final
configuration, (2) managing interference channels, and (3) verifying the use of shared resources. They

12

showed, through a particular case study (the Freescale P4080 processor), that the second objective (man-
aging interference channels) highly depends on detailed information about the behavior of the resources.
And they showed that predicting interference on a COTS multi-core architecture is a very challenging
task because of the amount of required information. A way to help the certification application to master
the complexity of the architecture is then to use a formal model of the architecture and a formal analysis
method to explore the set of interference channels. Such is the aim of our contribution.

7 Conclusion

In this paper, we have formally defined the initiator-target model and compared it with the Phylog
approach. Our representation requires more details on the internal of the platform but offers a more
practical size description. Our work was supported with idp tool.

In the future, we will apply our model to other multi-cores and extend our model to many-core
platforms. We will also measure the gains of going deeper in the description of the architecture.

References

[1] Irune Agirre, Jaume Abella, Mikel Azkarate, and Francisco Cazorla. On the Tailoring of CAST-
32A Certification Guidance to Real COTS Multicore Architectures. In 12th IEEE International
Symposium on Industrial Embedded Systems (SIES’17), 2017.

[2] Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Åkesson, Vincent Nélis, and Thomas
Nolte. Contention-free execution of automotive applications on a clustered many-core platform. In
28th Euromicro Conference on Real-Time Systems, July 2016.

[3] Pierre Bieber, Frédéric Boniol, Youcef Bouchebaba, Julien Brunel, Claire Pagetti, Olivier Poitou,
Thomas Polacsek, Luca Santinelli, and Nathanaël Sensfelder. A model-based certification approach
for multi/many-core embedded systems. In 9th European Congress on Embedded Real Time Software
and Systems (ERTS 2018), 2018.

[4] Pierre Bieber, Frédéric Boniol, Guy Durrieu, Olivier Poitou, Thomas Polacsek, Virginie Wiels, and
Ghilaine Martinez. MIMOSA: Towards a model driven certification process. In Proc. 8th Int.
Congress on Embedded Real Time Software and Systems (ERTS’16), 2016.

[5] Jingyi Bin, Sylvain Girbal, Daniel Gracia Perez, Arnaud Grasset, and Alain Merigot. Studying
co-running avionic real-time applications on multi-core cots architectures, 02 2014.

[6] Vincent Brindejonc and Anthony Roger. Avoidance of dysfunctional behaviour of complex cots used
in an aeronautical context. In 19eme Congrès de Mâıtrise des Risques et Sûreté de Fonctionnement,
2014.

[7] Certification Authorities Software Team. Multi-core Processors - Position Paper. Technical Report
CAST 32-A, November 2016.

[8] Kalray Corporation. The MPPA hardware architecture, 2012.

[9] Dakshina Dasari and Vincent Nelis. An analysis of the impact of bus contention on the wcet in
multicores. In Proceedings of the 2012 IEEE 14th International Conference on High Performance
Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software
and Systems, HPCC ’12, pages 1450–1457, Washington, DC, USA, 2012. IEEE Computer Society.

[10] Broes de Cat, Bart Bogaerts, Maurice Bruynooghe, and Marc Denecker. Predicate logic as a mod-
elling language: The IDP system. CoRR, abs/1401.6312, 2014.

[11] EASA (European Aviation Safety Agency). The Use of Multi-Core Processors in Safety-Critical
Applications - CRI, 2016.

[12] Sylvain Girbal, Jingyi Bin, Daniel Gracia Perez, and Alain Merigot. Using monitors to predict
co-running safety-critical hard real-time benchmark behavior. In Conference on Information and
Communication Technology for Embedded Systems (ICITES’14), 01 2014.

13

[13] Xavier Jean, Marc Gatti, Guy Berthon, and Marc Fumey. MULCORS-Use of Multicore Processors
in airborne systems. European Aviation Safety Agency, Industrial report December, 2012.

[14] Xavier Jean, Laurence Mutuel, and Vincent Brindejonc. Assurance methods for cots multi-cores in
avionics. In 35th Digital Avionics Systems Conference (DASC’16), 2016.

[15] Xavier Jean, Laurence Mutuel, Didier Regis, Hélène Misson, Guy Berthon, and Marc
Fumey. White Paper on Issues Associated with Interference Applied to Multicore Proces-
sors, 2016. Retrieved from http://www.faa.gov/aircraft/air_cert/design_approvals/air_

software/media/SDS_DO005_White_Paper.pdf.

[16] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Deterministic Queuing
Systems for the Internet. Springer-Verlag, Berlin, Heidelberg, 2001.

[17] Laurence Mutuel, Xavier Jean, and Vincent Brindejonc. Investigation of error types associated with
failures in multicore processors. In 20eme Congrès de Mâıtrise des Risques et Sûreté de Fonction-
nement, 2016.

[18] Laurence Mutuel, Xavier Jean, Vincent Brindejonc, Anthony Roger, Thomas Megel, and E. Alepins.
Assurance of Multicore Processors in Airborne Systems, 2017.

[19] Quentin Perret, Pascal Maurère, Éric Noulard, Claire Pagetti, Pascal Sainrat, and Benôıt Triquet.
Temporal isolation of hard real-time applications on many-core processors. In 22th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS’16), April 2016.

[20] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The worst-case execution-
time problem - overview of methods and survey of tools. ACM Transactions Embedded Computing
Systems, 7(3):36:1–36:53, May 2008.

[21] Reinhard Wilhelm and Jan Reineke. Embedded systems: Many cores - many problems. In 7th IEEE
International Symposium on Industrial Embedded Systems (SIES’12), pages 176–180, 2012.

14

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/SDS_DO005_White_Paper.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/SDS_DO005_White_Paper.pdf

	Introduction
	Identification of potential interference
	Objectives and contribution

	The initiator-target model
	Overview
	Formalization
	Hypotheses

	Phylog model
	Overview
	Transaction model
	Test classes revisited – Truncated transactions
	Interference channel
	1-Interference channels
	2-Interference channels

	Comparison between the initiator-target model and Phylog model
	Experiments
	Coding the initiator target model
	Coding the Phylog model
	Some results

	Related Work
	Conclusion

