Frédéric Boniol

Claire Pagetti

Nathanaël Sensfelder

Identification of multi-core interference

Keywords: Multi-core, certification, timing interference

Introduction

The last decade has seen the emergence of multi-core processors, i.e. chips integrating several cores linked by a shared interconnect. Although these architectures have been shown to provide huge gains in performance, they have severe lapses in time predictability [START_REF] Wilhelm | The worst-case executiontime problem -overview of methods and survey of tools[END_REF][START_REF] Wilhelm | Embedded systems: Many cores -many problems[END_REF], one of the key elements of certification expectations.

Identification of potential interference

Aeronautic certification authorities, in association with industrial manufacturers, have published the Multi-Core Certification Review Item (MCP-CRI) [START_REF]The Use of Multi-Core Processors in Safety-Critical Applications -CRI[END_REF] (also published as the CAST-32A position paper [7]), in order to provide a set of guidances for software planning and verification on multi-core chips.

Due to resource sharing, couplings exist at the platform level. These can cause interference between applications, which, in turn, may lead to unexpected delays, and even the alteration or loss of data. These three issues are not acceptable in the aeronautics domain and must thus be avoided. In terms of certification, this entails a four steps process: First, the applicant must identify all interference channels. In the CAST-32A terminology, an interference channel is a platform property that may cause interference between independent applications. Second, the applicant must classify the interference as either acceptable, tolerable, or unacceptable. Third, for each unacceptable interference, they must provide a mean of mitigation to prevent the system from having catastrophic behaviors. In that context, mitigation signifies that some mechanisms have been proposed to forbid unacceptable interference or reduce their effect to acceptable or tolerable levels. For example, if a resource being accessed in parallel by more than two requesters would lead to a non-acceptable delay, mitigation could take the form of a run-time mechanism that sequentializes the access. Fourth and final, the applicant must argue why the means of mitigation are adequate and why unacceptable interference will never occur during aircraft operations.

This requirement is called resource usage 3 in the CAST-32A. In the sequel, we will only focus on this particular objective and, more precisely, on the identification of interference.

Objectives and contribution

To the best of our knowledge, few works have proposed solutions for resource usage 3. Researchers from Thales have proposed the Initiator-Target Model [START_REF] Brindejonc | Avoidance of dysfunctional behaviour of complex cots used in an aeronautical context[END_REF][START_REF] Jean | Assurance methods for cots multi-cores in avionics[END_REF][START_REF] Mutuel | Investigation of error types associated with failures in multicore processors[END_REF][START_REF] Mutuel | Assurance of Multicore Processors in Airborne Systems[END_REF] to help identify the interference channels on multi-core chips. Their model is very simple, but suffers from a combinatorial explosion.

Phylog is a French project (2016-2020), funded by the French civil aeronautic agency (DGAC), which aims at offering a model-based and software-aided certification framework for aeronautics systems based on multi/many-core architectures. In [START_REF] Bieber | A model-based certification approach for multi/many-core embedded systems[END_REF], we have defined the premises of the Phylog model, presented the notions of interference channels and transactions, and shown an automated process to find the interference channels through the use of Weird [START_REF] Bieber | MIMOSA: Towards a model driven certification process[END_REF].

The objective of this paper is to compare and link the initiator-target and Phylog models. For that purpose, we start with a formal definition of the initiator-target model (see section 2). We then refine and formalize our former definition of interference channels (see section 3). We then show that our representation is more compact than the initiator-target model despite remaining as expressive. Indeed, our interference channels are the representative elements of the equivalence classes of an equivalence relation (see section 4). All our formalization and computation are supported by implementations made in idp [START_REF] Broes De Cat | Predicate logic as a modelling language: The IDP system[END_REF] (see section 5), used as a replacement for Weird [START_REF] Bieber | MIMOSA: Towards a model driven certification process[END_REF].

The initiator-target model

The initiator-target model has been introduced in [START_REF] Brindejonc | Avoidance of dysfunctional behaviour of complex cots used in an aeronautical context[END_REF] and reused in [START_REF] Jean | Assurance methods for cots multi-cores in avionics[END_REF][START_REF] Mutuel | Investigation of error types associated with failures in multicore processors[END_REF], and [START_REF] Mutuel | Assurance of Multicore Processors in Airborne Systems[END_REF]. The goal was to provide a theoretical view for the identification of the interference channels (called performance contentions in [START_REF] Brindejonc | Avoidance of dysfunctional behaviour of complex cots used in an aeronautical context[END_REF]) that can occur in a multi-core processor.

Overview

According to their definition, a multi-core is composed of three types of components: • Target components, i.e. end-components targeted by smart or non smart initiators.

Intermediate components (such as internal buses) between initiators and targets are simply ignored.

Example 1 Let us illustrate the initiator-target model on the simple architecture shown in Figure 1, composed of two smart initiators (the two CPUs), two non smart initiators (the two DMAs), and four targets (the two memory controllers, the PCIe controller, and one L3 cache used as SRAM memory). An interference channel is seen as a combination of single test classes (or single test cases) where an interference occurs. A single test class is a transaction initiated by an initiator and targeting a target (for smart initiators) or two targets (in case of non smart initiators).

Example 2 In the architecture depicted Figure 1, cpu 1 mem 1 , cpu 2 mem 2 , and pcie dma 1 mem 2 are examples of single test classes. The first two may denote either read or write transactions from cpu k to mem k . The last one may denote a data transfer from the PCIe device to the second memory through the dma 1 .

(cpu 1 mem 1) (cpu 2 mem 2) (pcie dma 1 mem 2)
is a test class composed of three single test classes running in parallel.

Formalization

Let us now introduce a set-based formalization of the initiator-target model.

card(T C P ∞) = (1 + n T) nSI • (1 + n 2 T) nNSI -1 (1)
Example 3 Let us once again consider the architecture P 1 shown in Figure 1: n SI = 2, n NSI = 2, n T = 4, →= {(cpu 1 ,bus), (cpu 2 ,bus), (dma 1 , bus), (dma 2 ,bus), (bus,mem 1), (bus,mem 2), (bus,L3), (bus,pcie)}. Applying equation 1 yields:

card(T C P1 ∞) = (1 + 4) 2 • (1 + 4 2)
2 -1 = 7224 meaning that the interference analysis may need up to 7224 test classes to be analyzed on this architecture. Aeronautic certification standards require the assessment of the worst case execution time (WCET) for the critical software functions running on the cores of the processor. As stated in the introduction, interference may strongly affect this execution time. It is up to the designer to characterize the severity of each interference with respect to the execution time of each software function, and, at the end, to show that all the unacceptable interference (i.e., the ones that induce too high WCETs) are properly mitigated by appropriate means (e.g., arbiters, time-triggered execution schemes, etc.). In the case of the (rather small) architecture P 1 , such an assessment requires the investigation of the 7224 test classes.

Hypotheses

In the seminal paper, there was no specific rule about the reachability of a target by an initiator. Implicitly, the authors assumed that all targets were reachable by all initiators. Moreover, they did not make a distinction on the type of transactions (e.g. read or write). Finally, they assumed a unique path from any given initiator to any given target, which is not the case in many-cores. Most commercial multi-core processors satisfy these two hypotheses. Let us formalize them:

• Hyp1. All targets are reachable by all initiators: ∀i ∈ SI ∪ NSI, ∀t ∈ T, i → * t • Hyp2. There is a unique path from an initiator to any non initiator component:

∀i ∈ SI∪NSI, ∀t ∈ O ∪ T , if i → a 1 → . . . → a n → t and i → b 1 → . . . → b m → t, then n = m and ∀k, a k = b k .
Proposition 2 The reachability relation → satisfying Hyp2 is acyclic and defines a partial order

< P : ∀α, β ∈ SI ∪ NSI ∪ T ∪ O, α < P β ⇔ α → * β.
3 Phylog model

In the Phylog project, we need to tackle the identification of all interference channels as in Brindejonc et al.'s approach.

Overview

We believe that the current initiator-target model is insufficient as is and that it must be enriched.

1. Brindejonc's approach is a black-box approach: it does not consider internal components. Two architectures with different topologies may be characterized by the same test classes, even when their interference differ.

2. Test classes do not necessarily lead to any actual interference between transactions. For instance, in the architecture P 2 depicted Figure 2, the test class (cpu 1 mem 1) (pcie dma 1 L3) does not cause any contention as these transactions cross two different buses in parallel without interfering with each other. Many other test classes in P 2 are interference-free as well.

3. Their approach is simple, but suffers from scalability issues: For a T4240 processor, composed of 12 cores (n SI = 12), 3 DMAs (n NSI = 3), 2 memory controllers, 1 PCIe, and 1 L3 cache used as SRAM memory (n T = 4), there are more than 10 12 test cases.

Ideally, the number of test classes to be explored should be as low as possible. We thus propose grouping them according to the interference they cause on the components. In the following, we will consider that the branching operator "+" is commutative. That is,

tr = i • ((b 1 . . . b n) + (c 1 . . . c m)) = i • ((c 1 . . . c m) + (b 1 . . . b n)).
Example 4 A single test class is a transaction from an initiator to one or two targets. In P 1 , the single test class cpu 1 mem 1 is the transaction cpu 1 .(bus.mem 1 +); whereas pcie dma mem 2 is the transaction dma.(bus.mem 2 + bus.pcie).

Definition 6 We define a series of useful functions for a transaction tr

= i • ((a 1 . . . a n • b 1 . . . b m) + (a 1 . . . a n • c 1 . . . c p)) with for all l, k b l = c k :
• hd(tr) = i (head of the transaction),

• prefix(tr) = a 1 . . . a n (common prefix of the transaction, possibly empty).

• proj 1 (tr) = i • a 1 . . . a n • b 1 . . . b m (first branch of the transaction), • proj 2 (tr) = i • a 1 . . . a n • c 1 . . . c p (second branch),
• lg(tr) = {a 1 , . . . , a n , b 1 , . . . , b m , c 1 , . . . , c m } (language of the transaction, i.e., the set of components involved),

• tl(α 1 . . . α n) = α n (tail of a word),

• pred(α 1 . . . α n-1 • α n) = α n-1 (penultimate component of a word).
According to hypothesis Hyp2, each tc is modeled by a unique transaction tr in the Phylog model.

Definition 7 (Transactions associated to a single test class) When (i, t) ∈ SI × T , the associated Phylog transaction is defined as phy(i, t) = tr with hd(tr) = i, tl(proj 1 (tr)) = t and proj 2 (tr)) = .

When (i, t 1 , t 2) ∈ NSI × T × T , the associated Phylog transaction is defined as phy(i, t 1 , t 2) = tr with hd(tr) = i, tl(proj 1 (tr)) = t 1 and tl(proj 2 (tr)) = t 2 .

m (a) tr = i • ((b 1 . . . bm)+). i b 1 c 1 b m c p (b) tr = i • ((b 1 . . . bm) + (c 1 . . . cp)) with ∀l, k, b l = c k . i a 1 . . . a n b 1 c 1 b m c p (c) tr = i • ((a 1 . . . an • b 1 . . . bm) + (a 1 . . . an • c 1 . . . cp)) with ∀l, k, b l = c k .

Test classes revisited -Truncated transactions

A test class, as introduced by definition 3, is a set of single test classes tc 1 , . . . , tc n issued by n different initiators.

Definition 8 Let tc = {(i 1 , t 1) . . . (i m , t m , t m)} be a test class, the associated Phylog transactions are phy(tc) = {tr 1 , . . . , tr m } = {phy(i 1 , t 1), . . . , phy(i m , t m , t m)}.

The shared components in a set of transactions are then: Definition 9 Let tc = {tr 1 , . . . , tr n } be a set of transactions, the language associated to tc is defined by: lg(tc) = lg(tr 1) ∪ . . . ∪ lg(tr n) and shared(tc) is the set of components involved in all transactions: shared(tc) = lg(tr 1) ∩ . . . ∩ lg(tr n)

We define the Phylog test classes as the sets of truncated transactions where the interference-free parts of transactions are translated as the empty word .

such that ∃tc = {(i i , t i) . . . (i m , t m)(i m+1 , t m+1 , t m+1) . . . (i n , t n , t n)} ∈ T C P ∞ with • ∀k, hd(tr k) = i k ;
• ∀j ≤ m, tr j = trunc(tc, phy(i j , t j)) where trunc(tc, i • (a 1 . . . a n +)) = i • (a 1 . . . a p +) with p ≤ n and a p ∈ shared(tc);

• ∀m + 1 ≤ j ≤ n, ∃k ≤ 3, tr j = trunc k (tc, phy(i j , t j , t j))
where Notations 2 When handling truncated transactions generated by smart initiators, we will deliberately remove the second branch which is empty. For instance, cpu 1 .bus stands for cpu 1 .(bus +). This contraction cannot be applied to truncated transactions generated by non smart initiators, as it would then be impossible to differentiate the prefix part.

trunc 1 (tc, i • (a 1 . . . a n + b 1 . . . b m)) = i • (
Example 5 In P 1 , ptc = {cpu 1 .bus, cpu 2 .bus} ∈ Trans. Indeed, cpu k .bus can be obtained as the truncation of cpu k • (bus.pcie +)).

In architecture P 2 , ptc = {cpu 1 .bus 1 , dma 1 .(bus 1 +)} ∈ Trans. Indeed, let tc = {(cpu 1 , pcie), (dma 1 , pcie, mem 1)} then cpu 1 .bus 1 = trunc(tc, cpu 1 • (bus 1 .pcie +)) and dma 1 .(bus 1 +) = trunc 2 (tc, dma 1 .(bus 1 .pcie + bus 2 .mem 1)).

However, in P 2 , {dma 1 .(bus 1 +), dma 2 .(bus 1 +)} ∈ Trans. Indeed, dma k .(bus 1 .X 1 + bus 1 .X 2) with X j ∈ {pcie, L3} can only be truncated with trunc 1 as dma k .(bus 1 + bus 1). And the test case {dma 1 .(bus 1 .X 1 +bus 2 .Y 2), dma 2 .(bus 1 .X 2 + bus 2 .Y 2)} with X j ∈ {pcie, L3} and Y j ∈ {mem 1 , mem 2 } can only be truncated by trunc 3 as dma k . (bus 1 + bus 2).

On the contrary, ptc = {cpu 1 .bus 1 , dma 1 .(bus 1 +), dma 2 .(bus 1 +)} ∈ Trans. Indeed, the completion on the DMAs imposes to reach bus 2 but this component will not be in the shared component as cpu 1 cannot reach it.

Interference channel

We can now formally define the notion of interference channel. We distinguish two kinds of interference channels: the 1-interference channels which involve a single shared component, and the 2-interference channels which involve two shared components.

1-Interference channels

Definition 11 (1-Interference channel) For an architecture P = (C, →), a 1-interference channel is defined as

(c, n T R n 1)
with c ∈ O ∪ T and

T R n 1 =            {tr 1 , . . . , tr n } ∈ Trans ∀i, tl(proj 1 (tr i)) = c ∧ tl(proj 2 (tr i)) = {c, } ∧ ∀i = j, hd(tr i) = hd(tr j) ∧ pred(proj 1 (tr i)) = pred(proj 1 (tr j))           
An interference channel ends with a shared component c. What happens after is irrelevant, as serialization occurs at that point and the transactions do not interfere with each other later on. We apply the same reasoning as in network calculus [START_REF] Boudec | Network Calculus: A Theory of Deterministic Queuing Systems for the Internet[END_REF] when packets share a common path on several switches. This is known as the pay burst only once rule. Thus, interference only occurs on the first component shared by the n transactions. Note that this could be improved in several ways, such as by considering the component entailing the worst case delay instead of simply taking the first one, or by grouping successive components into a super-component.

Example 6 Let us again consider the P 1 of Figure 1. There is a unique 1-interference channel with 11 combinations of transactions capable of occurring on the bus: bus,

                                   {cpu 1 .
                                  
Example 7 Let us consider P 2 of Figure 2 and let us focus on bus 1 (it is similar for bus 2). There are 28 combinations of transactions. The interesting parts are those featuring the dma. Either the second branch of the transaction reaches bus 1 , or it is pruned (and replaced by). The notation dma 2 .(bus 1 + {bus 1 , }) represents the two transactions dma 2 .(bus 1 + bus 1) and dma 2 .(bus 1 +) in order to reduce the length of the table below.

bus 1 ,      {cpu 1 .
, })}     

2-Interference channels

Focusing on 1-interference channels is unfortunately insufficient because of the double branches of transactions issued by non smart transactions. Indeed, those branches can conflict on two components: one per branch. Thus, two components can be accessed in parallel by all transactions. We must then define 2-interference channels. There is no 3 or more-interference channels because the maximal number of branches per transaction is 2.

Definition 12 (2-Interference channel) For an architecture P = (C, →), a 2-interference channel is defined as

(c 1 , c 2 , n T R n 2) with c 1 , c 2 ∈ O ∪ T , c 1 = c 2 and T R n 2 =            {tr 1 , . . . , tr n } ∈ Trans ∀i, (tl(proj 1 (tr i)) = c 1 ∧ tl(proj 2 (tr i)) = c 2) ∧∀i = j, hd(tr i) = hd(tr j) ∧ pred(proj 1 (tr i)) = pred(proj 1 (tr j)) ∧ pred(proj 2 (tr i)) = pred(proj 2 (tr j))           
Example 9 In P 2 , depicted in Figure 2, there is a unique 2-interference channel occurring on the buses. Example 10 There is no 2-interference channel in the P 1 architecture. This means that, with our approach, analyzing the severity of the interference caused by the 11 transactions listed in example 6 is sufficient, compared to the 7224 test classes of the initiator target model (see example 3). This reduction comes from a better modeling of the platform and from symmetry properties. The severity of the interference is evaluated with respect to the expected behavior of the software functions hosted by the platform.

bus 1 , bus 2 , {dma 1 • (bus 1 + bus 2), dma 2 • (bus 1 + bus 2)} cpu 1 dma 1 (IO transfer for F 1) cpu 2 dma 2 (IO transfer for F 2) F 1 pcie ↔ L 3 F 1 pcie ↔ L 3 F 2 pcie ↔ L 3 F 2 pcie ↔ L 3
To illustrate this, let us consider the following time-triggered execution scheme depicted in figure 5: (1) cpu 1 (resp. cpu 2) hosts a software function F 1 (resp. F 2);

(2) memory mem 1 (resp. mem 2) is dedicated to F 1 (resp. F 2), meaning that F 1 never tries to access mem 2 and, conversely, F 2 never tries to access mem 1 ;

(3) dma 1 (resp. dma 2) manages input/output transfers of F 1 (resp. F 2); (4) input/output data are stored in L 3 ;

(5) F 1 and F 2 are periodically scheduled in non-overlapping time windows; and (6) dma 1 (resp. dma 2) is only activated by F 1 (resp. F 2). Then, among the 11 transactions listed in example 6, only the second one ({cpu 1 .bus, dma 1 .(bus + bus)}) and the fifth one ({cpu 2 .bus, dma 2 .(bus + bus)}) can occur. The potential interference caused by the other nine transactions are avoided by the execution scheme. Therefore, to meet the certification requirements it is sufficient to evaluate the WCET of F 1 (resp. F 2) and the WCET of the dma 1 (resp. dma 2) transfers with the interference caused by the second (resp. fifth) transaction. These interference will be said to be acceptable if these WCETs are smaller than the corresponding time windows planned by the execution model. Otherwise, they will be said to be unacceptable.

Comparison between the initiator-target model and Phylog model

The Phylog model can be seen as the definition of equivalence classes for the initiator-target model.

Definition 13 (Interference-free test classes) Some test classes listed in T C P ∞ do not lead to an interference channel:

1. Single test classes, as they do not generate any conflict, 2. Test classes tc such that phy(tc) = (tr 1 , . . . , tr n), n > 1 and shared(phy(tc)) = ∅, that is, no component is shared by the n transactions.

Test classes satisfying one of these two rules are said to be interference-free.

Example 11 Let us consider P 2 once again. The test class {(cpu 1 , mem 1), (dma 1 , pcie, L3)} is interferencefree: no component is shared by the two transactions (rule 2 of the definition). However, {(cpu 1 , mem 1), (dma 2 , pcie, mem 2)} is not interference-free, since bus 1 is shared by the two transactions.

Let us note that a transaction, as depicted in Figure 3, defines a partial order relation over the language for the transactions:

• if (a 1 . . . a n) = , then ∀i = 1 . . . n -1, a i < tr a i+1 • if (a 1 . . . a n) = , then a n < tr b 1 • if (a 1 . . . a n) = and if (c 1 . . . c p) = , then a n < tr c 1 • ∀i = 1 . . . m -1, b i < tr b i+1 • if (c 1 . . . c p) = , then ∀i = 1 . . . p -1, c i < tr c i+1
< tr is the order generated by the oriented paths followed by the transaction.

Proposition 4 Let P = (C, →), < P is the partial order (see proposition 2), tc = {tr 1 , . . . , tr n } a Phylog test class, and S = shared(tc) the set of components shared by all the transactions tr i . Let min(S, < P) = {α ∈ S | ∀β ∈ S, either α < P β or ¬(β < P α)} be the set of smallest components in S for < P . Then

• either min(S, < P) = ∅,

• or min(S, < P) = {α} and ∀tr i , ∀β ∈ S, α < tri β (meaning α is the first component crossed by all tr i),

• or min(S, < P) = {α, β} and ∀tr i , ∀γ ∈ S, α < tri γ ∨ β < tri γ (meaning α (resp. β) is the first crossed in some branches in which β (resp. α) is not involved, as b 1 and c 1 in Figure 4).

Proof 2 Let us consider tr

1 = i • ((a 1 . . . a m • b 1 . . . b p) + (a 1 • a m • c 1 . . . c q)) of tc with b j = c k for all j, k.
Remember that S = shared(tc) = lg(tr 1) ∩ . . . ∩ lg(tr n). Then S ⊂ {a 1 , . . . , a m , b 1 . . . , b p , c 1 , . . . , c q }. Let us consider 5 cases:

• case 1: S = ∅. Then min(S, < P) = ∅. Meaning tc is interference-free.

• case 2: S ∩ {a 1 , . . . a m } = ∅. Then ∃k, min(S, < tr1) = {a k }. Moreover, min(S, < P) = min(S, < tr1) = {a k }.

• case 3: S ⊂ {b 1 , . . . b p }. Then ∃k, min(S, < tr1) = {b k }. Then min(S, < P) = min(S, < tr1) = {b k }.

• case 4: S ⊂ {c 1 , . . . c q }. Then ∃k, min(S, < tr1) = {c k }. Then min(S, < P) = min(S, < tr1) = {c k }.

• case 5: S ⊂ {b 1 , . . . , b p , c 1 , . . . c q } and S∩{b 1 , . . . b p } = ∅ and S∩{c 1 , . . . c q } = ∅. Then ∃k, l, min(S, < tr1

) = {b k , c l } with ¬(b k < tr1 c l) and ¬(b k < tr1 c l). Then min(S, < P) = min(S, < tr1) = {b k , c l }.
Example 12 For P 2 and its {(dma 1 , mem 1 , pcie), (dma 2 , mem 2 , pcie)} test class, the associated transactions are Proof 3 ≡ is reflexive. Indeed, let tc be a test class, min(shared (phy(tc)), < P) is defined in a unique way.

• tr 1 = dma 1 • (bus 1 • pcie + bus 2 • mem 1) • tr 2 = dma 2 • (bus 2 • mem 2 + bus 1 • pcie) S =
≡ is symmetric, because we only handle sets. ≡ is transitive: if min(S 1 , < P) = min(S 2 , < P) and min(S 1 , < P) = min(S 3 , < P) then min(S 2 , < P) = min(S 3 , < P). Same for hd(tc i).

Proposition 6 The Phylog interference channels are a representative of the ≡ relation classes. More precisely, let tc = {(i 1 , t 1) . . . (i m , t m , t m)}, let S = shared(phy(tc)).

• if min(S, < P) = ∅, there is no interference channel in Phylog,

• if min(S, < P) = {c}, the associated interference channel in Phylog is a 1-interference channel in c, ∪ n T R n 1 , i.

Experiments

In this section, we first illustrate the idp code supporting the interference channels computations. We then provide some experiments with idp. ¦ ¥

Coding the initiator target model

Coding the Phylog model

We compute an intermediate predicate to combine two transactions composed of a single branch each.

Trans2, still for a maximal of 3 components in a path, is defined below.

Code 5 § ¤

// when the shared component is at the end

! x [Component]: ! i1 [Initiator]: ! i2 [Initiator]: ! x1 [Component]: ! x2 [Component]: ! x3 [Component]: ! x4 [Component]: Trans2 (x , i1 , x1 , x2 ,x , i2 , x3 , x4 , x) <- (Path (i2 , x3 , x4 , x) & Path (i1 , x1 , x2 , x) & (i1 < i2) & (x2 ~= x4)).

¦ ¥

There is one predicate per T R n 1 . For instance, T R

¦ ¥

There is also one predicate per T R n 2 . The code for T R ¦ ¥

Some results

idp computes the predicates of the previous examples in less than a second. Increasing the number of smart initiators, non-smart initiators, targets, or intermediary components does not appear to increase the execution time. Even when modeling a Kalray MPPA [START_REF] Corporation | The MPPA hardware architecture[END_REF] compute cluster, composed of 16 cores, 32 intermediary components, and 16 targets, resolution of those predicates (exposing a total of 1920 interference channels) is still completed in sub-second times.

To ensure their correctness, we have also used idp to compute the ≡ relation classes of the aforementioned examples, and found them to be compliant with the propositions made in this paper.

Related Work

Interference analysis in multi-core processors has received significant attention in recent years. A first class of these works focuses on the impact of shared hardware resource contention on the execution time of software application hosted by the processor. For instance, [START_REF] Dasari | An analysis of the impact of bus contention on the wcet in multicores[END_REF] considers a multi-core architecture composed of a single bus providing access to a shared memory, and it proposes a method to determine an upper bound on the number of bus requests that software tasks can generate in a given time interval. Both [START_REF] Bin | Studying co-running avionic real-time applications on multi-core cots architectures[END_REF] and [START_REF] Sylvain Girbal | Using monitors to predict co-running safety-critical hard real-time benchmark behavior[END_REF] focus on measurement techniques based on dedicated stressing benchmarks and hardware monitors to characterize the architecture and the shared resources that can cause interference between software applications.

A second class of works focuses on methods to avoid interference. For instance, [START_REF] Becker | Contention-free execution of automotive applications on a clustered many-core platform[END_REF] proposes a contention-free execution framework to execute automotive software application on many-core platforms. [START_REF] Perret | Temporal isolation of hard real-time applications on many-core processors[END_REF] proposed a similar approach which relies both on a development work-flow, and the use of an execution model defined as a set of rules to be followed by the designer and asserted through the run-time in order to enforce specific behaviors. Both [START_REF] Becker | Contention-free execution of automotive applications on a clustered many-core platform[END_REF] and [START_REF] Perret | Temporal isolation of hard real-time applications on many-core processors[END_REF] target a TDMA execution model, and use a Constraint Programming formulation to find an optimal time-triggered schedule on each core.

In order to tackle multi-core aeronautics certification-related issues, several projects have been funded. One of the first was MULCORS [START_REF] Jean | MULCORS-Use of Multicore Processors in airborne systems[END_REF], which clearly identified the need to change and adapt the current certification standard. Since then, several attempts at precisely defining such new recommendation have been done, such as the Multi-core Certification Review Item (MCP-CRI) [START_REF]The Use of Multi-Core Processors in Safety-Critical Applications -CRI[END_REF]. In other parts of the MCP-CRI, [START_REF] Jean | White Paper on Issues Associated with Interference Applied to Multicore Processors[END_REF] proposed definitions for interference channels, interference sources, and interference targets, and they proposed a process to reduce the number of interference. A more recent work proposed by [START_REF] Agirre | On the Tailoring of CAST-32A Certification Guidance to Real COTS Multicore Architectures[END_REF] tried to adapt the MCP-CRI certification objectives to COST MCP architectures. For that purpose, they showed that the MCP-CRI objectives can be grouped into three high level principles: (1) determining the final configuration, (2) managing interference channels, and (3) verifying the use of shared resources. They showed, through a particular case study (the Freescale P4080 processor), that the second objective (managing interference channels) highly depends on detailed information about the behavior of the resources. And they showed that predicting interference on a COTS multi-core architecture is a very challenging task because of the amount of required information. A way to help the certification application to master the complexity of the architecture is then to use a formal model of the architecture and a formal analysis method to explore the set of interference channels. Such is the aim of our contribution.

Conclusion

In this paper, we have formally defined the initiator-target model and compared it with the Phylog approach. Our representation requires more details on the internal of the platform but offers a more practical size description. Our work was supported with idp tool.

In the future, we will apply our model to other multi-cores and extend our model to many-core platforms. We will also measure the gains of going deeper in the description of the architecture.

Figure 1 : Architecture P 1 Notations 1

 111 Figure 1: Architecture P 1

2 Figure 2 : Architecture P 2 3. 2

 2222 Figure 2: Architecture P 2

Proposition 3 Proof 1

 31 Let P = (C, →) be an architecture satisfying Hyp1 and Hyp2. Let tr = i • ((b 1 . . . b n) + (c 1 . . . c m)) be a transaction in P . Then: 1. ∀j = k, b j = b k (a component can appear at most once in the b branch), 2. either (c 1 . . . c m) = (in the case of a smart initiator) or ∀j = k, c j = c k (same as with the b branch), 3. if there exist j, k such that b j = c k , then j = k and ∀l < k, b l = c l (either the two branches do not share any component, or they share a common prefix). 4. ∀l, l > max{j | b j = c j }, b l = c l (after the common prefix, if it exists, the two branches do not share any component). The first two points come from the acyclic property of the reachable relation →. The third point is a consequence of hypothesis Hyp2. Let us suppose that there exists a common component α in the two branches (∃j, l, α = b j = c l), then because of the unicity of the path from i to α, we have (b 1 . . . b j) = (c 1 . . . c l). Thus, j = l and b k = c k for all k < l. The fourth point then comes immediately.

 b

Figure 3 :

 3 Figure 3: Transaction model According to the proposition 3, a transaction can be graphically represented by the figure 3.Figure 3(a) shows a transaction made by a smart initiator.Figure 3(b) describes a transaction made by a non smart initiator without a common prefix. Figure 3(c) describes a transaction made by a non smart initiator with a common prefix. After the prefix, all the components are different. Note that the transaction Figure 3(b) is a particular case of Figure 3(c) in which the prefix word is empty: (a 1 . . . a n) = .

Figure 3 (

 3 a) shows a transaction made by a smart initiator.

 Figure 3(b) describes a transaction made by a non smart initiator without a common prefix. Figure 3(c) describes a transaction made by a non smart initiator with a common prefix. After the prefix, all the components are different. Note that the transaction Figure 3(b) is a particular case of Figure 3(c) in which the prefix word is empty: (a 1 . . . a n) = .

Definition 10 (

 10 Phylog test class) A Phylog test class is a set of n transactions ptc = {tr 1 , . . . , tr n }

 a 1 . . . a p + a 1 . . . a p) with p ≤ n and a p ∈ shared(tc) and ∀k ≤ p, b k = a k trunc 2 (tc, i • (a 1 . . . a n + b 1 . . . b m)) = i • (a 1 . . . a p +) with p ≤ n and a p ∈ shared(tc) and b p = a p and ∀k, b k ∈ shared(tc) trunc 3 (tc, i • (a 1 . . . a n + b 1 . . . b m)) = i • (a 1 . . . a p + b 1 . . . b l) with p, l ≤ n and a p ∈ shared(tc) and b l ∈ shared(tc) We note Trans the set of Phylog test classes.

Example 8 Figure 4 :

 84 Figure 4: Architecture P 3

Figure 5 :

 5 Figure 5: An execution scheme for architecture P 1

Definition 14

 14 For an architecture P = (C, →) and a transaction tr = i•((a 1 . . . a n •b 1 . . . b m)+(a 1 . . . a n • c 1 . . . c p)), let us define the relation < tr over lg(tr) as:

{bus 1 ,Proposition 5

 15 bus 2 , pcie}, and min(S, < P) = {bus 1 , bus 2 }. Definition 15 (Relation ≡) Let us define the relation ≡ on the Brindejonc et al. test classes. Let tc 1 and tc 2 be two test classes. Let S 1 = shared(phy(tc 1)) and S 2 = shared(phy(tc 2)), then tc 1 ≡ tc 2 ⇐⇒ min(S 1 , < P) = min(S 2 , < P) ∧ (S 1 = ∅ ∨ hd(tc 1) = hd(tc 2)) The relation ≡ is an equivalence relationship.

Proof 4

 4 e. tr = {tr 1 , . . . , tr m } ∈ T R m 1 with hd(tr) = hd(tc);• if min(S, < P) = {c 1 , c 2 }, the associated interference channel in Phylog is a 2-interference channel c1, c2, ∪ n T R n 2 ,i.e. tr = {tr 1 , . . . , tr m } ∈ T R m 2 with hd(tr) = hd(tc). Case interference-free channel: all these test classes are associated to the empty set of Phylog. Case min(S, < P) = {c} (resp. = {c 1 , c 2 }): we apply the truncation of definition 10 where the transactions stop at a p = c (resp. a p = c 1 and b l = c 2) and then {tr 1 , . . . , tr m } is in T R m 1 (resp. T R m 2).

•

 Smart initiator components, i.e. components which can initiate single transactions through the architecture to target components. Processing cores (CPU) are examples of smart initiator components. They can, for instance, initiate memory access transactions to memory controllers.

• Non smart initiator components, i.e. initiator components which can only initiate dual transactions (i.e., with two targets at the same time). DMA are examples of non smart initiator components.

 Definition 1 (Initiator-target model) In the initiator-target model, an architecture P is defined by P = (C, →) where• C = SI ∪ NSI ∪ T ∪ O withSI being the set of smart initiators, NSI the set of non smart initiators, T the set of targets, and O the set of other components. All those sets are disjoint. In the sequel, we will note n SI = card(SI), n NSI = card(NSI) and n T = card(T); class for a non smart initiator is a triplet (i, t 1 , t 2) ∈ NSI × T × T such that there exist a path in P from i to t 2 and one to t 1 , i.e. i → * t 2 and i → * t 1 . In the sequel, we write indifferently (i, t 1 , t 2) or t 1 i t 2 . Let P = (C, →) be an architecture. A test class is a set of n single test classes and disjoint initiators. For instance, a test class t c of size 2 is of form t c = {(i 1 , t 1), (i 2 , t 2)} or t c = {(i 1 , t 1), (i 2 , t 2 , t 3)} or t c = {(t 1 , i 1 , t 2), (i 2 , t 3 , t 4)} with i 1 = i 2 . In the sequel, we write indifferently {(i 1 , t 1), (i 2 , t 2)} or (i 1 t 1) (i 2 t 2). An interference channel is a test class composed of 2 or more single test classes.

	• →⊆ C × C are the hardware connections between components.
	Definition 2 (Single test class) For an architecture P = (C, →), a single test class for a smart ini-
	tiator is a pair (i, t) ∈ SI × T such that there exists a path in P from i to t, i.e. i → * t. In the sequel, we
	write indifferently (i, t) or i	t.
	A single test Definition 3 (Test classes) Definition 4 Let P = (C, →) be an architecture. Let us note T C P ∞ the set of test classes and T C P n those
	of size n:	
		nSI+nNSI
		T C P ∞ =	T C P n
		n=1
	Proposition 1 (Total number of test classes [6]) The number of all possible test classes of P is:

 bus 1 , cpu 2 .bus 1 }, {cpu 1 .bus 1 , dma 1 .(bus1 + bus 1)}, {cpu 1 .bus 1 , dma 1 .(bus 1 +)}, {cpu 1 .bus 1 , dma 2 .(bus 1 + {bus 1 , })}, {cpu 2 .bus 1 , dma 1 .(bus 1 + {bus 1 , })}, {cpu 2 .bus 1 , dma 2 .(bus 1 + {bus 1 , })}, {dma 1 .(bus 1 + {bus 1 , }), dma 2 .(bus 1 + {bus 1 , })}, {cpu 1 .bus 1 , cpu 2 .bus 1 , dma 1 .(bus 1 + {bus 1 , })}, {cpu 1 .bus 1 , cpu 2 .bus 1 , dma 2 .(bus 1 + {bus 1 , })}, {cpu 1 .bus 1 , dma 1 .(bus 1 + {bus 1 , }), dma 2 .(bus 1 + {bus 1 , })}, {cpu 2 .bus 1 , dma 1 .(bus 1 + {bus 1 , }), dma 2 .(bus 1 + {bus 1 , })}, {cpu 1 .bus 1 , cpu 2 .bus 1 , dma 1 .(bus 1 + {bus 1 , }), dma 2 .(bus 1 + {bus 1

 SI, NSI, T and O are represented as types. → is a predicate with two parameters. Path computes all paths from SI to T . For our modeling, we chose to hard code the maximal length of a path. Thus, if a path is shorter, we use NULL to complete the path. For instance, in P 1 , if the maximal length is 4, the path from CPU 1 to mem 1 is represented as Path(CPU 1 , interconnect, mem 1 , NULL) = true. SingleTestCase computes the single test cases. Again, the length is imposed to 3, because of the non smart initiator. The test case CP U 1 mem 1 is represented as SingleTestCase(CPU 1 , mem 1 , NULL) = true.

	Code 1 § type SInitiator	¤
	type NSInitiator	
	type Initiator contains SInitiator , NSInitiator	
	type Reactive	
	type Target	
	type Component contains Reactive , Target , Initiator ¦	¥
	A predicate Code 2 § ! i [Initiator]: ! x1 [Component]: ! x2 [Component]:	¤
	! x3 [Component]: Path (i , x1 , x2 , x3) <-	
	¦	(Edge (i , x1) & Edge (x1 , x2) & Edge (x2 , x3)).	¥
	A predicate Code 3 § ! i [NSInitiator]: ! t1 [Target]: ! t2 [Target]:	¤
	Singl eTestCa se (i , t1 , t2) <-	
	Code 4 § ! i1 [NSInitiator]: ! t1 [Target]: ! t2 [Target]:	¤
	! i2 [NSInitiator]: ! t3 [Target]: ! t4 [Target]:	
	Coupl eTestCa se (i1 , t1 , t2 , i2 , t3 , t4) <-	
		(Sin gleTest Case (i1 , t1 , t2) &	
		Singl eTestCa se (i2 , t3 , t4) & (i1 < i2)).	

? x [Component]: ? z [Component]: ? v [Component]: ? y [Component]: ? h [Component]: ? l [Component]: (Path (i ,x , t1 , z) | Path (i ,x ,z , t1) | Path (i , t1 ,z , v)) & (Path (i ,y , t2 , h) | Path (i ,y ,h , t2) | Path (i , t2 ,h , l)).

¦ ¥

Finally, there is one predicate per T C P n . For instance, test cases of size 2 are coded by CoupleTestCase.

 2 2 is given below.

	Code 7 § ! x1 [Component]: ! x2 [Component]: ! i1 [NSInitiator]:	¤
	! i2 [NSInitiator]: ! y1 [Component]: ! y2 [Component]:	
	! y3 [Component]: ! y4 [Component]: ! y5 [Component]:	
	! y6 [Component]: ! z1 [Component]: ! z2 [Component]:	
	! z3 [Component]: ! z4 [Component]: ! z5 [Component]:	
	! z6 [Component]:	
	2 Interf2 (x1 , x2 , i1 , y1 , y2 , y3 , y4 , y5 , y6 ,	
	i2 , z1 , z2 , z3 , z4 , z5 , z6) <-	
	(Trans2 (x1 , i1 , y1 , y2 , y3 , i2 , z1 , z2 , z3)	
	& Trans2 (x2 , i1 , y4 , y5 , y6 , i2 , z4 , z5 , z6)	
	& (x1 < x2)).