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CoCoSim, a code generation framework for
control/command applications

An overview of CoCoSim for multi-periodic discrete Simulink models

Hamza Bourbouh, Pierre-Loïc Garoche, Thomas Loquen
Eric Noulard, Claire Pagetti

Abstract

We present CoCoSim, a framework to support
the design, code generation and analysis of dis-
crete dataflow model expressed in Simulink. In
this work, we specifically focus on the analysis and
code generation of multi-periodic systems. For
that CoCoSim provides two complementary ap-
proaches: the first amounts to encode the multi-
periodic semantics in a pure-synchronous one – à
la Lustre–, enabling the use of model checker for
verifying properties. The second provides a faith-
ful code generation into multiple communicating
(mono)synchronous components – à la Prelude–
that can be then simulated or embedded in the fi-
nal platform with any real-time scheduler. These
approaches have been experimented in various set-
tings.

1 Introduction

1.1 Context

Safety-critical systems design requires a thorough
development process including formal verification
and correct by construction behaviour. In that
area, Model-Based Design has been widely used
for software development. Such an approach of-
fers the refinement of a system from High Level Re-
quirements down to the embedded code while hav-
ing an executable model at different stages. Mat-
lab/Simulink1 from MathWorks, is a de facto
model-based design standard in industry, offering
verification and code generation means.
Nonetheless, other development frameworks are

used in addition in some industries, such as aero-
nautic, railways or space. Indeed, control/com-
mand applications have received a particular atten-
tion over the years and several synchronous pro-
gramming languages such as Esterel [2], Lustre

1https://www.mathworks.com/products/simulink.html

[8] or Signal [38] have been defined to help their de-
sign. Scade [12] is an industrial and DO 178C qual-
ified Lustre-based framework that provides strong
guarantees and proofs well appreciated, in particu-
lar for certification.
Offering frameworks linking Simulink and syn-

chronous approaches is thus appealing. CoCoSim
belongs to this category as it is an open source tool
that translates Simulink specification in Lustre
while preserving semantics and providing many as-
sociated traceability or test capabilities. In this pa-
per, we describe an extension of CoCoSim to al-
low the safe translation and verification from multi-
periodic systems to Lustre/Prelude programs.

1.2 Contributions

The CoCoSim approach to deal with multi-
periodic systems is highlighted in the Fig. 1.

Multi-periodic system
in Simulink

Lustre
translation

Lustre/Prelude
translation

C code
+ execution model

ok/ko

verification

Figure 1: CoCoSim overview

First, we need to define precisely the semantics
of multi-periodic systems in Simulink and con-
nect it to the one of synchronous programming. In
synchronous languages, execution time is neglected
while each computation is performed repetitively,
e.g., every ts seconds. In Simulink, most discrete
subsets of blocks are fitted with a synchronous se-
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mantics, but the case of multi-periodic systems is
more complex and requires an analysis of the inter-
nal semantics.
Once the semantics has been defined, the sec-

ond contribution is the extension of CoCoSim cur-
rent Lustre translation in order to encode the
multi-periodic communication with classical Lus-
tre over- and sub-sample operators (left hand side
of Fig. 1). This amounts to express the whole sys-
tem on a base clock. This Lustre model is then
used to perform formal analysis using SMT-based
model-checking. While required to properly ana-
lyze the full system, this encoding is not efficient
for execution.
Once the verification is valid, the last step is the

efficient code generation (right hand side of Fig.
1). Each synchronous component is translated as
a Lustre model which will eventually be compiled
into C code, while aggregating nodes, mixing differ-
ent clocks or execution rates are expressed as Pre-
lude programs. Prelude [30] is a synchronous
language that has been defined to program multi-
periodic applications. From a Prelude program,
the compiler generates a set of classical real-time
tasks and many predictable implementations have
been proposed for multi- and many-core architec-
tures [32].

1.3 Outline

We start by presenting an overview of CoCoSim
framework (Section 2) for mono-periodic discrete
Simulink models. We then define the specifica-
tion of multi-periodic applications with Simulink
(Section 3). We detail the multi-periodic exten-
sion of CoCoSim (Section 4). Last, Section 5
presents some experiments settings and two detailed
use cases.

2 Overview of mono-periodic
CoCoSim

CoCoSim is a highly automated frame-
work for verification and code generation of
Simulink/Stateflow models. It consists of
an open architecture, allowing the integration of
different analyses. CoCoSim is structured as a
compiler, sequencing a series of translation steps
leading, eventually to either the production of
source code, or to the call to a verification tool.
By design, each phase is highly parametrizable
through an API and could then be used for different
purposes depending on the customization. The
Figure 2 outlines the different steps.

Figure 2: CoCoSim framework

2.1 Formal semantic

CoCoSim provides a formal semantic of a well
defined subset of Simulink/Stateflow blocks.
This formal representation will permit the use of
formal verification methods and code generation.

CoCoSim starts first by simplifying some com-
plex blocks into a set of basic blocks. Then an
internal representation of the model is generated
containing all information needed for code genera-
tion. Based on the work of Caspi et al. [7], Gene-
Auto [33, 39] and P [4] projects, CoCoSim trans-
lates modularly the pre-processed mono-periodic
Simulink model into an equivalent Lustre model.
The translator is developed using a visitor pattern,
each Simulink Subsystem is translated into a Lus-
tre node, each instance of a Subsystem is trans-
lated into a Lustre node call and each Simulink
atomic block is represented by a local Lustre equa-
tion defining the semantic of the block. The gener-
ated Lustre model has the same hierarchy as the
original Simulink model and preserves the initial
semantic.

CoCoSim is customizable and configurable.
Indeed, it supports most of frequently used
Simulink blocks libraries (around 100 blocks) and
new blocks can be easily supported.

2.2 Supported analyses

Once a formal representation of Simulink model is
generated, CoCoSim is connected to a set of ex-
ternal tools to provide code generation, formal ver-
ification or test case generation. The toolchain is
highly automated as all the steps of verification
or code generation are automated.
The goal of the CoCoSim framework is to ease

the application of formal methods and analysis of
Simulink-based systems. The external tools are
introduced and linked to the platform in a very
generic way. While CoCoSim is built mainly
around a specified set of tools, additional ones can
be easily locally linked or even distributed as exten-
sions. A set of Matlab functions libraries are pro-
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vided by CoCoSim to ease the integration of tools
analysis results. Eg. displaying the counterexample
at the Simulink level, importing test harness as a
Signal builder or create a new test-harness model,
generating HTML reports or other helpful support
functions.
All CoCoSim analyses are performed on the

compiled artifact and the results are expressed back
at Simulink level thanks to traceability informa-
tion. We sketch here the features of the connected
tools. At the current moment all tools are open-
source and freely available. It scales well with
large models, therefore various verification tech-
niques and compositional reasoning can be used.

2.3 Formal Verification: SMT-based
model checking

Once requirements have been expressed using Co-
CoSim library and attached to the Simulink
model, different tools can perform SMT-based
model checking and check their validity. In case
the property supplied is falsified, CoCoSim pro-
vides means to simulate the counterexample trace in
the Simulink environment. Currently, CoCoSim
is connected to three verifiers.
First, Kind2 [10] is a powerful tool that imple-

ment multiple algorithms including k-induction [36]
and IC3/PDR [5] as well as on-the-fly invariant gen-
eration. All of these can be performed with various
SMT solvers: CVC4, Z3, Yices.
Second, Zustre [21] relies on the LustreC [20]

modular compiler. The input Lustre model is
compiled in a Horn encoding [19, 22] describing
the transition relation. The hierarchy of the input
model is preserved: each Lustre is associated to
a local Horn description of the computation. This
transition system along with a similar expression of
its requirements is analyzed with Spacer [26, 27],
a PDR algorithm integrated in Z3. Thanks to the
modular encoding at Horn level and to Spacer, a
valid property will produce witnesses as node-local
invariants. These invariants are expressed in the
feedback to CoCoSim and can be re-introduced in
the original Simulink model as fresh annotations.
Third, JKind [16], a similar model checker, de-

veloped at Rockwell Collins, is also integrated.

2.4 Code generation:

Some of CoCoSim backends provide code genera-
tion. Eg. LustreC [20] is an implementation of the
modular compilation scheme [3] used in Scade. It
preserves the hierarchy of the initial model, easing
the checking of traceability between Lustre and
generated C code. LustreC targets mainly C code
but extends the general compilation of Lustre to

CoCoSpec [9, 13]. LustreC also provides modular
compilation with multiple source files, call to exter-
nal C libraries or externally defined C functions.
Kind2 [10] is, first of all, a model checker but it is

capable of producing Rust code from the provided
models.

2.5 Test cases generation:

LustreT [17] is based on some compilation stages of
LustreC [20]. It provides two different methods to
perform test case generation [18].
In the first case a coverage criteria such as MC-

DC is expressed as a reachability problem. For ex-
ample, an atom of a boolean predicate has to be true
at some point. Then we check the validity of the
negation of that property. Model checker such as
Kind2 or Zustre will then perform bounded-model
checking or, possibly, exhibit a counter-example;
that is, a test case activating that specific criteria.
A MC-DC criteria will then be mapped to a large
set of such predicates. The test generation process
will populate a set of test cases activating each of
these conditions.
The second approach relies on the notion of mu-

tants. Usually, mutants are used to evaluate the
quality of a test suite. We generate a set of mutant
programs and apply different test suites. A good
test suite distinguishes valid program from mutants.
Here the approach is different. After generating
mutants, we use the same bounded-model checking
tools to build a test case that will distinguish them.
This does not always succeed since some mutations
may be invisible, or in dead code. But considering
the large set of mutants, this approach is efficient
at building test cases.

3 Multi-periodic in Simulink

3.1 Reminder on Simulink

Simulink is a graphical, dataflow programming en-
vironment for modeling and simulating dynamical
systems. Roughly speaking, in a Simulink model,
the user can use blocks, signals and annotations.
Each Simulink block implements a given mathe-
matical function or a stateful system specification
and has a specific number of inputs and outputs
connected with other blocks using Simulink sig-
nals. These blocks are either basic blocks from
Simulink library (e.g., Sum, UnitDelay, Gain) or a
grouping of several blocks into a Subsystem block.
Simulink diagrams are hierarchical and graphically
organized using Subsystems. There are two types of
Subsystems, Virtual Subsystem that is flatten dur-
ing Simulation and only used to organize the model
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at design time and Atomic Subsystem that is exe-
cuted as an atomic unit in the final code.
A discrete Simulink model runs on a fixed time

step defined with a period π and initial offset θ.
A Simulink model can be mono-periodic where all
blocks runs with the same period, or multi-periodic
where blocks can run on different periods. A block
is executed and its outputs are updated only when
certain execution conditions are satisfied. If these
conditions are not met, the block is not executed
and its output signals hold their values. Mat-
lab/Simulink defines three types of execution con-
ditions and block:

• Unconditional blocks or subsystems: The block
is set with a sample time D = (πi, θi) with
period πi and initial offset θi and it is updated
only at times kπi + θi for k ∈ N, whereas, it
remains constant during the intervals [kπi +
θi, (k + 1)πi + θi).

• Conditionally executed subsystems: such as
enabled/triggered subsystems, are subsystems
that are conditionally executable when a cer-
tain guard condition over certain variables,
called control-inputs, holds. Furthermore, the
data of the system-block may be reset when the
guard condition holds, and the outputs may be
reset when the guard condition is violated.

• Logically-executed subsystems: the subsystem
is executed one or more times at the cur-
rent time step when it is enabled by a signal
from a control block. An example of logically-
executed subsystems are if Action Subsystem,
Switch Case Action Subsystem and For Each
Subsystem.

3.2 Multi-periodic blocks

From now on, we only consider unconditional blocks
and systems.

Figure 3: Example of a Simulink model.

Figure 3 is a simple example of Simulink blocks
running on different sample times D1 = (1s, 0s) and
D2 = (2s, 0s). The Inport In1 is running on D1.
The Sum block is adding two signals running on
different periods D1 and D2. The Unit Delay is
delaying its input signal by one step but updating
its output every 2 seconds (sample time D2).

The output of the model is incremented by In1
every 2 seconds because of the UnitDelay block up-
dates its outputs every two seconds and because
Sum is a stateless block that adds its inputs val-
ues at the same time step. The behaviour can be
represented as:

t 0 1 2 3 4 5
In1 1 1 1 1 1 1
Out1 0 0 1 1 2 2

Since UnitDelay block is running on a different
period than the Sum block, an implicit data transfer
block (Rate Transition) is introduced by Simulink
to ensure all input signals runs on the same period.
The user can force Simulink to reject models with
unspecified data transfers between different rates.
In the case of the Simulink example in Figure 3,
we get the following error when we set "Multi-task
(or Single task) rate transition" to "error": The
sample time 1 of ’Sum’ at input port 2 is different
from the sample time 2 of ’Unit Delay’ at output
port 1.

3.3 Explicit clock transition

The model described in Fig. 3 will be rejected by
CoCoSim. Instead, the user must specify explic-
itly the right data transfers block type. In Figure 4
we introduced two Rate Transition blocks to en-
sure Sum block and UnitDelay block have their in-
puts running on the same period as the block itself.
Thanks to these introduced Rate Transition blocks,
the boundaries between blocks that run on differ-
ent period become explicit and makes the reasoning
about clocks to be limited to these data transfers
blocks.

Figure 4: Introducing explicit Rate Transition
block in the Simulink model of Fig. 3.

The Rate Transition block (RTB) has two block
parameters that control its execution: Ensure
data integrity and Ensure deterministic data
transfer. When the first parameter is checked,
it ensures data integrity when the block transfers
data. A problem of data integrity exists when the
input to a block changes during the execution of
that block. For instance, a faster block supplies
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the input to a slower block. In a protected data
transfer, the output of the faster block is held un-
til the slower block finishes executing. The sec-
ond parameter enforces a deterministic data trans-
fer where the timing of the data transfer is com-
pletely predictable, as determined by the sample
rates of the blocks. The timing of a nondetermin-
istic data transfer depends on the availability of
data, the sample rates of the blocks, and the time at
which the receiving block begins to execute relative
to the driving block.

CoCoSim only allows rate transition blocks that
ensure data integrity and determinism. With this
restriction, there exist two main types of data trans-
fer:

• ZOH: the Zero-Order-Hold is a deterministic
RTB that implements direct communications
from fast to slow blocks at harmonic periods.
∃n ∈ N, inTs = outTs/n and inTsOffset =
outTsOffset = 0.

• 1/Z: Acts as a unit delay that implements de-
layed deterministic communications from slow
to fast block at harmonic periods. ∃n ∈
N, inTs = outTs ∗ n and inTsOffset =
outTsOffset = 0.

Figure 5: Second clock explicit solution of Fig. 3

The Fig. 5 is an other solution to make clock
transition explicit and accepted by CoCoSim. The
other three rate transition blocks (Buf, Copy or
NoOp, Db-buf) are not allowed by CoCoSim. They
depend on the priority of input rate and output
rate. Simulink uses a proprietary algorithm using
single or multiple buffers to protect data integrity
during data transfer. These algorithm are not doc-
umented, therefore, CoCoSim supports only Rate
Transition blocks with Data Integrity and Deter-
minism.

3.4 Common base clock identification

In Simulink, each period πi and offset θi of a block
is defined by a floating point number. In the follow-
ing, we will encode the semantics of the whole sys-
tem over a base symbolic clock either using counters
(in Lustre) or using rational numbers (in Pre-
lude) to describe the individual local period and
offset.

To characterize such common clock, we can ex-
press periods and offsets without loss of generality
as rational numbers p/q ∈ Q where p ∧ q = 1.
Let us consider n unconditional blocks, each as-
sociated to the period and offset πi, θi ∈ Q. Let
πn
i , π

d
i , θ

n
i , θ

d
i ∈ N be such that πi = πn

i /π
d
i and

θi = θni /θ
d
i . We can define the common base clock

as π = (πn/πd, 0) where πd = lcm
(
{πd

i , θ
d
i }i

)
and

πn = gcd
(
{πi × πd, θni × πd}i

)
. Let us remark that

since πd is defined as the least common multiplier
of all denominators of periods and offsets, the terms
in the gcd expression of πn are all integers.

Example 1 In Figure 5, In1 is defined on D1 =
(1/1s, 0/1s) and UnitDelay, Sum, Out1 on D2 =
(2/1s, 0/1s). Thus, the common base clock is D =
(1s, 0s) since 1 = lcm(1) and 1 = gcd(1, 2).

We can now express each period πi and offset θi
with respect to the base period, as positive integers,
respectively π̃i = πi×π and θ̃i = θi×π. This gives a
symbolic and denumerable characterization of each
period and offset as a multiple of the base clock.

Example 2 In Figure 5, D̃1 is defined as (1, 0) and
D̃2 is defined as (2, 0) relatively to the base clock
(1s, 0s).

4 Multi-periodic CoCoSim

We present here the extension of CoCoSim to ad-
dress multi-periodic Simulink models. It uses Lus-
tre as an intermediate formal language for verifica-
tion since many external model checkers take Lus-
tre model as an input (e.g., Kind2, Zustre, Jkind).
It relies on Prelude for code generation.

4.1 Lustre

Lustre code consists of a set of nodes transforming
infinite streams of input flows into streams of output
flows. A notion of symbolic abstract universal clock
(also referred as the basic clock) is used to model
system progress. In Lustre, a node is defined as a
set, i.e. unordered, of stream equations, with possi-
ble local variables denoting internal flows. Regular
arithmetic and comparison operators are lifted to
sequences and are evaluated at each time step. If-
then-else constructs are functional and should be
well typed: they build values instead of sequenc-
ing imperative statements. For instance, a valid
flow equation could be x = 3 + (if y > 0 then
4 else y);
Stateful constructs. Temporal operator pre,

for previous, enables a limited form of memory, al-
lowing to read the value of a stream at the previous
instant. It corresponds to the unit delay block in
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Simulink. The arrow operator, known as follow-by,
allows to build a stream x0 → e as the expression
e while specifying the first value x0 at time zero. A
flow defined as x0 → pre u will then correspond in
Simulink to a Unit Delay over flow u with initial
value x0.
Clocks. Another specific construct is the defini-

tion of clocks and clocked expressions. Clocks are
defined as enumerated types, the simplest ones be-
ing Boolean clocks. Expressions can then be clocked
with respect to such clock values: e when c where
c is a Boolean clock. In this case, the expression
is only defined when variable c is positive. Clocked
expressions can be gathered using merge operator:

x = merge c (e1 when c) (e2 when not c);

t 0 1 2 3
c true true false true
e1 0 2 4 6
e2 1 3 5 7

e1 when c 0 2 - 6
e2 when not c - - 5 -

x 0 2 5 6

Expressions have to be clocked appropriately. The
clocking phase of the compiler allows to check the
consistency of clocks definitions and their uses.

4.2 Translation in Lustre

The first CoCoSim multi-periodic translation tech-
nique [40] produces a pure Lustre specification.
The first question is to translate the sample time in
Lustre as sub-sampled clock of the common base
clock. The idea is to compute the common base
clock as explained in section 3.4 and express each
couple (period, offset) relatively to it. For the ex-
ample in Fig. 5, one solution to encode D1 and D2
could be:

D1 = true;
D2 = true → not pre(D2);

D1 was exactly equal to the common base clock
whereas D2 was twice slower. Then, alternating
true and false in the flow D2 will indeed lead to
true every two times. However, when the clocks be-
come complex, the intrication of pre will become
unsustainable. Instead, we will use some counters
and will have a similar approach as the one in Pre-
lude.

D1 = make_clock (1,0);
D2 = make_clock (2,0);

Where make_clock is a Lustre node that gener-
ates a Boolean clock that is true at the logical in-
stants k ∗ period+ offset with k ∈ N and false oth-
erwise.

node make_clock(period , offset : int)
returns(clk : bool)
var count: int;
let
count = (( period - offset) -> (pre(count) + 1))

mod period;
clk = (count = 0);

tel

The second question is how to combine differ-
ent sample times. The idea is to bring back a flow
on the common base clock and to sub-sample. Let
us detail the translation for the two rate transition
blocks, ZOH and 1/z, supported by CoCoSim. Let
(inTs, inTsOffset) (resp. (outTs, outTsOffset)) be
the sample time of RTB input port called RTB_U
(resp. output port called RTB_Y) relatively to the
common base clock. We thus have:
C_in = make_clock(inTs , inTsOffset);
C_out = make_clock(outTs , outTsOffset);

From Fast to slow: outTs > inTs, ZOH block
The communication is direct and the output port
RTB_Y simply takes the value of the input port
RTB_U on its sample time:
RTB_tmp =

merge C_in RTB_U ((dft -> pre RTB_tmp) when
not C_in);

RTB_Y = RTB_tmp when C_out;

From slow to fast: outTs < inTs, 1/z block The
block behaves as a Unit Delay. We first compute
the previous value of the input signal, then compute
the values in the base clock by keeping the previous
values when it is undefined and finally sample the
signal to the output clock.
RTB_tmp =
merge C_in (dft -> pre RTB_U)

((dft -> pre RTB_tmp) when not C_in);
RTB_Y = RTB_tmp when C_out;

Example 3 The example of Fig. 5 is translated as
follows:

In1_on_cc =
merge D1 In1 (In1_on_cc when not D1);

RateTransition = In1_on_cc when D2;
Sum = RateTransition + UnitDelay;
UnitDelay = 0.0 → pre Sum;
Out1 = UnitDelay;

Example 4 Let us consider Fig. 6 to illustrate
the translation of few examples of Rate Transition
(RTB) block (ZOH and 1/z).
In Table. 1 we give few different settings of

RTB block and their translation in Lustre and
Prelude. We set the Counter Subsystem with a
Simulink clock of (2s, 0s) that is the counter is in-
cremented by 1 every 2 seconds. The common base
clock is (1s, 0s).

6



t 0 1 2 3 4 5 6 7
Counter: Sample Time [2s, 0] 0 0 1 1 2 2 3 3

RTB: Determinism:ON; Integrity:ON; Sample time [4s,0] => type ZOH
Simulink:

Y 0 0 0 0 2 2 2 2
Lustre:

C_4_0 = make_clock(4, 0); true false false false true false false false
Counter = Counter_SS(); 0 - 1 - 2 - 3 -
Y = Counter when C_4_0; 0 - - - 2 - - -

Prelude:
Y = Counter/ˆ2; 0 - - - 2 - - -
RTB: Determinism:ON; Integrity:ON; Sample time [1s,0] => type 1/z
Simulink:

Y 0 0 0 0 1 1 2 2
Lustre:

C_2_0 = make_clock(2, 0); true false true false true false true false
Counter = Counter_SS(); 0 - 1 - 2 - 3 -

Y = merge C_2_0
(0.0→ pre Counter)
((0.0→ pre Y ) when not C_2_0);

0 0 0 0 1 1 2 2

Prelude:
Y = (0.0 fby Counter) ∗ˆ 2; 0 0 0 0 1 1 2 2

Table 1: Translation to Lustre and Prelude of different settings of block RTB in Fig. 6.

Figure 6: Sampled counter

4.3 Translation in Prelude
Prelude [30] is a synchronous language that has
been defined to program multi-periodic applica-
tions. The language considers imported nodes that
can be programmed in C or Lustre. An example is
given below where a node Sum has two inputs, one
output and a worst case execution time (WCET) of
1 logical time.

imported node Sum (v1, v2 :real)
returns (v :real) wcet 1;

In the CoCoSim framework, the code gener-
ated from Simulink will be composed of Lustre
nodes for mono-periodic (sub-) systems and Pre-
lude when several rates are handled. Thus in that
case, Lustre nodes are assembled together in a
Prelude program, which details the real-time con-
straints of the system and the semantics of the com-
munications between the Lustre nodes. This as-
sembly is not done directly in Lustre because com-
munications relate nodes executing at different pe-
riodic rates and Prelude is better suited to the

specification and efficient compilation.

node assembly(In1: real rate (10 ,0))
returns (Out1_1 :real)

var
Sum_1_1 :real;
UnitDelay_1_1 :real ;

let
Sum_1_1 = Sum (0.0 fby UnitDelay_1_1 , In1/^ 2);
UnitDelay_1_1 = UnitDelay(Sum_1_1);
Out1_1 = UnitDelay_1_1;

tel

The example corresponds to the Fig. 5. The as-
sembly node has one input In1 with a clock (10, 0)
meaning that In1 has a period of 10 and an off-
set of 0. It is up to the user to link the logical
clock with the physical one. Since In1 is running
at D1=(1s,0s), the logical clock is at 100ms.
The imported node Sum consumes the flows In1

/^2 and 0.0 fby UnitDelay_1_1. Nodes are syn-
chronous, thus the two inputs and the output must
have the same clock. As the clock of In1 is (10, 0)
by definition, the flow In1/^2 has (20, 0) as clock.
The operator ^2 is a deceleration by 2.
The operator *^2 is an acceleration that will di-

vide the period by 2. It is used for the 1/z block as
shown in table 1.

5 Experiments

In this section, we will present two use cases that
will be experimented with CoCoSim.
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(a) Modding possibilities (b) Auto-Maneuver Modules architecture

Figure 7: SDAP Architecture

5.1 Rosace

The first one is Rosace (Research Open-Source
Avionics and Control Engineering) [31] a longitudi-
nal flight controller. Although of modest size, this
controller is representative of real avionics applica-
tions.
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Figure 8: Rosace architecture

Figure 8 depicts the Rosace architecture. The
controller is composed of 8 functions (depicted by
boxes) that run at different periods and exchange
data (depicted by arrows). A series of filters (named
X_filter) consolidate the data measured on the
aircraft and two controllers manage the airspeed
(va_control) and the vertical speed (vz_control
and altitude_hold). Data-dependencies are causal,
for instance, the function vz_filter produces the
variable vz_f, which is consumed by functions
vz_control and va_control. The controller receives
two inputs from the cockpit, which are the orders
requested by the pilot on the altitude hc and on the
vertical air speed V ac. The Aircraft receives the
orders δec and δthc computed by the controller.
We have translated Rosace in Lus-

tre/Prelude and executed it on many ar-
chitectures. We have now a Lustre version on
which we could make some verification.

5.2 Attitude Control of the Space
Shuttle

The second use case is the Attitude and Orbital
Control System (AOCS) of the famous Space Shut-
tle [11]. Fig. 7a presents the different modes in
which the Simplified Digital Autopilot (SDAP) of
the Space Shuttle can operate. Each of them is
modeled as a Simulink component. The most com-
plex one being the AUTO MANEUVER sub-mode
within theAUTO mode. Its architecture is depicted
in Fig. 7b: The SDAP executive will command and
execute the software logic at a frequency of 12.5 Hz.
The Auto Maneuver module is processed at 1.04 Hz,
it is called every 12th DAP pass whenever SDAP is
in the auto mode.

After collecting the current state from the IMUs
(current attitude), the DAP, depending on the
switches values entered by the crew, will send ap-
propriate commands to the actuators (jets) to bring
about a desired state. The crew can set the behav-
ior they desire via keyboard, and by push-buttons
modding discrete, such as the choices between pri-
mary/vernier jets and automatic/manual attitude
control mode.

We identified and labeled in the Space Shut-
tle report numerous sentences that could act
as requirements. Each of these requirements
is then expressed as a Lustre CoCoSpec con-
tract and can then be expressed in the Simulink
model. A list of 49 identified requirements
can be found in https://coco-team.github.io/
spaceshuttle/requirements.html. Table 2 rep-
resents some of the identified requirements and their
verification results.

We have now a Lustre/Prelude version that
we will port on multi- and many-core architectures.
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Req. ID Simulink Component Text
Req_p63_1 Call Jet Select The two types of thrusters may not be used simultaneously
Req_p19_1 Auto Manual Switch If the hand controller is deflected in any axis, the SDAP

automatically switches to manual mode
Req_p19_5 Auto Manual Maneuver When the maneuver mode is changed from manual to auto, if

the bypass flag is ON, it is set to OFF and the auto maneuver
initialization flag is set to ON.

Req_p27_1 Auto Manual Maneuver Auto Maneuver tests the rotation angle rota-
tion_angle_delta_theta against two numerical cri-
teria. If rotation_angle_delta_theta is larger than
y = SCALARBIAS + 2 ∗ Deadband, the module places
itself in the maneuver mode; if rotation_angle_delta_theta
is less than x = SCALARBIAS + Deadband, the hold
mode results.

Req. ID Simulink
Com-
po-
nent

#blocks SLDV
Result

SLDV
Time

CoCoSim
Result

Total
Time

Lustre Gen.
Time

Verification
Time

Req_p63_1 Call
Jet
Select

34 Valid 27s Valid 21s 19s 2s

Req_p19_1 Auto
Man-
ual
Switch

8 Valid 7s Valid 12s 10s 2s

Req_p19_5 Auto
Man-
ual
Ma-
neu-
ver

589 Valid 23s Valid 34s 30 4s

Req_p27_1
Note that total time reported for CoCoSim is detailed as compilation time to Lustre and actual
verification. SLDV is the model-checking tool provided by MathWorks.

Table 2: Selection of requirements and verification results

6 Related Works

Model-based development has been adopted widely
in the design of cyber-physical system. Simulink
and Scade are the reference and the most success-
fully used toolkits in the development of such sys-
tems. Both Simulink and Scade have code gen-
erators and some means of applying formal verifi-
cation on safety requirements to find bugs early on
the development process. Simulink Design Veri-
fier (SLDV) [28] and Scade Design Verifier [34] are
both commercial tools and they have their own lim-
itations. For instance, SLDV does not support all
Simulink blocks and suffers from state space exm-
plosion.
The objective of the CoCoSim framework is to

provide an open source tool for code generation and
an integration hub for others to contribute with
different techniques of formal verification and code

generation capable of scaling on real-case systems.
In order to perform any type of analysis on

the Simulink/Stateflow models, a formal specifi-
cation needs to be defined. Since the semantic
of Simulink/Stateflow 2 is informal, many efforts
have been made to define a formal semantic of a
subset of Simulink/Stateflow in many formal lan-
guages for code generation as well as for formal ver-
ification. In its PhD, Cédric Klikpo [24] has pro-
posed a clear explanation of rate transition blocks.
Discrete subset of Simulink has been translated

to various input languages of formal verification
such as NuSMV model [29], Lustre language [40],
SDF (Synchronous Data Flow) [24] or hybrid au-
tomata [37]. All of the previous works are ei-
ther closed source or not maintained or does not
work with new Simulink version as their transla-

2https://www.mathworks.com/help/pdf_doc/simulink/slref.pdf
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tor parses the model in its textual format. We ad-
dressed those two challenges: it is open source and
is based on Simulink API to get and compute all
model information needed for translation, therefore
any new Simulink release does not affect badly the
translator.
Expressing multi-periodic systems with syn-

chronous languages has been proposed in previous
works. In [6], Scade was used to describe multi-
periodic systems with harmonic period. In [15], we
made a state of the art of the question for the works
before 2008. Some approach, similar to Prelude,
was proposed in [1]. More recently, Didier et al.
[14] have defined an extension of Heptagon and
Hili and al. have extended ForeC [23], a C-based
synchronous programming language.
Regarding code generation, there exist other

works on implementation of synchronous multi-
periodic systems. For code generation, [25] presents
an approach to formally define the synchronous se-
mantic of multi-periodic Simulink system using
Synchronous Dataflow Graph. In their work, they
focus only on the semantic-preserving implementa-
tion of the interactions between tasks. [35] presents
another translation of a discrete-time Simulink
into the synchronous subset of the BIP language
to compare runtime performances with Simulink
code generation tool.

7 Conclusion
We presented an overview of CoCoSim framework,
a modular framework to support the analysis and
the code generation of discrete Simulink models.
We focused on two CoCoSim backends addressing
the analysis and code generation of multi-periodic
Simulink models. The first backend is address-
ing the V&V of multi-periodic systems by encoding
them into a pure Lustre models to properly ana-
lyze the full system. The second backend is dedi-
cated to code generation based on Prelude. We
presented two use cases, the first is demonstrating
the capabilities of Prelude, whereas, the second
use case we demonstrated the V&V capabilities of
CoCoSim.
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