Frédéric Boniol

Youcef Bouchebaba

Julien Brunel

Kevin Delmas

Thomas Loquen

Alfonso Mascarenas Gonzalez

Claire Pagetti

Thomas Polacsek

Nathanaël Sensfelder

PHYLOG certification methodology: a sane way to embed multi-core processors

The PHYLOG project aims at offering a modelbased software-aided certification framework for aeronautical systems based on multi/many-core architectures. Certifying such platforms will entail fulfilling the high level objectives of the MCP-CRI / CAST-32A position paper. To reach this general objective, we have defined a certification framework based on patterns to express any argumentation; as well as formal and automatic analyses to support the proof of the argumentation. In this paper, we will introduce the certification methodology and apply it on the KEYSTONE platform.

I. INTRODUCTION

A. Context

Aeronautical safety critical systems are subject to certification, meaning that a certification authority assesses the compliance of the product with the regulatory requirements. An accepted means of compliance for an applicant is to show the compliance with a set of adequate standards. A way to show the compliance with a given standard is to prepare, for each high level objective identified by the standard, an assurance case which can be defined as "an organized argument that a system is acceptable for its intended use with respect to specified concerns (such as safety, security, correctness)" [START_REF] David | Current practices in constructing and evaluating assurance cases with applications to aviation[END_REF]. Thus, the applicant provides a certain number of elements that go from design activities, organizational description, development process to V&V (Verification and Validation) operations.

For multi-core-based systems, several standards are applicable, such as the ARP 4754 [START_REF]Aerospace Recommended Practices ARP4754a -development of civil aircraft and systems[END_REF] or the DO 178 C [START_REF]DO-178 ED-12C -Software Considerations in Airborne Systems and Equipment Certification[END_REF]. However, a specific position paper, named Multi-Core Certification Review Item (MCP-CRI) [START_REF]The Use of Multi-Core Processors in Safety-Critical Applications -CRI[END_REF] (also known as the CAST-32A position paper [Cer16]), has been written by aeronautic industries and certification authorities to provide a set of guidances for software planning and verification on those chips. PHYLOG aims at preparing certification activities related to the MCP-CRI / CAST-32A position paper. In particular, the purpose is to provide a framework that allows any applicant to prepare their certification assurance cases.

B. PHYLOG objectives

To reach this general objective, we have defined a certification framework based on:

1. argumentation patterns to express any argumentation. The idea is to organize any argumentation around structured graphical notations diagrams. We have translated most of the CAST-32A objectives to patterns, partly published in [BBB + 18b], [BBB + 19];

2. formal and automatic analyses to support the proof of the argumentation. A pattern comes with a series of evidences that support the reasoning. Among those evidences, two types of analysis are required by the MCP-CRI: interference analysis and safety analysis. We propose several automated analyses to help the applicant provide evidences.

C. Paper objective

The first objective of the paper is to present the overall PHYLOG framework, something which has never been done, as we have only presented pieces here and there. The second objective is to validate the approach by applying it to a real use case composed of an application executing on the KEYSTONE. The paper is organized as follows: in section II, we introduce the overall framework; we present the use case in section III and we apply the PHYLOG methodology to the use case section IV. For that, we have refined some former PHYLOG results.

II. PHYLOG FRAMEWORK OVERVIEW

The PHYLOG framework is schematized in figure 1. There are three inputs: 1) the MCP-CRI / CAST-32A standard, which is the starting point of the methodology, as the applicant must answer its 9 objectives; 2) the detailed design documentation that contains, in particular, the detailed configuration settings and how the multi-core is programmed (e.g. bare-metal, hypervisor); 3) some other external documents, such as the documentation of the multi-core hardware or the results of some external activities (e.g. FHA derived objectives for the applications hosted by the multi-core).

The framework itself contains two boxes: argumentation for the methodology and model-based formal analyses for the set of proposed analyses. We introduce both contributions in the next sub-sections.

A. Argumentation-based certification

Several papers have proposed high level strategies to tackle the MCP-CRI / CAST-32A. [START_REF] Agirre | On the Tailoring of CAST-32A Certification Guidance to Real COTS Multicore Architectures[END_REF] has adapt the MCP-CRI certification objectives and has rephrased some of the requirements. [START_REF] Athavale | Flight safety certification implications for complex multi-core processor based avionics systems[END_REF] proposes some leads to tackle safety issues. However, we are the first to define clear patterns for several objectives.

The applicant must fulfill the 9 MCP-CRI / CAST-32A objectives (P1, P2, RU1, RU2, RU3, RU4, S1, S2, and EH). Some simply require descriptive enumeration, such as planning (P1 and P2). Some, on the other hand, require more complex activities. Refining those as sub-objectives (or even deducing justifications) is not a simple break-down that leads to a set of activities. Instead, it is necessary to detail sub-objectives and to explain both why the inference step is correct and why it is sufficient to conclude the objective from these justifications. Thus, more than a decomposition, we must associate justifications to a certification objective and also the reasons that allow the passage from justifications to conclusion.

There is a tremendous literature on how to build an assurance case and on how to make a graphical or textual representation. On the academic side, we can cite the Goal Structuring Notation (GSN) [START_REF] Mcdermid | Support for safety cases and safety arguments using sam[END_REF], [START_REF] Kelly | The goal structuring notation /a safety argument notation[END_REF], Claim-Argument-Evidence (CAE) [START_REF] Emmet | Graphical notations, narratives and persuasion: a pliant systems approach to hypertext tool design[END_REF], a textual approach from Rushby [START_REF] Rushby | Understanding and evaluating assurance cases[END_REF], and Justification Diagram (JD) [START_REF] Polacsek | Validation, accreditation or certification: a new kind of diagram to provide confidence[END_REF], [START_REF] Duffau | Support of justification elicitation: Two industrial reports[END_REF]. On the standardization organism side, there is the Structured Assurance Case Meta-model [START_REF] Omg | Structured assurance case meta-model (sacm)[END_REF], and the Generic Methodology for Verification and Validation [START_REF] Roza | The generic methodology for verification and validation to support acceptance of models, simulations and data[END_REF].

Concerning the usage of argumentation on COTS, the authors of [START_REF] Forsberg | Emerging cots-based computing platforms in avionics need a new assurance concept[END_REF] provide some material to argue that a COTS possesses a set of high level properties (called overarching properties) ensuring its airworthiness. The presented methodoglogy is not designed to handle such a standardagnostic reasoning since the certification requirements are already provided by the MCP-CRI. Nevertheless the argumentations and analyses presented in the remainder of this paper can be used as building blocks for the high level argumentation presented in [START_REF] Forsberg | Emerging cots-based computing platforms in avionics need a new assurance concept[END_REF].

All of them rely on the model defined by Stephen Toulmin [START_REF] Toulmin | The Uses of Argument[END_REF], which focuses on three concepts: claim, strategy and evidence (or sub-claim). The claim is the conclusion, the objective to demonstrate. Evidence are the facts on which the claim is based and rely on given elements provided by external knowledge or specific V&V activities. The strategy adds information about the reasoning and justifies the passage from evidence to claim. A strategy may come with a backing that is an explanation of why the strategy is indeed applicable.

In the rest of the paper, to represent our argumentations, we have chosen an agnostic notation approach based on a simple graphical notation (which is kind of an abstract syntax) compliant with all existing notations (which are kind of a concrete syntax). We will not present all patterns but will instead focus on the Resource Usage 3 (RU3) objective and the Error Handling (EH) objective. Let us first provide a reminder of these objectives.

Objective RU3

The applicant has identified the interference channels that could permit interference to affect the software applications hosted on the multi-core processor cores, and has verified the applicant's chosen means of mitigation of the interference. Figure 2 shows its transcription as a pattern. Evidence (E1) states that the existing interferences have been identified and classified. This has been achieved because an expert, who masters the architecture, has reviewed and double-checked two activities (strategy (S2)). Evidence (E3) points to a report that summarizes which interferences have been identified, how they have been identified, and why the identification is sound and complete. Evidence (E4) points to a safety report that details the effects of each interference on the hosted applications. Those effects can be expressed in different units (e.g. delay, bandwidth). If expressed in delays, the questions are what will be the impact of interference on the WCET (Worst Case Execution Time) and/or on the WCRT (Worst Case Response Time) of each application? and are these slow downs acceptable? From this information, the applicant has defined adequate means of mitigation to prevent, for instance, unacceptable effects. Evidence (E2) collects all those means of mitigation, how they mitigate each unacceptable interference and how they were verified. The applicant can argue the compliance with RU3 because an expert, who masters the architecture, has reviewed and double-checked that each interference has been correctly mitigated (S1).

The applicant shall also identify the possible hardware failures, their impact, and the means of mitigation. This requirement is called error handling -EH in the MCP-CRI.

Objective EH The applicant has identified the effects of failures that may occur within the MCP and has planned, designed, implemented and verified means (which may include a 'safety net' external to the MCP) commensurate with the safety objectives, by which to detect and handle those failures in a fail-safe manner that contains the effects of any failures within the equipment in which the MCP is installed. As depicted by Figure 3, the argumentation structure for EH is quite similar to the one of RU3. The top level claim is EH with a shorten textual description. The applicant can argue the compliance with EH because a traceability matrix (for instance) shows the coverage between the identified failure modes and the associated mitigation means (S1). Evidence (E1) is a report that collects all the identified failure modes and their effects [START_REF] Villemeur | Reliability, availability, maintainability and safety assessment[END_REF]; whereas evidence (E2) describes the associated mitigation means. The latter should enforce that the effects of the failure modes are handled in a fail-safe manner (i.e contained within the equipment on which the multi-core processor is installed).

B. Interference and safety analyses

As illustrated before, a pattern comes with a series of evidences that support the reasoning. Among these evidences, two types of analyses are required by the MCP-CRI: interference analysis and safety analysis. However, these two kinds of analysis are made quite independently from each other and often rely on different abstractions and tools (e.g. WCET static analysis [AEF + 14] for interference and MBSA -model based safety assessment -[BV Å+ 03] for safety). An idea to overcome this divergence is to unify both analyses and to base them on a common abstract representation of multicore processors. For that purpose, we have developed a modelling language, PML (PHYLOG Meta-Model) [BBB + 18a], representing a multi-core-based system.

1) Interference analysis: Due to resource sharing, coupling exists at the platform level, which can cause interferences between the applications. Certification requires interference situations to be fully controlled and mastered in any configuration for safety critical applications, as explained for resource usage 3 -RU3. Moreover, the applicant shall also identify the shared resources and shall describe a usage domain for each of them (how the resources are shared and how to prevent resource capabilities from being exceeded). This requirement is called resource usage 4 -RU4 in the MCP-CRI.

We have defined two approaches to compute topological interference in [BBB + 18a], [START_REF] Boniol | Identification of multi-core interference[END_REF] and cache coherence interference [START_REF] Sensfelder | Modeling Cache Coherence to Expose Interference[END_REF]. With these solutions, the argumentation pattern can directly be filled. Notice that some complementary analyses are proposed in the literature. The first widespread approach is intensive benchmarking to observe interference and part of their effects [START_REF] Nowotsch | Leveraging multi-core computing architectures in avionics[END_REF], [RGG + 12], [GJlR + 15], [START_REF] Cavicchioli | Memory interference characterization between CPU cores and integrated gpus in mixed-criticality platforms[END_REF] As an example, [PSJ + 19] studies the impact of Time Division Multipla Access (TDMA) and Acquisition-Execution-Restitution (AER) execution models on interference on the NXP T2080 platform. The second approach is more recent and proposed a profiling of applications [START_REF] Girbal | METrICS: a measurement environment for multi-core time critical systems[END_REF] to quantifiy the transactions. With these characterization methods, the argumentation pattern for RU3 must be adapted to link benchmark and envelope with exact interference and effects.

2) Safety analysis: Due to the high integration density, the complexity of internal components and the mix of hardware / software inside multi-core chips, their behaviors under random failures are hard to define and to characterize. Thus, two specific objectives are defined for dependability and safety issues in the MCP-CRI / CAST-32A. First, the applicant shall argue that the critical configuration settings are static and are protected against inadvertent changes at run-time. This requirement is called resource usage 2 -RU2 in the MCP-CRI. Second, the applicant shall also identify the possible hardware failures, their impact and the means of mitigation. This requirement is called error handling -EH in the MCP-CRI.

As identified by [START_REF] Prosvirnova | AltaRica 3.0: a Model-Based approach for Safety Analyses[END_REF], performing safety analyses with classical techniques like FMEAs, fault-trees or Markov chains raises two main challenges. First, since multi-core are highly hierarchical and complex systems, their modelling with classic formalisms will be cumbersome and error-prone. Second, classic formalisms require an in-depth knowledge of the multicore architecture and internal components failure modes. Such knowledge is seldom available, since the chip makers will not commit themselves to provide detailed information about multi-core architectures.

To tackle these challenges, we have developed a pragmatic model-based safety assessment in [BBB + 18b], [BBB + 19], which can be performed with the first functional level of the multi-core (like the one depicted in Figure 4) and abstract failures modes based on the services provided by components.

III. USE CASE: ROSACE EXECUTING ON THE KEYSTONE

Before going into further details, we introduce the use case on which we apply the PHYLOG methodology: an application executing on a multi-core. The application is the ROSACE [PSG + 14] longitudinal controller, which has been extended to include neural network representations of aerodynamic coefficients in the flight dynamic model. The application runs on bare metal on the KEYSTONE TCI6630K2L [START_REF]TCI6630K2L Multicore DSP+ARM Key-Stone II System-on-Chip[END_REF] from Texas Instruments, which is depicted in Figure 4.

A. KEYSTONE

This platform is composed of:

1) an eight C66 DSP pack, in which each core comes with dedicated L1 and L2 caches, and a memory extension and protection unit (MPAX); 2) a four ARM pack, in which each core comes with dedicated L1 caches, and a memory management unit (MMU); Due to the complexity of flight control laws (including guidance, mode selection, protection, and control), and a high safety level, some flight parameters are critical to ensure the good behaviour of the aircraft. Thus, the availability of all or part of system states has become essential, and erroneous values can reduce performance or stability. A classic approach consists in estimating these parameters thanks to signal processing (Extended Kalman Filter [START_REF] Seren | Adaptive extended kalman filtering for virtual sensing of longitudinal flight parameters[END_REF]) or model-based techniques which propose to embed all or part of the aircraft flight dynamic model. This model includes some mechanical parameters like mass, inertia, and aerodynamic coefficients which represent forces and moments applied on the system in motion. Such aerodynamic coefficients are often issued from CFD (computational fluid dynamics) computations, wind tunnel or flight testing. Usually, these data are only available in the form of look-up tables, which are not very convenient for on-board implementation, and that is why analytical and differentiable approximations are preferred, especially because of their lower memory requirements. Neural networks are good candidates for representing such complex nonlinear parameters [START_REF] Hardier | Recurrent rbf networks for suspension system modeling and wear diagnosis of a damper[END_REF].

M a = SP d lC m (1)
where S, P d , l refer respectively to reference area, dynamic pressure, and mean aerodynamic chord. The aerodynamic coefficient C m can be written as

C m = C m0 + C mδ δ e + C mα α + C mq * f (q, V) (2)
where δ e , α, q, V are, respectively, elevator deflection, angle of attack, airspeed, and pitch rate. Coefficients C m0 , C mα , C mq are non-linear effects mainly depending of M the Mach number.

We use a Radial Basis Function Network (RBFN) to approximate the MISO (multi input -single output) equation 2 as Finally, by considering 5 cells for each of the 4 inputs, we obtain an RBFN with 625 cells with optimized centers and radii. For validation and code generation purposes, the RBFN is implemented in MATLAB/Simulink as presented in Figure 6, and the efficiency of the RBFN is illustrated in Figure 8.

C N N m = n cel k=1 w k exp   - 4 j=1 e j -c k,j r k,j 2   + b (3)

IV. APPLICATION OF PHYLOG METHODOLOGY ON THE KEYSTONE

In this section, we apply the PHYLOG methodology for the system defined previously: ROSACE executing on the KEYSTONE.

A. PML overview

Both EH and RU3 heavily rely on a mastering of the multi-core processor architecture. Moreover, a modelling of the hardware and software components of the platform must be achieved prior to any safety or interference analysis. We propose to perform this modelling using the PHYLOG Modelling Language (PML), whose model is depicted by the Figure 7. The model contains 3 types of components: hardware components in yellow, service components in green and software components in blue. • Composite (e.g. CorePac), i.e a composition of hardware components.

1) Hardware components: The classification of hardware components proposed in PML is directly inspired from the initiator-target model introduced in [BR14], [JMB16], [MJB16], [MJB

The components of Figure 4 are colored according to their type, the color code being: red for smart initiators, blue for transporters, green for targets, and orange for non-smart initiators.

2) Software components: The software components that will be executed by the platform are user applications. At this step, we consider only bare metal applications and partitioned non preemptive schedules computed off-line. Thus, each piece of software is allocated to a unique initiator. The allocation of ROSACE is defined in Figure 5: functions altitude hold, vz control, az control, and h filter are allocated on the ARM 0 . Any software may request some data that are potentially distributed over several components. To retrieve these data, the initiator executing the software initiates communications within a multi-core called transactions. Definition 4.2 (Transaction): A transaction starts from an initiator and follows pre-defined path(s) to its final target, a transaction may include the response(s) of the target.

3) Service components: The transactions are issued thanks to a platform service call. The idea of PML is to abstract the platform as a set of services. Compared to what we have presented in [BBB + 18a], we have developed a second version based on the notion of service. Definition 4.3 (Platform service): A platform offers a set of services that can be called upon by the initiators and that generate transactions. We have identified the following services:

• EXECUTE: execution of a piece of software on some core;

• LOAD: retrieval of some data from a given target t by an initiator i.

• STORE: writing of some data to a given target t by an initiator i.

• COPY: copy of some data from one memory area t 1 to another t 2 by a non-smart initiator i.

• AUTHORIZE: forbidding of transactions outside of an authorized address; the set of authorized addresses is defined at configuration by a table memorized by the service.

• DISPATCH: handling of simultaneous accesses to subsequent services.

B. PML representation of the KEYSTONE

1) General model: The instantiation of the PML model for the KEYSTONE provides 1) The physical components of the platform depicted by the Figure 4 categorised according to the Initiator-Transporter-Target model, 2) The software components, here ROSACE has been split into three pieces, 3) The physical links between physical components (used or not), 4) The services provided by each platform component. For the KEYSTONE, we consider that all components provides both the STORE and LOAD services, an Initiator additionally provides a unique EXECUTE service, a Transporter (resp. Virtualizer) provides a unique DISPATCH (resp. AUTHORIZE) service.

At this step, the platform is said to be "unconfigured", that is, the relations allocated and connected (for services) are unknown. Without any further information, any connection between services is possible (if a physical connection exists between the components providing these services) and any software allocation is possible.

Due to the lack of space, we do not provide the full instantiation of the unconfigured KEYSTONE platform1 . These instantiations can be tedious to perform for commercial platforms (like the KEYSTONE). That is why a simple Domain Specific Language (DSL) has been defined and integrated in a translation tool.

2) Configuration of the platform:

The platform can then be configured by populating the allocation and connection relations. In our case, the allocation, mapping, and schedule over the platform are fully static:

• the ROSACE application is split in three pieces, namely ROSACE 0 allocated to ARM 0 , ROSACE 1 allocated to ARM 1 , and the Neural Network (NN) allocated to the DSP 0 ; • ARM 0 and ARM 1 store their code and data in the DDR memory. DSP 0 stores its code and data in its local SRAM. • All global variables exchanged between the ARMs and DSP are stored in the global SRAM controlled by the MSMC.

These information make it possible to connect the services of the platform used to perform the EXECUTE, LOAD, and STORE requests of the applications. An excerpt of the KEYSTONE service connection 1 is provided in Figure 9. In this excerpt, we do not consider the private memories and caches, nor the TeraNet connecting the MSMC to the cores' memory management units (MPAX for DSPs, MMU for ARM). Nevertheless, this simple excerpt contains the main types of components, allowing it to illustrate the different kinds of transactions transiting through the platform.

The software components uses the EXECUTE, LOAD, and STORE services provided by the cores on which it is allocated. The initiator (core) does not request any additional service to provide the execution service. Concerning LOAD and STORE services, the ROSACE application will request some accesses to the DDR and the MSMC SRAM. Consequently, the LOAD and STORE services of the initiators are connected to the LOAD and Since MPAX and MMU are virtualizers, they provide an AUTHORIZE service enforcing the memory allocation considered in the configuration. For instance, the DSP is only allowed to access the MSMC SRAM, so any transaction involving a communication with the DDR will be rejected by the AUTHORIZE service of the MPAX.

Eventually, the transporter components, like the MSMC, that may be involved in several simultaneous transactions provide a DISPATCH service handling this concurrency. For instance, in Figure 9, the DISPATCH service of the MSMC is able to handle concurrent loads and stores if the target of these requests are different. The potential conflicts are depicted in Figure 9 by the dotted lines using the same service.

C. Interference analysis on the KEYSTONE

Back to RU3 pattern of Figure 2, strategy (S2) needs to identify all interferences (E3) and to classify them (E4).

1) Interference identification (E3):

Existing interference analyses consists in enumerating all combination of transactions (more or less deeply). An interference analysis applied to a service-based modelling identifies the simultaneous service calls that may cause a degradation of QoS. A transaction is a sequence of service calls in PML and looking at Figure 9, we can observe the LOAD from ROSACE 0 on ARM 0 to the LOAD of the Target DDR (sequence of arrows and sevices). Thus, if there exists a service s reached by two arrows from two services s 1 and s 2 , it means that s can be used by two transactions from s 1 and s 2 . If the transactions arrive at the same time on s, they will provoke a contention on s, and one of them will have to wait until s becomes free again. From that point of view, an "interference channel" is a set of services targeted by simultaneous transactions produced by different initiators.

In the system under study, shown in Figure 9, 12 services can be simultaneously reached from different initiators:

• the three services of the AXI component (reached for instance when the two ROSACE i initiators run two LOAD or STORE transactions); • the five services of the MSMC component (reached for instance when NN and one of the ROSACE i initiators try to access at the same time the SRAM or the DDR memory); • and the four services of the SRAM and DDR components.

Thus, these services are part of the interference channels that can occur in the system.

To answer objective RU3, one needs to identify all the interference channels and all the interferences generated by simultaneous transactions involving these channels. For that purpose the KEYSTONE case-study PML model is transformed into an interference oriented view. This view is modeled in IDP 2 , a knowledge-based system allowing formal modeling and analysis in a first-order logic language. Based on this formal modeling, an exhaustive analysis identifies:

• 32 binary interference transactions (i.e., involving 2 initiators), and 32 ternary interference transactions (i.e., involving the 3 initiators); • 10 interference channels, i.e., 10 sets of shared services that can be simultaneously reached by at least one of these 64 interference transactions. These interference channels are: 1) {msmc-dispatch}, involved in 12 binary transaction and 30 ternary transactions, 2) {msmc-dispatch, msmc-store-sram, srm-store}, involved in 3 transactions 3) {axi-dispatch, msmc-dispatch}, involved in 8 transactions 4) {axi-dispatch, axi-store, msmc-dispatch}, involved in 2 transactions 5) {axi-dispatch, axi-load, msmc-dispatch}, involved in 2 transactions 6) {axi-dispatch, axi-load, msmc-dispatch, msmc-loadsram, sram-load}, involved in 1 transaction 7) {msmc-dispatch, msmc-load-sram, sram-load}, involved in 3 transactions 8) {axi-dispatch, axi-load, msmc-dispatch, msmc-loadddr, ddr-load}, involved in 1 transaction 9) {axi-dispatch, axi-store, msmc-dispatch, msmc-store-ddr, ddr-store}, involved in 1 transaction 10) {axi-dispatch, axi-store, msmc-dispatch, msmc-storesram, sram-store}, involved in 1 transaction.

Classifying the extra-cost due to these interference channels would require testing each of these 64 interference transactions. However, it is possible to take advantage of the symmetries of the architecture to reduce the number of transactions to run. For instance, if we notice (and can argue) that the two ARM blocks are symmetric and that the two ROSACE i initiators are able to produce similar LOAD and STORE requests, then, for each of the 10 previous interference channels, it is possible to regroup the transactions by symmetric classes, i.e., groups of transactions that produce the same effect when crossing the shared ressources. For instance, let us again consider the first interference channel {msmc-dispatch}. Among the 12 binary transactions crossing it, we have:

• t 0 = ROSACE 0 ddr-store NN sram-load • t 1 = ROSACE 1 ddr-store NN sram-load
Thanks to the symmetry between ARM 0 and ARM 1 and between ROSACE 0 and ROSACE 1 , t 0 and t 1 will produce the same worst-case interference on msmc-dispatch. To classify the interference on msmc-dispatch, it is sufficient to only focus on t 0 instead of the two of them. Using the IDP formal modeling, we can show that it is sufficient to consider only 6 transactions over the 12 double transactions involved in the {msmc-dispatch} interference channel to classify it.

2) Interference classification: Once the interferences have been identified, the second step is to classify them. For that purpose, one benchmark is associated with each interference transaction. For the sake of conciseness, let us consider the interference transaction:

t = ROSACE 0 sram-store ROSACE 1 sram-store
The interference channel involved in t is {axi-dispatch, axistore, msmc-dispatch, msms-sram-store, sram-store, }. To classify the cost of t, we define a benchmark composed of two processes: p 0 (resp. p 1) hosted by ARM 0 (resp. ARM 1) simulating STORE requests from ROSACE 0 (resp. ROSACE 1). p 0 and p 1 execute the same infinite loop:

while(1) { time1 = current cycle number assembly(str r9 [r8]) time2 = current cycle number d = time2 -time1 } d = time2 -time1 denotes the duration to store the content of register r9 at the address contained in register r8. Only the d parameter produced by p 0 is measured. Figure 10 shows the variation of d. In the first part of the trace, p 0 runs alone. d approximatively varies around 158 clock cycles). At time 460, p 1 runs on ARM 1 , causing an interference. Then d increases to 180 cycles. At time 900, p 1 stops. The value of d returns to 158. Following this benchmark, running two STORE transactions in parallel on ARM 0 and ARM 1 can lead to an extra cost of 14%. 3) indicates that a safety assessment must be performed to identify the possible failure modes of the platform and their safety impact for the considered applications. Such an assessment can be performed using Model-Based Safety Assessment (MBSA) using the service oriented representation of the platform provided in the Figure 9.

1) Modelling of the platform: The modelling of the platform is based on a library of reusable components formalized with the mode automata [START_REF] Rauzy | Mode automata and their compilation into fault trees[END_REF]. Such a formalization enables us to: 1) be generic and formal, 2) implement the following definitions as a library of components coded with ALTARICA, 3) use pre-existing tools to perform automatic safety assessments.

Up to now, there have been very few FMEA identifying the failure modes for a given platform. This can be explained by the in-depth architecture knowledge required to perform an FMEA, and by the reluctance of chip makers to (legally) commit themselves to provide a detailed FMEA. Therefore, the failure modes are derived from pragmatic reasoning. In the remainder of the paper we consider: 1) err: the component does not provide a proper service, 2) lost: the component does not provide anything. These abstract failure modes, and the link with concrete failure modes, are summarized in Table I The applications are affected by the LOAD/STORE transactions failures, which result from the considered atomic component failures. For instance, in Figure 9, if ARM 0 asks to LOAD a data from DDR, and if the MMU is lost, the LOAD service to DDR is no more provided to ARM 0 . Similarly, if the DSP asks to STORE a value in the SRAM, and if the MSMC is err, then an erroneous value is stored in the SRAM, corrupting its content.

The impact of the atomic components' (initiator, target and transporter) failure mode on the incoming transactions are modelled using the mode automaton formalism. Once these local safety effects are modelled, the analyst can instantiate and connect these component to provide the model of the complete platform.

The platform model 3 built for the KEYSTONE is depicted by Figure 11. Since the components of the library model the behavior of initiators, transporters, and targets, the obtained safety model can be easily deduced from the service-oriented architecture depicted in Figure 9. 2) Safety objective assessment: Let us consider that the loss of any application (ROSACE 0 , ROSACE 1 or NN) is a feared event, called FC. Thanks to CECILIA-OCAS, we are able to automatically compute the smallest combinations of 3 the complete ALTARICA model is available at https://www.onera.fr/sites/ default/files/274/ERTS material.zip physical failures (so-called minimal cutsets) leading to FC. The analyzer provides a set of single failures triggering FC, the most obvious ones being the direct loss of the resource upon which the application directly rely on, that is: 1) the loss or erroneous behavior of the executing unit, i.eDSP for the NN and the ARM for ROSACE, 2) the loss or corruption of the target, i.e DDR for ROSACE and the SRAM for both ROSACE and the NN, 3) the loss of a transporter on the transaction path to the final target, i.e the MPAX and the MSMC for the NN and the MMU, AXI Bus and the MSMC for ROSACE.

In addition to these obvious failures, the assessment is able to detect some failure propagation through successive data exchanges between the NN and ROSACE i . For instance, an erroneous DDR leads to an erroneous providing to the LOAD service for ROSACE i applications. Because of this erroneous LOAD, the applications then perform an erroneous STORE in the SRAM, eventually resulting in the erroneous behaviour of the NN itself. The identification of such failure propagation is paramount to the safety assessment of platforms implementing robust partitioning to enforce safety.

V. CONCLUSION

We have presented the PHYLOG framework and applied it to a real use case. We believe the approach to be valuable and adapted to certification. Our patterns and analyses have been presented to EASA, who are open to the idea of applicants relying on these kinds of techniques.

PHYLOG will end in December 2020. By then, we will put our argumentation patterns online. We will describe the PML formalism more in details. We will refine the interference analysis to take into account symmetries. We will develop automated transformations from PML to IDP and ALTARICA.

Fig. 1 :

 1 Fig. 1: Overview of the PHYLOG framework

RU3:

 Fig. 2: RU3 pattern

Fig. 3 :

 3 Fig. 3: Justification pattern for EH

Fig. 4 :Fig. 5 :

 45 Fig. 4: Keystone -simplified view

Fig. 6 :

 6 Fig. 6: SIMULINK implementation of the 625 cells RBFN

 Fig. 7: PML model

Fig. 8 :

 8 Fig. 8: Temporal simulation of a climb manoeuvre -blue: C m -red: C N N m

Fig. 9 :

 9 Fig. 9: Excerpt of the KEYSTONE service-oriented architecture

Fig. 10 :

 10 Fig. 10: Interference ROSACE 0 sram-store ROSACE 1 sram-store

Fig. 11 :

 11 Fig. 11: Safety model of the KEYSTONE platform

 Transporter (e.g. bus), i.e any intermediate component between initiators and targets. A Transporter can be a Virtualizer (e.g. MMU), i.e any intermediate component between initiators and targets providing a virtual resource segregation. A Transporter can contain an Arbiter (e.g. Serializer), i.e a component handling the concurrent accesses to a given resource.

	Definition 4.1 (Initiator-target model): A multi-core is composed of four types of components:
	• Initiator, which is subdivided in two types. Smart initia-tor (e.

+ 17]

. g. core), i.e components which can initiate single transactions through the architecture to target components. Non smart initiator (e.g. DMA), i.e components which can only initiate dual transactions (i.e with two targets at the same time);

• Target (e.g. DDR or PCIe), i.e end-components targeted by initiators;

•

 .

	Component family	Abstract FM	Comments	Example of concrete FM
	Core	err lost	mis-execution and corrup-tion of LOAD/STORE trans-actions no software execution	Register corruption by SEU OPCODE corruption
	Memory	err lost	LOAD/STORE a corrupted data no LOAD/STORE service	Memory area corruption DDR controller stalled
	Interconnect	err lost	corruption of the transac-tions transactions are not dis-patched	Internal queue corruption Queue overflow

TABLE I :

 I Atomic component failure modes

the interested reader can find the diagrams at https://www.onera.fr/sites/ default/files/274/ERTS material.zip

https://dtai.cs.kuleuven.be/software/idp