
HAL Id: hal-02441323
https://hal.science/hal-02441323v1

Submitted on 15 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PHYLOG certification methodology: a sane way to
embed multi-core processors

Frédéric Boniol, Youcef Bouchebaba, Julien Brunel, Kevin Delmas, Thomas
Loquen, Alfonso Mascarenas Gonzalez, Claire Pagetti, Thomas Polacsek,

Nathanaël Sensfelder

To cite this version:
Frédéric Boniol, Youcef Bouchebaba, Julien Brunel, Kevin Delmas, Thomas Loquen, et al.. PHYLOG
certification methodology: a sane way to embed multi-core processors. 10th European Congress on
Embedded Real Time Software and Systems (ERTS 2020), Jan 2020, Toulouse, France. �hal-02441323�

https://hal.science/hal-02441323v1
https://hal.archives-ouvertes.fr

PHYLOG certification methodology: a sane way to
embed multi-core processors

Frédéric Boniol, Youcef Bouchebaba, Julien Brunel, Kevin Delmas, Thomas Loquen,
Alfonso Mascarenas Gonzalez, Claire Pagetti, Thomas Polacsek, Nathanaël Sensfelder

ONERA-Toulouse, France

Abstract—The PHYLOG project aims at offering a model-
based software-aided certification framework for aeronautical
systems based on multi/many-core architectures. Certifying such
platforms will entail fulfilling the high level objectives of the
MCP-CRI / CAST-32A position paper. To reach this general
objective, we have defined a certification framework based on
patterns to express any argumentation; as well as formal and
automatic analyses to support the proof of the argumentation. In
this paper, we will introduce the certification methodology and
apply it on the KEYSTONE platform.

I. INTRODUCTION

A. Context

Aeronautical safety critical systems are subject to certi-
fication, meaning that a certification authority assesses the
compliance of the product with the regulatory requirements.
An accepted means of compliance for an applicant is to
show the compliance with a set of adequate standards. A
way to show the compliance with a given standard is to
prepare, for each high level objective identified by the standard,
an assurance case which can be defined as “an organized
argument that a system is acceptable for its intended use
with respect to specified concerns (such as safety, security,
correctness)” [RKR15]. Thus, the applicant provides a certain
number of elements that go from design activities, organiza-
tional description, development process to V&V (Verification
and Validation) operations.

For multi-core-based systems, several standards are appli-
cable, such as the ARP 4754 [SAE10] or the DO 178 C
[RTC11]. However, a specific position paper, named Multi-
Core Certification Review Item (MCP-CRI) [EAS16] (also
known as the CAST-32A position paper [Cer16]), has been
written by aeronautic industries and certification authorities to
provide a set of guidances for software planning and verifica-
tion on those chips. PHYLOG aims at preparing certification
activities related to the MCP-CRI / CAST-32A position
paper. In particular, the purpose is to provide a framework that
allows any applicant to prepare their certification assurance
cases.

B. PHYLOG objectives

To reach this general objective, we have defined a certification
framework based on:

1. argumentation patterns to express any argumentation.
The idea is to organize any argumentation around structured
graphical notations diagrams. We have translated most of
the CAST-32A objectives to patterns, partly published in
[BBB+18b], [BBB+19];

2. formal and automatic analyses to support the proof of
the argumentation. A pattern comes with a series of evidences
that support the reasoning. Among those evidences, two types
of analysis are required by the MCP-CRI: interference analy-
sis and safety analysis. We propose several automated analyses
to help the applicant provide evidences.

C. Paper objective

The first objective of the paper is to present the overall
PHYLOG framework, something which has never been done,
as we have only presented pieces here and there. The second
objective is to validate the approach by applying it to a real use
case composed of an application executing on the KEYSTONE.
The paper is organized as follows: in section II, we introduce
the overall framework; we present the use case in section III
and we apply the PHYLOG methodology to the use case section
IV. For that, we have refined some former PHYLOG results.

II. PHYLOG FRAMEWORK OVERVIEW

The PHYLOG framework is schematized in figure 1. There
are three inputs:

1) the MCP-CRI / CAST-32A standard, which is the
starting point of the methodology, as the applicant must
answer its 9 objectives;

2) the detailed design documentation that contains, in par-
ticular, the detailed configuration settings and how the
multi-core is programmed (e.g. bare-metal, hypervisor);

3) some other external documents, such as the documenta-
tion of the multi-core hardware or the results of some
external activities (e.g. FHA derived objectives for the
applications hosted by the multi-core).

The framework itself contains two boxes: argumentation for
the methodology and model-based formal analyses for the set
of proposed analyses. We introduce both contributions in the
next sub-sections.

A. Argumentation-based certification

Several papers have proposed high level strategies to tackle
the MCP-CRI / CAST-32A. [AAAC17] has adapt the MCP-
CRI certification objectives and has rephrased some of the
requirements. [AMP19] proposes some leads to tackle safety
issues. However, we are the first to define clear patterns for
several objectives.

The applicant must fulfill the 9 MCP-CRI / CAST-32A
objectives (P1, P2, RU1, RU2, RU3, RU4, S1, S2, and EH).

PML model

Model-based formal analyses

Interference
computation

Safety
assessement

Interference
classification

export

Argumentation patterns

Argumentation

Evidences

is in

provide External documentation

MCP-CRI
Design choices
- Configuration

- Execution model

Fig. 1: Overview of the PHYLOG framework

Some simply require descriptive enumeration, such as planning
(P1 and P2). Some, on the other hand, require more complex
activities. Refining those as sub-objectives (or even deducing
justifications) is not a simple break-down that leads to a set
of activities. Instead, it is necessary to detail sub-objectives
and to explain both why the inference step is correct and
why it is sufficient to conclude the objective from these
justifications. Thus, more than a decomposition, we must
associate justifications to a certification objective and also the
reasons that allow the passage from justifications to conclusion.

There is a tremendous literature on how to build an
assurance case and on how to make a graphical or tex-
tual representation. On the academic side, we can cite the
Goal Structuring Notation (GSN) [McD94], [KW04], Claim-
Argument-Evidence (CAE) [EC02], a textual approach from
Rushby [RXRW15], and Justification Diagram (JD) [Pol16],
[DPBF18]. On the standardization organism side, there is the
Structured Assurance Case Meta-model [OMG13], and the
Generic Methodology for Verification and Validation [RVS13].

Concerning the usage of argumentation on COTS, the
authors of [FS19] provide some material to argue that a
COTS possesses a set of high level properties (called over-
arching properties) ensuring its airworthiness. The presented
methodoglogy is not designed to handle such a standard-
agnostic reasoning since the certification requirements are
already provided by the MCP-CRI. Nevertheless the argumen-
tations and analyses presented in the remainder of this paper
can be used as building blocks for the high level argumentation
presented in [FS19].

All of them rely on the model defined by Stephen Toulmin
[Tou03], which focuses on three concepts: claim, strategy
and evidence (or sub-claim). The claim is the conclusion, the
objective to demonstrate. Evidence are the facts on which
the claim is based and rely on given elements provided by
external knowledge or specific V&V activities. The strategy
adds information about the reasoning and justifies the passage
from evidence to claim. A strategy may come with a backing
that is an explanation of why the strategy is indeed applicable.

In the rest of the paper, to represent our argumentations,
we have chosen an agnostic notation approach based on a
simple graphical notation (which is kind of an abstract syntax)
compliant with all existing notations (which are kind of a
concrete syntax). We will not present all patterns but will
instead focus on the Resource Usage 3 (RU3) objective and the
Error Handling (EH) objective. Let us first provide a reminder
of these objectives.

Objective RU3 The applicant has identified the interfer-
ence channels that could permit interference to affect the

software applications hosted on the multi-core processor cores,
and has verified the applicant’s chosen means of mitigation of
the interference.

RU3: Identification of interference and verified means
of mitigation

(S1) Check all identified interference are
mitigated (∀i ∈ I, i mitigated)

(E1) The interferences I are
identified and classified

(S2) All identified interferences
are classified
Backing: architecture mastering

(E3) Identification of all in-
terference I

(E4) Classification of c(i) effects
Given: hosted applications and
maximal accepted WCET and
WCRT

(E2) i mitigated

Fig. 2: RU3 pattern

Figure 2 shows its transcription as a pattern. Evidence
(E1) states that the existing interferences have been identified
and classified. This has been achieved because an expert, who
masters the architecture, has reviewed and double-checked two
activities (strategy (S2)). Evidence (E3) points to a report that
summarizes which interferences have been identified, how they
have been identified, and why the identification is sound and
complete. Evidence (E4) points to a safety report that details
the effects of each interference on the hosted applications.
Those effects can be expressed in different units (e.g. delay,
bandwidth). If expressed in delays, the questions are what will
be the impact of interference on the WCET (Worst Case Execu-
tion Time) and/or on the WCRT (Worst Case Response Time) of
each application? and are these slow downs acceptable? From
this information, the applicant has defined adequate means
of mitigation to prevent, for instance, unacceptable effects.
Evidence (E2) collects all those means of mitigation, how they
mitigate each unacceptable interference and how they were
verified. The applicant can argue the compliance with RU3
because an expert, who masters the architecture, has reviewed
and double-checked that each interference has been correctly
mitigated (S1).

The applicant shall also identify the possible hardware
failures, their impact, and the means of mitigation. This
requirement is called error handling – EH in the MCP-CRI.

Objective EH The applicant has identified the effects of

2

failures that may occur within the MCP and has planned,
designed, implemented and verified means (which may include
a ‘safety net’ external to the MCP) commensurate with the
safety objectives, by which to detect and handle those failures
in a fail-safe manner that contains the effects of any failures
within the equipment in which the MCP is installed.

EH: identification of failure effects and
adequate mitigation means

(S1) Check all identified failure
modes are mitigated
(∀fmi ∈ Fm, fmi mitigated)

(E1) Failure modes Fm
and their effects identified

(E2) fm is mitigated in
fail-safe manner

∀fm ∈ Fm

Fig. 3: Justification pattern for EH

As depicted by Figure 3, the argumentation structure for
EH is quite similar to the one of RU3. The top level claim
is EH with a shorten textual description. The applicant can
argue the compliance with EH because a traceability matrix
(for instance) shows the coverage between the identified failure
modes and the associated mitigation means (S1). Evidence
(E1) is a report that collects all the identified failure modes
and their effects [Vil92]; whereas evidence (E2) describes the
associated mitigation means. The latter should enforce that the
effects of the failure modes are handled in a fail-safe manner
(i.e contained within the equipment on which the multi-core
processor is installed).

B. Interference and safety analyses

As illustrated before, a pattern comes with a series of
evidences that support the reasoning. Among these evidences,
two types of analyses are required by the MCP-CRI: in-
terference analysis and safety analysis. However, these two
kinds of analysis are made quite independently from each
other and often rely on different abstractions and tools (e.g.
WCET static analysis [AEF+14] for interference and MBSA
- model based safety assessment - [BVÅ+03] for safety). An
idea to overcome this divergence is to unify both analyses and
to base them on a common abstract representation of multi-
core processors. For that purpose, we have developed a mod-
elling language, PML (PHYLOG Meta-Model) [BBB+18a],
representing a multi-core-based system.

1) Interference analysis: Due to resource sharing, coupling
exists at the platform level, which can cause interferences
between the applications. Certification requires interference sit-
uations to be fully controlled and mastered in any configuration
for safety critical applications, as explained for resource usage
3 – RU3. Moreover, the applicant shall also identify the shared
resources and shall describe a usage domain for each of them
(how the resources are shared and how to prevent resource
capabilities from being exceeded). This requirement is called
resource usage 4 – RU4 in the MCP-CRI.

We have defined two approaches to compute topological
interference in [BBB+18a], [BPS19] and cache coherence
interference [SBP19]. With these solutions, the argumentation

pattern can directly be filled. Notice that some complementary
analyses are proposed in the literature. The first widespread
approach is intensive benchmarking to observe interference
and part of their effects [NP12], [RGG+12], [GJlR+15],
[CCB17] As an example, [PSJ+19] studies the impact of
Time Division Multipla Access (TDMA) and Acquisition-
Execution-Restitution (AER) execution models on interference
on the NXP T2080 platform. The second approach is more
recent and proposed a profiling of applications [GlRS18] to
quantifiy the transactions. With these characterization methods,
the argumentation pattern for RU3 must be adapted to link
benchmark and envelope with exact interference and effects.

2) Safety analysis: Due to the high integration density, the
complexity of internal components and the mix of hardware /
software inside multi-core chips, their behaviors under random
failures are hard to define and to characterize. Thus, two
specific objectives are defined for dependability and safety
issues in the MCP-CRI / CAST-32A. First, the applicant
shall argue that the critical configuration settings are static
and are protected against inadvertent changes at run-time. This
requirement is called resource usage 2 – RU2 in the MCP-
CRI. Second, the applicant shall also identify the possible
hardware failures, their impact and the means of mitigation.
This requirement is called error handling – EH in the MCP-
CRI.

As identified by [Pro14], performing safety analyses with
classical techniques like FMEAs, fault-trees or Markov chains
raises two main challenges. First, since multi-core are highly
hierarchical and complex systems, their modelling with classic
formalisms will be cumbersome and error-prone. Second,
classic formalisms require an in-depth knowledge of the multi-
core architecture and internal components failure modes. Such
knowledge is seldom available, since the chip makers will
not commit themselves to provide detailed information about
multi-core architectures.

To tackle these challenges, we have developed a pragmatic
model-based safety assessment in [BBB+18b], [BBB+19],
which can be performed with the first functional level of the
multi-core (like the one depicted in Figure 4) and abstract
failures modes based on the services provided by components.

III. USE CASE: ROSACE EXECUTING ON THE KEYSTONE

Before going into further details, we introduce the use case
on which we apply the PHYLOG methodology: an application
executing on a multi-core. The application is the ROSACE
[PSG+14] longitudinal controller, which has been extended
to include neural network representations of aerodynamic
coefficients in the flight dynamic model. The application runs
on bare metal on the KEYSTONE TCI6630K2L [Tex13] from
Texas Instruments, which is depicted in Figure 4.

A. KEYSTONE

This platform is composed of:

1) an eight C66 DSP pack, in which each core comes with
dedicated L1 and L2 caches, and a memory extension and
protection unit (MPAX);

2) a four ARM pack, in which each core comes with
dedicated L1 caches, and a memory management unit
(MMU);

3

Memory Subsystem

MPPAX

C66x
CorePac

MMU

ARM
A15

L2 SRAM
L1P

SRAM
L1D

SRAM
L1P L1D

TeraNet

EDMA

PLL

Power Mgt

Semaphors

Boot ROM
G

P
IO

I2
C

U
S

B
3.

0

U
A

R
T

S
P

I

P
C

Ie

S
R

IO

MSMC
Controller

MSMC
SRAM

64-bit
DDR3
EMIF

DDR
Memory AXI Bus

Fig. 4: Keystone – simplified view

3) a central memory system that gives access to the plat-
form’s SRAM (MSMC SRAM), and an external DDR.
The memory access management is performed by the
Multicore Shared Memory Controller (MSMC);

4) a set of IO peripherals (e.g. GPIO, UART), and utility
peripherals (e.g. Boot, Semaphores);

5) a memory transfer peripheral (EDMA);
6) an ultra speed bus (TeraNet) connecting the peripherals,

the memories, and the cores.

altitude hold

vz control

az filter

vz filter

h filter

q filter

va filter

va control

ARM 1ARM 0 dsp0

allocation

private in DDR

data in SRAM

private in DDR

data in SRAM

private in L2SRAM

data in SRAM

engine

NN

elevator

δe

T

h f

h c

Va c

vz c az f

vz f

q f

va f

δ ec

δ thc

vz

h

az

q

va

period = 40 ms period = 20 ms period = 10 ms period = 5 ms

Fig. 5: ROSACE– overview

B. ROSACE

The ROSACE is a use case developed in MAT-
LAB/SIMULINK [PSG+14]. It includes a model of the dy-
namic of an aircraft with actuators (engines and elevators) in
closed-loop with sensors and a switching controller allowing
tracking of altitude and airspeed requirements. The closed-loop
simulation model involves four sample times for the system
to be controlled, as shown in Figure 5. Actually, the aircraft
model should be time-continuous, but for simulation and code

generation purposes, it has been discretized according to a fast
enough sample time.

Due to the complexity of flight control laws (including
guidance, mode selection, protection, and control), and a high
safety level, some flight parameters are critical to ensure the
good behaviour of the aircraft. Thus, the availability of all
or part of system states has become essential, and erroneous
values can reduce performance or stability. A classic approach
consists in estimating these parameters thanks to signal pro-
cessing (Extended Kalman Filter [SHEP13]) or model-based
techniques which propose to embed all or part of the aircraft
flight dynamic model.

This model includes some mechanical parameters like
mass, inertia, and aerodynamic coefficients which represent
forces and moments applied on the system in motion. Such
aerodynamic coefficients are often issued from CFD (compu-
tational fluid dynamics) computations, wind tunnel or flight
testing. Usually, these data are only available in the form of
look-up tables, which are not very convenient for on-board
implementation, and that is why analytical and differentiable
approximations are preferred, especially because of their lower
memory requirements. Neural networks are good candidates
for representing such complex nonlinear parameters [Har98].

Fig. 6: SIMULINK implementation of the 625 cells RBFN

In this use case, we consider the pitching moment Ma

appearing in the longitudinal flight nonlinear equations of
motion [SEH15]:

Ma = SPdlCm (1)

where S, Pd, l refer respectively to reference area, dynamic
pressure, and mean aerodynamic chord. The aerodynamic
coefficient Cm can be written as

Cm = Cm0 + Cmδδe + Cmαα+ Cmq ∗ f(q, V) (2)

where δe, α, q, V are, respectively, elevator deflec-
tion, angle of attack, airspeed, and pitch rate. Coefficients
Cm0, Cmα, Cmq are non-linear effects mainly depending of
M the Mach number.

We use a Radial Basis Function Network (RBFN) to
approximate the MISO (multi input - single output) equation
2 as

CNNm =

ncel∑
k=1

wkexp

− 4∑
j=1

(
ej − ck,j
rk,j

)2
+ b (3)

4

Platform

PF Component

1..*

SW Component

1..*

connected 0..*

InitiatorTransporter Target Composite

Service

provide 1..*

SmartNonSmart

Execute

provide 1..*

Copy

provide 1..*

Virtalizer Arbiter

Authorize

provide

2..* allocated

Applicationuse 1..*

connected 0..*

BasicDispatch

Load Store

provide

Fig. 7: PML model

where ncel is the RBFN number of cells, ej , = 1 . . . 4 are
the inputs δe, α, q, V . In (3), RBFN parameters are c: center
of a RBF cell, r: radii of a RBF cell, w: weighting factor and
b: bias.

The learning of parameters, noted Θ = (r, b, w, c), is an
optimization process aimed at minimizing the quadratic error
between the value of the coefficient Cm at different points
(obtained by simulations), and the corresponding neural output
CNNm (Θ).

Finally, by considering 5 cells for each of the 4 inputs,
we obtain an RBFN with 625 cells with optimized centers
and radii. For validation and code generation purposes, the
RBFN is implemented in MATLAB/Simulink as presented in
Figure 6, and the efficiency of the RBFN is illustrated in
Figure 8.

0 20 40 60 80 100 120 140 160 180 200
-8

-6

-4

-2

0

2

4

6
#10 -5

C
m

C
m
NN

Fig. 8: Temporal simulation of a climb manoeuvre - blue: Cm
- red: CNNm

IV. APPLICATION OF PHYLOG METHODOLOGY ON THE
KEYSTONE

In this section, we apply the PHYLOG methodology for
the system defined previously: ROSACE executing on the
KEYSTONE.

A. PML overview

Both EH and RU3 heavily rely on a mastering of the
multi-core processor architecture. Moreover, a modelling of
the hardware and software components of the platform must
be achieved prior to any safety or interference analysis.
We propose to perform this modelling using the PHYLOG
Modelling Language (PML), whose model is depicted by
the Figure 7. The model contains 3 types of components:
hardware components in yellow, service components in green
and software components in blue.

1) Hardware components: The classification of hardware
components proposed in PML is directly inspired from
the initiator-target model introduced in [BR14], [JMB16],
[MJB16], [MJB+17].

Definition 4.1 (Initiator-target model): A multi-core is
composed of four types of components:

• Initiator, which is subdivided in two types. Smart initia-
tor (e.g. core), i.e components which can initiate single
transactions through the architecture to target compo-
nents. Non smart initiator (e.g. DMA), i.e components
which can only initiate dual transactions (i.e with two
targets at the same time);

• Target (e.g. DDR or PCIe), i.e end-components targeted
by initiators;

5

• Transporter (e.g. bus), i.e any intermediate component
between initiators and targets. A Transporter can be a
Virtualizer (e.g. MMU), i.e any intermediate component
between initiators and targets providing a virtual re-
source segregation. A Transporter can contain an Arbiter
(e.g. Serializer), i.e a component handling the concurrent
accesses to a given resource.

• Composite (e.g. CorePac), i.e a composition of hardware
components.

The components of Figure 4 are colored according to
their type, the color code being: red for smart initiators, blue
for transporters, green for targets, and orange for non-smart
initiators.

2) Software components: The software components that
will be executed by the platform are user applications. At this
step, we consider only bare metal applications and partitioned
non preemptive schedules computed off-line. Thus, each piece
of software is allocated to a unique initiator. The allocation
of ROSACE is defined in Figure 5: functions altitude hold,
vz control, az control, and h filter are allocated on the ARM0.
Any software may request some data that are potentially
distributed over several components. To retrieve these data,
the initiator executing the software initiates communications
within a multi-core called transactions.

Definition 4.2 (Transaction): A transaction starts from an
initiator and follows pre-defined path(s) to its final target, a
transaction may include the response(s) of the target.

3) Service components: The transactions are issued thanks
to a platform service call. The idea of PML is to abstract
the platform as a set of services. Compared to what we have
presented in [BBB+18a], we have developed a second version
based on the notion of service.

Definition 4.3 (Platform service): A platform offers a set
of services that can be called upon by the initiators and
that generate transactions. We have identified the following
services:

• EXECUTE: execution of a piece of software on some core;

• LOAD: retrieval of some data from a given target t by an
initiator i.

• STORE: writing of some data to a given target t by an
initiator i.

• COPY: copy of some data from one memory area t1 to
another t2 by a non-smart initiator i.

• AUTHORIZE: forbidding of transactions outside of an
authorized address; the set of authorized addresses is
defined at configuration by a table memorized by the
service.

• DISPATCH: handling of simultaneous accesses to subse-
quent services.

B. PML representation of the KEYSTONE

1) General model: The instantiation of the PML model
for the KEYSTONE provides

1) The physical components of the platform depicted by
the Figure 4 categorised according to the Initiator-
Transporter-Target model,

2) The software components, here ROSACE has been split
into three pieces,

3) The physical links between physical components (used or
not),

4) The services provided by each platform component. For
the KEYSTONE, we consider that all components provides
both the STORE and LOAD services, an Initiator addition-
ally provides a unique EXECUTE service, a Transporter
(resp. Virtualizer) provides a unique DISPATCH (resp.
AUTHORIZE) service.

At this step, the platform is said to be “unconfigured”,
that is, the relations allocated and connected (for services)
are unknown. Without any further information, any connection
between services is possible (if a physical connection exists
between the components providing these services) and any
software allocation is possible.

Due to the lack of space, we do not provide the full
instantiation of the unconfigured KEYSTONE platform1. These
instantiations can be tedious to perform for commercial plat-
forms (like the KEYSTONE). That is why a simple Domain
Specific Language (DSL) has been defined and integrated in a
translation tool.

2) Configuration of the platform: The platform can then
be configured by populating the allocation and connection
relations. In our case, the allocation, mapping, and schedule
over the platform are fully static:

• the ROSACE application is split in three pieces, namely
ROSACE0 allocated to ARM0, ROSACE1 allocated to
ARM1, and the Neural Network (NN) allocated to the
DSP0;

• ARM0 and ARM1 store their code and data in the DDR
memory. DSP0 stores its code and data in its local SRAM.

• All global variables exchanged between the ARMs and
DSP are stored in the global SRAM controlled by the
MSMC.

These information make it possible to connect the ser-
vices of the platform used to perform the EXECUTE, LOAD,
and STORE requests of the applications. An excerpt of the
KEYSTONE service connection1 is provided in Figure 9. In
this excerpt, we do not consider the private memories and
caches, nor the TeraNet connecting the MSMC to the cores’
memory management units (MPAX for DSPs, MMU for ARM).
Nevertheless, this simple excerpt contains the main types of
components, allowing it to illustrate the different kinds of
transactions transiting through the platform.

The software components uses the EXECUTE, LOAD, and
STORE services provided by the cores on which it is allocated.
The initiator (core) does not request any additional service to
provide the execution service. Concerning LOAD and STORE
services, the ROSACE application will request some accesses to
the DDR and the MSMC SRAM. Consequently, the LOAD and
STORE services of the initiators are connected to the LOAD and

1the interested reader can find the diagrams at https://www.onera.fr/sites/
default/files/274/ERTS material.zip

6

https://www.onera.fr/sites/default/files/274/ERTS_material.zip
https://www.onera.fr/sites/default/files/274/ERTS_material.zip

DSP

ARM0 ARM1

MPAX

MMU

AXI

MSMC

SRAM DDR

storeSRAM

store

authorize

dispatch

store

store

loadSRAM

dispatch

load

loadexecute

load

NN

loadDDR

load

dispatch

load0

authorize0

dispatch0

load

load

storeDDR

store

store0

store

Rosace0

execute

store

load1

authorize1

dispatch1

load

store1

store execute

Rosace1

Fig. 9: Excerpt of the KEYSTONE service-oriented architecture

STORE services of their memory management units (MPAX for
DSPs and MMU for ARM) through their DISPATCH service.

Since MPAX and MMU are virtualizers, they provide an
AUTHORIZE service enforcing the memory allocation con-
sidered in the configuration. For instance, the DSP is only
allowed to access the MSMC SRAM, so any transaction
involving a communication with the DDR will be rejected by
the AUTHORIZE service of the MPAX.

Eventually, the transporter components, like the MSMC,
that may be involved in several simultaneous transactions
provide a DISPATCH service handling this concurrency. For
instance, in Figure 9, the DISPATCH service of the MSMC is
able to handle concurrent loads and stores if the target of these
requests are different. The potential conflicts are depicted in
Figure 9 by the dotted lines using the same service.

C. Interference analysis on the KEYSTONE

Back to RU3 pattern of Figure 2, strategy (S2) needs to
identify all interferences (E3) and to classify them (E4).

1) Interference identification (E3): Existing interference
analyses consists in enumerating all combination of transac-
tions (more or less deeply). An interference analysis applied to
a service-based modelling identifies the simultaneous service
calls that may cause a degradation of QoS. A transaction is
a sequence of service calls in PML and looking at Figure 9,
we can observe the LOAD from ROSACE0 on ARM0 to the
LOAD of the Target DDR (sequence of arrows and sevices).
Thus, if there exists a service s reached by two arrows from
two services s1 and s2, it means that s can be used by two
transactions from s1 and s2. If the transactions arrive at the
same time on s, they will provoke a contention on s, and one of
them will have to wait until s becomes free again. From that
point of view, an “interference channel” is a set of services
targeted by simultaneous transactions produced by different
initiators.

In the system under study, shown in Figure 9, 12 services
can be simultaneously reached from different initiators:

• the three services of the AXI component (reached for
instance when the two ROSACEi initiators run two LOAD
or STORE transactions);

• the five services of the MSMC component (reached for
instance when NN and one of the ROSACEi initiators
try to access at the same time the SRAM or the DDR
memory);

• and the four services of the SRAM and DDR components.

Thus, these services are part of the interference channels that
can occur in the system.

To answer objective RU3, one needs to identify all the
interference channels and all the interferences generated by
simultaneous transactions involving these channels. For that
purpose the KEYSTONE case-study PML model is transformed
into an interference oriented view. This view is modeled in
IDP2, a knowledge-based system allowing formal modeling and
analysis in a first-order logic language. Based on this formal
modeling, an exhaustive analysis identifies:

• 32 binary interference transactions (i.e., involving 2 ini-
tiators), and 32 ternary interference transactions (i.e.,
involving the 3 initiators);

• 10 interference channels, i.e., 10 sets of shared services
that can be simultaneously reached by at least one of these
64 interference transactions. These interference channels
are:
1) {msmc-dispatch}, involved in 12 binary transaction

and 30 ternary transactions,
2) {msmc-dispatch, msmc-store-sram, srm-store},

involved in 3 transactions

2https://dtai.cs.kuleuven.be/software/idp

7

https://dtai.cs.kuleuven.be/software/idp

3) {axi-dispatch, msmc-dispatch}, involved in 8 transac-
tions

4) {axi-dispatch, axi-store, msmc-dispatch}, involved in
2 transactions

5) {axi-dispatch, axi-load, msmc-dispatch}, involved in
2 transactions

6) {axi-dispatch, axi-load, msmc-dispatch, msmc-load-
sram, sram-load}, involved in 1 transaction

7) {msmc-dispatch, msmc-load-sram, sram-load}, in-
volved in 3 transactions

8) {axi-dispatch, axi-load, msmc-dispatch, msmc-load-
ddr, ddr-load}, involved in 1 transaction

9) {axi-dispatch, axi-store, msmc-dispatch,
msmc-store-ddr, ddr-store}, involved in 1 transaction

10) {axi-dispatch, axi-store, msmc-dispatch, msmc-store-
sram, sram-store}, involved in 1 transaction.

Classifying the extra-cost due to these interference channels
would require testing each of these 64 interference transac-
tions. However, it is possible to take advantage of the symme-
tries of the architecture to reduce the number of transactions
to run. For instance, if we notice (and can argue) that the two
ARM blocks are symmetric and that the two ROSACEi initiators
are able to produce similar LOAD and STORE requests, then,
for each of the 10 previous interference channels, it is possible
to regroup the transactions by symmetric classes, i.e., groups
of transactions that produce the same effect when crossing the
shared ressources. For instance, let us again consider the first
interference channel {msmc-dispatch}. Among the 12 binary
transactions crossing it, we have:

• t0 = ROSACE0 ddr-store ‖ NN sram-load
• t1 = ROSACE1 ddr-store ‖ NN sram-load

Thanks to the symmetry between ARM0 and ARM1 and be-
tween ROSACE0 and ROSACE1, t0 and t1 will produce the
same worst-case interference on msmc-dispatch. To classify
the interference on msmc-dispatch, it is sufficient to only
focus on t0 instead of the two of them. Using the IDP formal
modeling, we can show that it is sufficient to consider only
6 transactions over the 12 double transactions involved in the
{msmc-dispatch} interference channel to classify it.

2) Interference classification: Once the interferences have
been identified, the second step is to classify them. For that
purpose, one benchmark is associated with each interference
transaction. For the sake of conciseness, let us consider the
interference transaction:

t = ROSACE0 sram-store ‖ ROSACE1 sram-store

The interference channel involved in t is {axi-dispatch, axi-
store, msmc-dispatch, msms-sram-store, sram-store, }. To clas-
sify the cost of t, we define a benchmark composed of
two processes: p0 (resp. p1) hosted by ARM0 (resp. ARM1)
simulating STORE requests from ROSACE0 (resp. ROSACE1).
p0 and p1 execute the same infinite loop:

while(1) {
time1 = current cycle number
assembly(str r9 [r8])
time2 = current cycle number
d = time2 - time1

}

d = time2 − time1 denotes the duration to store the content
of register r9 at the address contained in register r8. Only the
d parameter produced by p0 is measured. Figure 10 shows
the variation of d. In the first part of the trace, p0 runs
alone. d approximatively varies around 158 clock cycles). At
time 460, p1 runs on ARM1, causing an interference. Then d
increases to 180 cycles. At time 900, p1 stops. The value of d
returns to 158. Following this benchmark, running two STORE
transactions in parallel on ARM0 and ARM1 can lead to an
extra cost of 14%.

Fig. 10: Interference ROSACE0 sram-store ‖ ROSACE1
sram-store

D. Safety assessment of the KEYSTONE

The argumentation diagram of the EH objective (see Fig-
ure 3) indicates that a safety assessment must be performed
to identify the possible failure modes of the platform and
their safety impact for the considered applications. Such an
assessment can be performed using Model-Based Safety As-
sessment (MBSA) using the service oriented representation of
the platform provided in the Figure 9.

1) Modelling of the platform: The modelling of the plat-
form is based on a library of reusable components formalized
with the mode automata [Rau02]. Such a formalization enables
us to:

1) be generic and formal,
2) implement the following definitions as a library of com-

ponents coded with ALTARICA,
3) use pre-existing tools to perform automatic safety assess-

ments.

Up to now, there have been very few FMEA identifying
the failure modes for a given platform. This can be explained
by the in-depth architecture knowledge required to perform
an FMEA, and by the reluctance of chip makers to (legally)
commit themselves to provide a detailed FMEA. Therefore,
the failure modes are derived from pragmatic reasoning. In
the remainder of the paper we consider:

1) err: the component does not provide a proper service,
2) lost: the component does not provide anything.

These abstract failure modes, and the link with concrete
failure modes, are summarized in Table I.

8

Component
family

Abstract FM Comments Example of concrete FM

Core err mis-execution and corrup-
tion of LOAD/STORE trans-
actions

Register corruption by SEU

lost no software execution OPCODE corruption

Memory err LOAD/STORE a corrupted
data

Memory area corruption

lost no LOAD/STORE service DDR controller stalled

Interconnect err corruption of the transac-
tions

Internal queue corruption

lost transactions are not dis-
patched

Queue overflow

TABLE I: Atomic component failure modes

The applications are affected by the LOAD/STORE trans-
actions failures, which result from the considered atomic
component failures. For instance, in Figure 9, if ARM0 asks
to LOAD a data from DDR, and if the MMU is lost, the LOAD
service to DDR is no more provided to ARM0. Similarly, if the
DSP asks to STORE a value in the SRAM, and if the MSMC is
err, then an erroneous value is stored in the SRAM, corrupting
its content.

The impact of the atomic components’ (initiator, target
and transporter) failure mode on the incoming transactions are
modelled using the mode automaton formalism. Once these
local safety effects are modelled, the analyst can instantiate and
connect these component to provide the model of the complete
platform.

The platform model3 built for the KEYSTONE is depicted
by Figure 11. Since the components of the library model the
behavior of initiators, transporters, and targets, the obtained
safety model can be easily deduced from the service-oriented
architecture depicted in Figure 9.

Fig. 11: Safety model of the KEYSTONE platform

2) Safety objective assessment: Let us consider that the
loss of any application (ROSACE0, ROSACE1 or NN) is a
feared event, called FC. Thanks to CECILIA-OCAS, we are
able to automatically compute the smallest combinations of

3the complete ALTARICA model is available at https://www.onera.fr/sites/
default/files/274/ERTS material.zip

physical failures (so-called minimal cutsets) leading to FC.
The analyzer provides a set of single failures triggering FC,
the most obvious ones being the direct loss of the resource
upon which the application directly rely on, that is: 1) the loss
or erroneous behavior of the executing unit, i.eDSP for the NN
and the ARM for ROSACE, 2) the loss or corruption of the
target, i.e DDR for ROSACE and the SRAM for both ROSACE
and the NN, 3) the loss of a transporter on the transaction path
to the final target, i.e the MPAX and the MSMC for the NN
and the MMU, AXI Bus and the MSMC for ROSACE.

In addition to these obvious failures, the assessment is able
to detect some failure propagation through successive data
exchanges between the NN and ROSACEi. For instance, an
erroneous DDR leads to an erroneous providing to the LOAD
service for ROSACEi applications. Because of this erroneous
LOAD, the applications then perform an erroneous STORE in
the SRAM, eventually resulting in the erroneous behaviour of
the NN itself. The identification of such failure propagation is
paramount to the safety assessment of platforms implementing
robust partitioning to enforce safety.

V. CONCLUSION

We have presented the PHYLOG framework and applied it
to a real use case. We believe the approach to be valuable and
adapted to certification. Our patterns and analyses have been
presented to EASA, who are open to the idea of applicants
relying on these kinds of techniques.

PHYLOG will end in December 2020. By then, we will
put our argumentation patterns online. We will describe the
PML formalism more in details. We will refine the interference
analysis to take into account symmetries. We will develop
automated transformations from PML to IDP and ALTARICA.

REFERENCES

[AAAC17] Irune Agirre, Jaume Abella, Mikel Azkarate, and Francisco Ca-
zorla. On the Tailoring of CAST-32A Certification Guidance to
Real COTS Multicore Architectures. In 12th IEEE International
Symposium on Industrial Embedded Systems (SIES’17), 2017.

[AEF+14] Philip Axer, Rolf Ernst, Heiko Falk, Alain Girault, Daniel
Grund, Nan Guan, Bengt Jonsson, Peter Marwedel, Jan
Reineke, Christine Rochange, Maurice Sebastian, Reinhard von
Hanxleden, Reinhard Wilhelm, and Wang Yi. Building timing
predictable embedded systems. ACM Trans. Embedded Comput.
Syst., 13(4):82:1–82:37, 2014.

[AMP19] Jyotika Athavale, Riccardo Mariani, and Michael Paulitsch.
Flight safety certification implications for complex multi-core
processor based avionics systems. In 25th IEEE International
Symposium on On-Line Testing and Robust System Design,
IOLTS 2019, Rhodes, Greece, July 1-3, 2019, pages 38–39,
2019.

[BBB+18a] Pierre Bieber, Frédéric Boniol, Youcef Bouchebaba, Julien
Brunel, Claire Pagetti, Olivier Poitou, Thomas Polacsek, Luca
Santinelli, and Nathanaël Sensfelder. A model-based certifi-
cation approach for multi/many-core embedded systems. In
9th European Congress on Embedded Real Time Software and
Systems (ERTS 2018), 2018.

[BBB+18b] Frédéric Boniol, Youcef Bouchebaba, Julien Brunel, Kevin
Delmas, Claire Pagetti, Thomas Polacsek, and Nathanaël Sens-
felder. PHYLOG: a model-based certification framework. In
37th AIAA/IEEE Digital Avionics Systems Conference (DASC
2018), 2018.

9

https://www.onera.fr/sites/default/files/274/ERTS_material.zip
https://www.onera.fr/sites/default/files/274/ERTS_material.zip

[BBB+19] Frédéric Boniol, Youcef Bouchebaba, Julien Brunel, Kevin
Delmas, Claire Pagetti, Thomas Polacsek, and Nathanaël Sens-
felder. A service-based modelling approach to ease the certifi-
cation of multi-core COTS processors. In SAE 2019 AeroTech
Europe, 2019. under submission.

[BPS19] Frédéric Boniol, Claire Pagetti, and Nathanaël Sensfelder. Iden-
tification of multi-core interference. In Proceedings of the
19th IEEE High Assurance Systems Engineering Symposium
(HASE’19), 2019.

[BR14] Vincent Brindejonc and Anthony Roger. Avoidance of dys-
functional behaviour of complex cots used in an aeronautical
context. In 19eme Congrès de Maı̂trise des Risques et Sûreté
de Fonctionnement, 2014.

[BVÅ+03] Marco Bozzano, Adolfo Villafiorita, Ove Åkerlund, Pierre
Bieber, Christian Bougnol, Eckard Böde, Matthias Bretschnei-
der, Antonella Cavallo, C Castel, M Cifaldi, et al. Esacs:
an integrated methodology for design and safety analysis of
complex systems. In Proc. ESREL, pages 237–245, 2003.

[CCB17] Roberto Cavicchioli, Nicola Capodieci, and Marko Bertogna.
Memory interference characterization between CPU cores and
integrated gpus in mixed-criticality platforms. In 22nd IEEE In-
ternational Conference on Emerging Technologies and Factory
Automation, ETFA, pages 1–10, 2017.

[Cer16] Certification Authorities Software Team. Multi-core Processors
- Position Paper. Technical Report CAST 32-A, November
2016.

[DPBF18] Clément Duffau, Thomas Polacsek, and Mireille Blay-
Fornarino. Support of justification elicitation: Two industrial
reports. In Advanced Information Systems Engineering - 30th
International Conference, CAiSE 2018, Tallinn, Estonia, 2018,
Proceedings, Lecture Notes in Computer Science. Springer,
2018.

[EAS16] EASA (European Aviation Safety Agency). The Use of Multi-
Core Processors in Safety-Critical Applications - CRI, 2016.

[EC02] Luke Emmet and George Cleland. Graphical notations, nar-
ratives and persuasion: a pliant systems approach to hypertext
tool design. In James Blustein, Robert B. Allen, Kenneth M.
Anderson, and Stuart Moulthrop, editors, HYPERTEXT 2002,
Proceedings of the 13th ACM Conference on Hypertext and
Hypermedia, June 11-15, 2002, University of Maryland, College
Park, MD, USA, pages 55–64. ACM, 2002.

[FS19] Hakan Forsberg and Andreas Schwierz. Emerging cots-based
computing platforms in avionics need a new assurance concept.
In the 38th Digital Avionics Systems Conference (DASC’19).
IEEE Press, 2019.

[GJlR+15] Sylvain Girbal, Xavier Jean, Jimmy le Rhun, Daniel Gra-
cia Pérez, and Marc Gatti. Deterministic Platform Software
for Hard Real-Time systems using multi-core COTS. In 34th
Digital Avionics Systems Conference (DASC’15), 2015.

[GlRS18] Sylvain Girbal, Jimmy le Rhun, and Hadi Saoud. METrICS: a
measurement environment for multi-core time critical systems.
In 9th European Congress on Embedded Real Time Software
and Systems (ERTS’18), 2018.

[Har98] Georges Hardier. Recurrent rbf networks for suspension system
modeling and wear diagnosis of a damper. In 1998 IEEE
International Joint Conference on Neural Networks Proceed-
ings. IEEE World Congress on Computational Intelligence (Cat.
No.98CH36227), volume 3, pages 2441–2446, 1998.

[JMB16] Xavier Jean, Laurence Mutuel, and Vincent Brindejonc. Assur-
ance methods for cots multi-cores in avionics. In 35th Digital
Avionics Systems Conference (DASC’16), 2016.

[KW04] Tim Kelly and Rob Weaver. The goal structuring notation /-
a safety argument notation. In Proceedings of Dependable
Systems and Networks 2004 Workshop on Assurance Cases,
2004.

[McD94] John A McDermid. Support for safety cases and safety
arguments using sam. Reliability Engineering & System Safety,
43(2):111–127, 1994.

[MJB16] Laurence Mutuel, Xavier Jean, and Vincent Brindejonc. In-
vestigation of error types associated with failures in multicore

processors. In 20eme Congrès de Maı̂trise des Risques et Sûreté
de Fonctionnement, 2016.

[MJB+17] Laurence Mutuel, Xavier Jean, Vincent Brindejonc, Anthony
Roger, Thomas Megel, and E. Alepins. Assurance of Multicore
Processors in Airborne Systems, 2017.

[NP12] Jan Nowotsch and Michael Paulitsch. Leveraging multi-core
computing architectures in avionics. In Proceedings of the 2012
Ninth European Dependable Computing Conference, EDCC
’12, pages 132–143, Washington, DC, USA, 2012. IEEE Com-
puter Society.

[OMG13] OMG. Structured assurance case meta-model (sacm). Technical
report, Object Management Group, 2013.

[Pol16] Thomas Polacsek. Validation, accreditation or certification: a
new kind of diagram to provide confidence. In IEEE Tenth In-
ternational Conference on Research Challenges in Information
Science (RCIS’16), 2016.

[Pro14] Tatiana Prosvirnova. AltaRica 3.0: a Model-Based approach
for Safety Analyses. PhD thesis, Ecole Polytechnique, 2014.

[PSG+14] Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and
Pierre Siron. The rosace case study: From simulink specification
to multi/many-core execution. In 20th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS’14),
April 2014.

[PSJ+19] Sihyeong Park, Daeyoung Song, Hyeoksoo Jang, Mi-Young
Kwon, Sang-Hun Lee, Hoon-Hyu Kim, and Hyungshin Kim.
Interference analysis of multicore shared resources with a com-
mercial avionics RTOS. In the 38th Digital Avionics Systems
Conference (DASC’19). IEEE Press, 2019.

[Rau02] Antoine Rauzy. Mode automata and their compilation into fault
trees. Rel. Eng. & Sys. Safety, 78(1):1–12, 2002.

[RGG+12] Petar Radojkovic, Sylvain Girbal, Arnaud Grasset, Eduardo
Quiñones, Sami Yehia, and Francisco Cazorla. On the eval-
uation of the impact of shared resources in multithreaded cots
processors in time-critical environments. 8:34, 01 2012.

[RKR15] David J Rinehart, John C Knight, and Jonathan Rowanhill.
Current practices in constructing and evaluating assurance cases
with applications to aviation. Technical report, NASA, 2015.

[RTC11] RTCA, Inc. DO-178 ED-12C - Software Considerations in
Airborne Systems and Equipment Certification, 2011.

[RVS13] Manfred Roza, Jeroen Voogd, and Derek Sebalj. The generic
methodology for verification and validation to support accep-
tance of models, simulations and data. The Journal of Defense
Modeling and Simulation, 10(4):347–365, 2013.

[RXRW15] John Rushby, Xidong Xu, Murali Rangarajan, and Thomas L
Weaver. Understanding and evaluating assurance cases. Techni-
cal Report NASA/CR-2015-218802, NASA Langley Research
Center, 2015.

[SAE10] SAE. Aerospace Recommended Practices ARP4754a - devel-
opment of civil aircraft and systems, 2010. SAE.

[SBP19] Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. Model-
ing Cache Coherence to Expose Interference. In Proceedings of
the 31st Conference on Real-Time Systems (ECRTS’19), 2019.

[SEH15] Cédric Seren, Pierre Ezerzere, and Georges Hardier.
Model–based techniques for virtual sensing of longitudinal
flight parameters. International Journal of Applied Mathematics
and Computer Science, 25, 03 2015.

[SHEP13] Cédric Seren, Georges Hardier, Pierre Ezerzere, and Guilhem
Puyou. Adaptive extended kalman filtering for virtual sensing
of longitudinal flight parameters. pages 25–30, 10 2013.

[Tex13] Texas Instruments. TCI6630K2L Multicore DSP+ARM Key-
Stone II System-on-Chip. Technical Report SPRS893E, Texas
Instruments Incorporated, 2013.

[Tou03] Stephen E. Toulmin. The Uses of Argument. Cambridge
University Press, Cambridge, UK, 2003. Updated Edition, first
published in 1958.

[Vil92] Alain Villemeur. Reliability, availability, maintainability and
safety assessment. John Wiley & Sons, 1992.

10

	Introduction
	Context
	Phylog objectives
	Paper objective

	Phylog framework overview
	Argumentation-based certification
	Interference and safety analyses
	Interference analysis
	Safety analysis

	Use case: Rosace executing on the Keystone
	Keystone
	Rosace

	Application of Phylog methodology on the Keystone
	PML overview
	Hardware components
	Software components
	Service components

	PML representation of the Keystone
	General model
	Configuration of the platform

	Interference analysis on the Keystone
	Interference identification (E3)
	Interference classification

	Safety assessment of the Keystone
	Modelling of the platform
	Safety objective assessment

	Conclusion
	References

