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We give blow-up behavior for solutions to an elliptic system with Dirichlet condition. Also, we have a compactness result for this elliptic system with Lipschitz condition on the annulus.

INTRODUCTION AND MAIN RESULTS

We set ∆ = ∂ 11 + ∂ 22 on the annulus centered at the origin with radii 1 and 1/2 of R 2 .

We consider the following system:

(P )            -∆u -ǫ • ǫ(x)(x • ∇u) = V e v in Ω ⊂ R 2 , -∆v + ǫ • ǫ(x)(x • ∇v) = W e u in Ω ⊂ R 2 , u = 0 in ∂Ω, v = 0 in ∂Ω.
Here:

We denote by C(1) and C(1/2) the unit circle and the circle of radius 1/2 respectively. Ω = A(0, 1/2, 1) is an annulus of center 0 and radii 1/2, 1.

We assume that:

Ω is an annulus of exterior circle the unit circle and interior circle the circle of radius 1/2.

We assume that: ǫ(x) ≡ 0 in a neighborhood of the unit circle C(1) and ǫ(x) ≡ 1 in a neighborhood of the circle of radius 1/2.

0 ≤ ǫ ≤ 1, 0 ≤ V ≤ b 1 < +∞, e u ∈ L 1 (Ω) and u ∈ W 1,1 0 (Ω), 0 ≤ W ≤ b 2 < +∞, e v ∈ L 1 (Ω) and v ∈ W 1,1 0 (Ω),
When u = v and ǫ = 0, the above system is reduced to an equation which was studied by many authors, with or without the boundary condition, also for Riemannian surfaces, see [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF][START_REF] Bandle | Isoperimetric Inequalities and Applications[END_REF][START_REF] Bartolucci | sup+Cinf" inequality for Liouville-type equations with singular potentials[END_REF][START_REF] Bartolucci | A 'sup+Cinf' inequality for the equation -∆u = V e u /|x| 2α[END_REF][START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF][START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF][START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF][START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF][START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF][START_REF] De Figueiredo | A priori Estimates and Existence of Positive Solutions of Semilinear Elliptic Equations[END_REF][START_REF] De Figueiredo | Semilinear elliptic systems with exponential nonlinearities in two dimensions[END_REF][START_REF] Dupaigne | Regularity of the extremal solutions for the Liouville system[END_REF][START_REF] Yy | Blow-up analysis for solutions of -∆u = V e u in dimension two[END_REF][START_REF] Yy | Harnack Type Inequality: the method of moving planes[END_REF][START_REF] Ma | Convergence for a Liouville equation[END_REF][START_REF] Mitidieri | A Rellich type identity and applications[END_REF][START_REF] Montenegro | Minimal solutions for a class of ellptic systems[END_REF][START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF], one can find some existence and compactness results, also for a system.

For the case ǫ = 0, in [START_REF] Dupaigne | Regularity of the extremal solutions for the Liouville system[END_REF], Dupaigne-Farina-Sirakov proved (by an existence result of Montenegro, see [START_REF] Montenegro | Minimal solutions for a class of ellptic systems[END_REF]) that the solutions of the above system when V and W are constants can be extremal and this condition imply the boundedness of the energy and directly the compactness. Note that in [START_REF] De Figueiredo | Semilinear elliptic systems with exponential nonlinearities in two dimensions[END_REF], if we assume (in particular) that ∇ log V and ∇ log W and V > a > 0 or W > a ′ > 0 and V, W are nonegative and uniformly bounded then the energy is bounded and we have a compactness result.

Note that in the case of one equation (and ǫ = 0), we can prove by using the Pohozaev identity that if +∞ > b ≥ V ≥ a > 0, ∇V is uniformely Lipschitzian that the energy is bounded when Ω is starshaped. In [START_REF] Ma | Convergence for a Liouville equation[END_REF] Ma-Wei, using the moving-plane method showed that this fact is true for all domain Ω with the same assumptions on V . In [START_REF] De Figueiredo | Semilinear elliptic systems with exponential nonlinearities in two dimensions[END_REF] De Figueiredo-do O-Ruf extend this fact to a system by using the moving-plane method for a system.

More generally, we have not a global compactness to the previous problem with one equation, perhaps we need more information on V to conclude to the boundedness of the solutions. When ∇ log V is Lipschitz function and ǫ = 0, Chen-Li and Ma-Wei see [START_REF] Chen | A priori estimates for solutions to nonlinear elliptic equations[END_REF] and [START_REF] Ma | Convergence for a Liouville equation[END_REF], showed that we have a compactness on all the open set. The proof is via the moving plane-Method of Serrin and Gidas-Ni-Nirenberg. Note that in [START_REF] De Figueiredo | Semilinear elliptic systems with exponential nonlinearities in two dimensions[END_REF] and ǫ = 0 we have the same result for this system when ∇ log V and ∇ log W are uniformly bounded. We will see below that for a system we also have a compactness result when V and W are Lipschitzian and ǫ ∈ (0, 1). Now consider the case of one equation and ǫ = 0. In this case our equation have nice properties.

If we assume V with more regularity, we can have another type of estimates, a sup + inf type inequalities. It was proved by Shafrir see [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF], that, if (u i ) i , (V i ) i are two sequences of functions solutions of the previous equation without assumption on the boundary and, 0 < a ≤ V i ≤ b < +∞, then we have the following interior estimate:

C a b sup K u i + inf Ω u i ≤ c = c(a, b, K, Ω).
Now, if we suppose (V i ) i uniformly Lipschitzian with A the Lipschitz constant, then, C(a/b) = 1 and c = c(a, b, A, K, Ω), see [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF].

Here we are interested by the case of an elliptic system. First, we give the behavior of the blow-up points on the boundary, for this general elliptic system, and in the second time we have a proof of compactness of the solutions to this elliptic system with Lipschitz condition.

Here, we write an extention of Brezis-Merle Problem (see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]) to a elliptic system: Problem. Suppose that V i → V and W i → W in C 0 ( Ω), with, 0 ≤ V i and 0 ≤ W i . Also, we consider two sequences of solutions (u i ), (v i ) of (P ) relatively to

(V i ), (W i ) such that, Ω e ui dx ≤ C 1 , Ω e vi dx ≤ C 2 ,
is it possible to have:

||u i || L ∞ ≤ C 3 ?
and,

||v i || L ∞ ≤ C 4 ?
In this paper we give a caracterization of the behavior of the blow-up points on the boundary and also a proof of the compactness theorem when V i and W i are uniformly Lipschitzian and close to constants. For the behavior of the blow-up points on the boundary, the following condition are enough,

0 ≤ V i ≤ b 1 , 0 ≤ W i ≤ b 2 ,
The conditions V i → V and W i → W in C 0 ( Ω) are not necessary.

But for the proof of the compactness for the system, we assume that:

||∇V i || L ∞ ≤ A i → 0, ||∇W i || L ∞ ≤ B i → 0.
Our main result are: Theorem 1.1. Assume that max Ω u i → +∞ and max Ω v i → +∞ Where (u i ) and (v i ) are solutions of the probleme (P ) with ǫ i → 0, and:

0 ≤ V i ≤ b 1 ,
and

Ω e ui dx ≤ C 1 , ∀ i,

and,

0 ≤ W i ≤ b 2 ,
and Ω e vi dx ≤ C 2 , ∀ i, then; after passing to a subsequence, there is a finction u, there is a number N ∈ N and N points x 1 , x 2 , . . . , x N ∈ ∂Ω, such that,

∂Ω ∂ ν u i ϕ → ∂Ω ∂ ν uϕ + N j=1 α j ϕ(x j ), α j ≥ 4π,
for any ϕ ∈ C 0 (∂Ω), and,

u i → u in C 1 loc ( Ω -{x 1 , . . . , x N }). ∂Ω ∂ ν v i ϕ → ∂Ω ∂ ν vϕ + N j=1 β j ϕ(x j ), β j ≥ 4π,
for any ϕ ∈ C 0 (∂Ω), and,

v i → v in C 1 loc ( Ω -{x 1 , . . . , x N }).
In the following theorem, we have a proof for the global a priori estimate which concern the problem (P ).

Theorem 1.2. Assume that (u i ), (v i ) are solutions of (P ) relatively to (V i ), (W i ) with the following conditions:

ǫ i → 0, 0 ≤ V i ≤ b 1 , ||∇V i || L ∞ ≤ A i → 0,
and

Ω e ui ≤ C 1 , 0 ≤ W i ≤ b 2 , ||∇W i || L ∞ ≤ B i → 0,
and

Ω e vi ≤ C 2 ,
We have,

||u i || L ∞ ≤ C 3 (b 1 , b 2 , (ǫ i ), (A i ), (B i ), C 1 , C 2 , Ω),
and,

||v i || L ∞ ≤ C 4 (b 1 , b 2 , (ǫ i ), (A i ), (B i ), C 1 , C 2 , Ω),
To prove Theorem 1.2, we argue by contradiction and use Theorem 1.1.

PROOF OF THE THEOREMS

Proof of theorem 1.1:

We have:

u i , v i ∈ W 1,1 0 (Ω).
Since e ui ∈ L 1 (Ω) by the corollary 1 of Brezis-Merle's paper (see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]) we have e vi ∈ L k (Ω) for all k > 2 and the elliptic estimates of Agmon and the Sobolev embedding (see [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF]) imply that:

u i ∈ W 2,k (Ω) ∩ C 1,ǫ ( Ω).

And,

We have:

v i , u i ∈ W 1,1 0 (Ω).
Since e vi ∈ L 1 (Ω) by the corollary 1 of Brezis-Merle's paper (see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]) we have e ui ∈ L k (Ω) for all k > 2 and the elliptic estimates of Agmon and the Sobolev embedding (see [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF]) imply that:

v i ∈ W 2,k (Ω) ∩ C 1,ǫ ( Ω).
Also, we have by a duality theorem:

||∇u i || L q ≤ C q , ||∇v i || L q ≤ C ′ q , ∀ i and 1 < q < 2.
For the blow-up which are inside the domain, we start by solving the equations:

-∆w 1 i = -ǫ i • ǫ(x)(x • ∇u i ) in Ω ⊂ R 2 , w 1 i = 0 in ∂Ω.

and,

-∆w

2 i = ǫ i • ǫ(x)(x • ∇v i ) in Ω ⊂ R 2 , w 2 i = 0 in ∂Ω.
By the duality theorem the functions w 1 i and w 2 i are uniformly bounded. Thus for the blow-up inside the domain we have the same work for a system without the liear terms

ǫ i • ǫ(x)(x • ∇u i ) and ǫ i • ǫ(x)(x • ∇v i ).
Since V i e vi and W i e ui are bounded in L 1 (Ω), we can extract from those two sequences two subsequences which converge to two nonegative measures µ 1 and µ 2 . (This procedure is similar to the procedure of Brezis-Merle, we apply corollary 4 of Brezis-Merle paper, see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF]).

If µ 1 (x 0 ) < 4π, by a Brezis-Merle estimate for the first equation, we have e ui ∈ L 1+ǫ around x 0 , by the elliptic estimates, for the second equation, we have v i ∈ W 2,1+ǫ ⊂ L ∞ around x 0 , and , returning to the first equation, we have u i ∈ L ∞ around x 0 .

If µ 2 (x 0 ) < 4π, then u i and v i are also locally bounded around x 0 . Thus, we take a look to the case when, µ 1 (x 0 ) ≥ 4π and µ 2 (x 0 ) ≥ 4π. By our hypothesis, those points x 0 are finite.

We will see that inside Ω no such points exist. By contradiction, assume that, we have µ 1 (x 0 ) ≥ 4π. Let us consider a ball B R (x 0 ) which contain only x 0 as nonregular point. Thus, on ∂B R (x 0 ), the two sequence u i and v i are uniformly bounded. Let us consider:

-∆z i = V i e vi in B R (x 0 ) ⊂ R 2 , z i = 0 in ∂B R (x 0 ).
By the maximum principle, because we have w 1 i and w 2 i :

z i ≤ u i + O(1)
and z i → z almost everywhere on this ball, and thus,

e zi ≤ C 0 e ui ≤ C,
and,

e z ≤ C.
but, z is a solution in W 1,q 0 (B R (x 0 )), 1 ≤ q < 2, of the following equation:

-∆z = µ 1 in B R (x 0 ) ⊂ R 2 , z = 0 in ∂B R (x 0 ).
with, µ 1 ≥ 4π and thus, µ 1 ≥ 4πδ x0 and then, by the maximum principle in

W 1,1 0 (B R (x 0 )): z ≥ -2 log |x -x 0 | + C
thus,

e z = +∞,
which is a contradiction. Thus, there is no nonregular points inside Ω Thus, we consider the case where we have nonregular points on the boundary, we use two estimates:

∂Ω ∂ ν u i dσ ≤ C 1 , ∂Ω ∂ ν v i dσ ≤ C 2 ,
and,

||∇u i || L q ≤ C q , ||∇v i || L q ≤ C ′ q , ∀ i and 1 < q < 2.
We have the same computations, as in the case of one equation.

We consider a points x 0 ∈ ∂Ω such that:

µ 1 (x 0 ) < 4π.
We consider a test function on the boundary η we extend η by a harmonic function on Ω, we write the equation:

-∆((u i -u)η) = (V i e vi -V e v )η + ∇(u i -u) • ∇η + ǫ i • ǫ(x)(x • ∇u i )η = f i with, |f i | ≤ 4π -ǫ + o(1) < 4π -2ǫ < 4π, -∆((v i -v)η) = (W i e ui -W e u )η + ∇(v i -v) • ∇η -ǫ i • ǫ(x)(x • ∇v i )η = g i ,
with,

|g i | ≤ 4π -ǫ + o(1) < 4π,
or,

|g i | ≤ 4π -ǫ + o(1) < 4π,
By the Brezis-Merle estimate, we have uniformly, e ui ∈ L 1+ǫ around x 0 , by the elliptic estimates, for the second equation, we have v i ∈ W 2,1+ǫ ⊂ L ∞ around x 0 , and , returning to the first equation, we have u i ∈ L ∞ around x 0 .

We have the same thing if we assume:

µ 2 (x 0 = 0) < 4π,
Thus, if µ 1 (x 0 ) < 4π or µ 2 (x 0 = 0) < 4π or µ 2 (x 0 = 0) < 4π, we have for R > 0 small enough:

(u i , v i ) ∈ L ∞ (B R (x 0 ) ∩ Ω).
By our hypothesis the set of the points such that:

µ 1 (x 0 ) ≥ 4π, µ 2 (x 0 = 0) ≥ 4π, or, µ 2 (x 0 = 0) ≥ 4π,
is finite, and, outside this set u i and v i are locally uniformly bounded. By the elliptic estimates, we have the C 1 convergence to u and v on each compact set of Ω -{x 1 , . . . x N }.

For the blow-up on the boundary: the boundary contain two connected components. By the maximum principle and without loss of generality one can assume ∂ ν u i ≥ 0 and ∂ ν v i ≥ 0.

By the Stokes formula we have,

∂Ω ∂ ν u i dσ ≤ C,
We use the weak convergence in the space of Radon measures to have the existence of a nonnegative Radon measure µ 1 such that,

∂Ω ∂ ν u i ϕdσ → µ 1 (ϕ), ∀ ϕ ∈ C 0 (∂Ω).
We take an x 0 ∈ ∂Ω such that, µ 1 (x 0 ) < 4π. For ǫ > 0 small enough set I ǫ = B(x 0 , ǫ) ∩ ∂Ω on the unt disk or one can assume it as an interval. We choose a function η ǫ such that,

           η ǫ ≡ 1, on I ǫ , 0 < ǫ < δ/2, η ǫ ≡ 0, outside I 2ǫ , 0 ≤ η ǫ ≤ 1, ||∇η ǫ || L ∞ (I2ǫ) ≤ C 0 (Ω, x 0 ) ǫ .
We take a ηǫ such that,

-∆η ǫ = 0 in Ω ⊂ R 2 , ηǫ = η ǫ in ∂Ω.
Remark: We use the following steps in the construction of ηǫ :

We take a cutoff function η 0 in B(0, 2) or B(x 0 , 2):

1-We set η ǫ (x) = η 0 (|x -x 0 |/ǫ) in the case of the unit disk it is sufficient.
2-Or, in the general case: we use a chart (f, Ω) with f (0) = x 0 and we take µ ǫ (x) = η 0 (f (|x|/ǫ)) to have connected sets I ǫ and we take η ǫ (y

) = µ ǫ (f -1 (y)). Because f, f -1 are Lipschitz, |f (x) -x 0 | ≤ k 2 |x| ≤ 1 for |x| ≤ 1/k 2 and |f (x) -x 0 | ≥ k 1 |x| ≥ 2 for |x| ≥ 2/k 1 > 1/k 2 , the support of η is in I (2/k1)ǫ .            η ǫ ≡ 1, on f (I (1/k2)ǫ ), 0 < ǫ < δ/2, η ǫ ≡ 0, outside f (I (2/k1)ǫ ), 0 ≤ η ǫ ≤ 1, ||∇η ǫ || L ∞ (I (2/k 1 )ǫ ) ≤ C 0 (Ω, x 0 ) ǫ .
3-Also, we can take: µ ǫ (x) = η 0 (|x|/ǫ) and η ǫ (y) = µ ǫ (f -1 (y)), we extend it by 0 outside f (B 1 (0)). We have

f (B 1 (0)) = D 1 (x 0 ), f (B ǫ (0)) = D ǫ (x 0 ) and f (B + ǫ ) = D + ǫ (x 0 ) with f and f -1 smooth diffeomorphism.            η ǫ ≡ 1, on the connected set J ǫ = f (I ǫ ), 0 < ǫ < δ/2, η ǫ ≡ 0, outside J ′ ǫ = f (I 2ǫ ), 0 ≤ η ǫ ≤ 1, ||∇η ǫ || L ∞ (J ′ ǫ ) ≤ C 0 (Ω, x 0 ) ǫ .
And,

H 1 (J ′ ǫ ) ≤ C 1 H 1 (I 2ǫ ) = C 1 4ǫ, since f is Lipschitz.
Here H 1 is the Hausdorff measure.

We solve the Dirichlet Problem:

-∆η ǫ = -∆η ǫ in Ω ⊂ R 2 , ηǫ = 0 in ∂Ω.
and finaly we set ηǫ = -η ǫ + η ǫ . Also, by the maximum principle and the elliptic estimates we have :

||∇η ǫ || L ∞ ≤ C(||η ǫ || L ∞ + ||∇η ǫ || L ∞ + ||∆η ǫ || L ∞ ) ≤ C 1 ǫ 2 ,
with C 1 depends on Ω.

We use the following estimate, see [START_REF] Brezis | Semi-linear second-order elliptic equations in L1[END_REF],

||∇v i || L q ≤ C q , ||∇u i || q ≤ C q , ∀ i and 1 < q < 2.
We deduce from the last estimate that, (v i ) converge weakly in W 1,q 0 (Ω), almost everywhere to a function v ≥ 0 and Ω e v < +∞ (by Fatou lemma). Also, V i weakly converge to a nonnegative function V in L ∞ .

We deduce from the last estimate that, (u i ) converge weakly in W 1,q 0 (Ω), almost everywhere to a function u ≥ 0 and Ω e u < +∞ (by Fatou lemma). Also, W i weakly converge to a nonnegative function W in L ∞ .

The function u, v are in W 1,q 0 (Ω) solutions of :

-∆u = V e v ∈ L 1 (Ω) in Ω ⊂ R 2 , u = 0 in ∂Ω.
And,

-∆v = W e u ∈ L 1 (Ω) in Ω ⊂ R 2 , v = 0 in ∂Ω.
According to the corollary 1 of Brezis-Merle's result, see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF], we have e ku ∈ L 1 (Ω), k > 1. By the elliptic estimates, we have v ∈ C 1 ( Ω).

According to the corollary 1 of Brezis-Merle's result, see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF], we have e kv ∈ L 1 (Ω), k > 1. By the elliptic estimates, we have u ∈ C 1 ( Ω).

For two vectors f and g we denote by f • g the inner product of f and g.

We can write:

-∆((u i -u)η ǫ ) = (V i e vi -V e v )η ǫ -2∇(u i -u) • ∇η ǫ + ǫ i • ǫ(x)(x • ∇u i )η ǫ .
(1)

-∆((v i -v)η ǫ ) = (W i e ui -W e u )η ǫ -2∇(v i -v) • ∇η ǫ -ǫ i • ǫ(x)(x • ∇v i )η ǫ .
We use the interior esimate of Brezis-Merle, see [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF],

Step 1: Estimate of the integral of the first term of the right hand side of (1).

We use the Green formula between ηǫ and u, we obtain,

Ω V e v ηǫ dx = ∂Ω ∂ ν uη ǫ ≤ C ′ ǫ||∂ ν u|| L ∞ = Cǫ (2)
We have,

-∆u i = V i e vi in Ω ⊂ R 2 , u i = 0 in ∂Ω.
We use the Green formula between u i and ηǫ to have:

Ω V i e vi ηǫ dx = ∂Ω ∂ ν u i η ǫ dσ → µ 1 (η ǫ ) ≤ µ 1 (J ′ ǫ ) ≤ 4π -ǫ 0 , ǫ 0 > 0 (3) 
From ( 2) and (3) we have for all ǫ > 0 there is

i 0 = i 0 (ǫ) such that, for i ≥ i 0 , Ω |(V i e vi -V e v )η ǫ |dx ≤ 4π -ǫ 0 + Cǫ (4)
Step 2: Estimate of integral of the second term of the right hand side of (1).

Let Σ ǫ = {x ∈ Ω, d(x, ∂Ω) = ǫ 3 } and Ω ǫ 3 = {x ∈ Ω, d(x, ∂Ω) ≥ ǫ 3 }, ǫ > 0. Then, for ǫ small enough, Σ ǫ is hypersurface. The measure of Ω -Ω ǫ 3 is k 2 ǫ 3 ≤ meas(Ω -Ω ǫ 3 ) = µ L (Ω -Ω ǫ 3 ) ≤ k 1 ǫ 3 .
Remark: for the unit ball B(0, 1), our new manifold is B(0, 1 -ǫ 3 ).

( Proof of this fact; let's consider d(x, ∂Ω) = d(x, z 0 ), z 0 ∈ ∂Ω, this imply that (d(x, z 0 )) 2 ≤ (d(x, z)) 2 for all z ∈ ∂Ω which it is equivalent to (z -z 0 ) • (2x -z -z 0 ) ≤ 0
for all z ∈ ∂Ω, let's consider a chart around z 0 and γ(t) a curve in ∂Ω, we have;

(γ(t) -γ(t 0 ) • (2x -γ(t) -γ(t 0 )) ≤ 0, we have γ ′ (t 0 ) • (x -γ(t 0 )) = 0, this imply that x = z 0 -sν 0 where ν 0 is the outward normal of ∂Ω at z 0 ))
With this fact, we can say that S = {x, d(x, ∂Ω)

≤ ǫ} = {x = z 0 -sν z0 , z 0 ∈ ∂Ω, -ǫ ≤ s ≤ ǫ}. It is sufficient to work on ∂Ω. Let's consider a charts (z, D = B(z, 4ǫ z ), γ z ) with z ∈ ∂Ω such that ∪ z B(z, ǫ z ) is cover of ∂Ω . One can extract a finite cover (B(z k , ǫ k )), k = 1, ...,
m, by the area formula the measure of S ∩ B(z k , ǫ k ) is less than a kǫ (a ǫ-rectangle). For the reverse inequality, it is sufficient to consider one chart around one point of the boundary.

We write,

Ω |∇(u i -u) • ∇η ǫ |dx = Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx + Ω-Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx. (5) 
Step 2.1:

Estimate of Ω-Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx.
First, we know from the elliptic estimates that

||∇η ǫ || L ∞ ≤ C 1 /ǫ 2 , C 1 depends on Ω
We know that (|∇u i |) i is bounded in L q , 1 < q < 2, we can extract from this sequence a subsequence which converge weakly to h ∈ L q . But, we know that we have locally the uniform convergence to |∇u| (by Brezis-Merle's theorem), then, h = |∇u| a.e. Let q ′ be the conjugate of q.

We have, ∀f ∈ L q ′ (Ω)

Ω |∇u i |f dx → Ω |∇u|f dx
If we take f = 1 Ω-Ω ǫ 3 , we have:

for ǫ > 0 ∃ i 1 = i 1 (ǫ) ∈ N, i ≥ i 1 , Ω-Ω ǫ 3 |∇u i | ≤ Ω-Ω ǫ 3 |∇u| + ǫ 3 . Then, for i ≥ i 1 (ǫ), Ω-Ω ǫ 3 |∇u i | ≤ meas(Ω -Ω ǫ 3 )||∇u|| L ∞ + ǫ 3 = ǫ 3 (k 1 ||∇u|| L ∞ + 1).
Thus, we obtain,

Ω-Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx ≤ ǫC 1 (2k 1 ||∇u|| L ∞ + 1) (6) 
The constant C 1 does not depend on ǫ but on Ω.

Step 2.2: Estimate of

Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx.
We know that, Ω ǫ ⊂⊂ Ω, and ( because of Brezis-Merle's interior estimates) u i → u in C 1 (Ω ǫ 3 ). We have,

||∇(u i -u)|| L ∞ (Ω ǫ 3 ) ≤ ǫ 3 , for i ≥ i 3 = i 3 (ǫ).
We write,

Ω ǫ 3 |∇(u i -u) • ∇η ǫ |dx ≤ ||∇(u i -u)|| L ∞ (Ω ǫ 3 ) ||∇η ǫ || L ∞ ≤ C 1 ǫ for i ≥ i 3 , For ǫ > 0, we have for i ∈ N, i ≥ max{i 1 , i 2 , i 3 }, Ω |∇(u i -u) • ∇η ǫ |dx ≤ ǫC 1 (2k 1 ||∇u|| L ∞ + 2) (7) 
From ( 4) and (7), we have, for ǫ > 0, there is i

3 = i 3 (ǫ) ∈ N, i 3 = max{i 0 , i 1 , i 2 } such that, Ω | -∆[(u i -u)η ǫ ]|dx ≤ 4π -ǫ 0 + ǫ2C 1 (2k 1 ||∇u|| L ∞ + 2 + C) (8) 
We choose ǫ > 0 small enough to have a good estimate of (1).

Indeed, we have:

-∆[(u i -u)η ǫ ] = g i,ǫ in Ω ⊂ R 2 , (u i -u)η ǫ = 0 in ∂Ω. with ||g i,ǫ || L 1 (Ω) ≤ 4π - ǫ 0 2 .
We can use Theorem 1 of [START_REF] Brezis | Uniform estimates and Blow-up behavior for solutions of -∆u = V (x)e u in two dimension[END_REF] to conclude that there are q ≥ q > 1 such that:

Vǫ(x0) e q|ui-u| dx ≤ Ω e q|ui-u|ηǫ dx ≤ C(ǫ, Ω).
where, V ǫ (x 0 ) is a neighborhood of x 0 in Ω. Here we have used that in a neighborhood of x 0 by the elliptic estimates, 1 -Cǫ ≤ ηǫ ≤ 1.

Thus, for each x 0 ∈ ∂Ω -{x 1 , . . . , xm } there is ǫ x0 > 0, q x0 > 1 such that:

B(x0,ǫx 0 ) e qx 0 ui dx ≤ C, ∀ i. (9) 
Now, we consider a cutoff function η ∈ C ∞ (R 2 ) such that η ≡ 1 on B(x 0 , ǫ x0 /2) and η ≡ 0 on R 2 -B(x 0 , 2ǫ x0 /3).

We write

-∆(v i η) = W i e ui η -2∇v i • ∇η -v i ∆η + ǫ i • ǫ(x)(x • ∇v i )η.
Because,

e vi ∈ L 1 , ∇v i ∈ L q , q > 1, uniformly,
By the elliptic estimates, (v i ) i is uniformly bounded in L ∞ (V ǫ (x 0 )). Finaly, we have, for some ǫ > 0 small enough,

||v i || C 0,θ [B(x0,ǫ)] ≤ c 3 ∀ i. Now, we consider a cutoff function η ∈ C ∞ (R 2 ) such that η ≡ 1 on B(x 0 , ǫ x0 /2) and η ≡ 0 on R 2 -B(x 0 , 2ǫ x0 /3).
We write

-∆(u i η) = V i e vi η -2∇u i • ∇η -u i ∆η -ǫ i • ǫ(x)(x • ∇u i )η.
By the elliptic estimates, (u i ) i is uniformly bounded in L ∞ (V ǫ (x 0 )) and also in C 0,θ norm.

If we repeat this procedure another time, we have a boundedness of (u i ) i and (v i ) i in the C 1,θ norm, because they are bounded in W 2,q ⊂ W 1,q * norms with 2q/(2 -q) = q * > 2.

We have the same computations and conclusion if we consider a regular point x 0 = 0 for the measure µ 2 with µ 2 ({0}) < 4π.

We have proved that, there is a finite number of points x1 , . . . , xm such that the squence (u i ) i and (v i ) i are locally uniformly bounded (in C 1,θ , θ > 0) in Ω -{x 1 , . . . , xm }.

Proof of theorem 1.2:

Here, we use the Pohozaev-Rellich identity for a system around each blow-up point (ν is the outward normal), see [START_REF] Mitidieri | A Rellich type identity and applications[END_REF].

We have:

u i , v i ∈ W 2,k (Ω) ∩ C 1,ǫ ( Ω), k > 2. Let's consider B ǫ = B ǫ (y 0 ) = Ω 1
ǫ a neighborhood of the blow-up point y 0 . Then we have:

Bǫ [∆u i (x • ∇v i ) + ∆v i (x • ∇u i )]dx = = ∂Bǫ [(x • ∇u i )(ν • ∇v i ) + (x • ∇v i )(ν • ∇u i ) -(x • ν)(∇u i • ∇v i )]dσ
and after integration by parts for the equations of our system;

Bǫ [∆u i (x • ∇v i ) + ∆v i (x • ∇u i )]dx = Bǫ -[V i e vi (x • ∇v i ) + W e ui (x • ∇u i )]dx = = Bǫ [2(V i e vi + W i e ui ) + (x • ∇V i )e vi + (x • ∇W i )e ui ]dx - ∂Bǫ (x • ν)(V i e vi + W i e ui )dσ. Finaly, Bǫ [2(V i e vi + W i e ui ) + (x • ∇V i )e vi + (x • ∇W i )e ui ]dx - ∂Bǫ (x • ν)(V i e vi + W i e ui )dσ = = ∂Bǫ [(x • ∇u i )(ν • ∇v i ) + (x • ∇v i )(ν • ∇u i ) -(x • ν)(∇u i • ∇v i )]dσ.
The boundary of the annulus contain two connected components. For the first component the unit circle C(1), ǫ(x) ≡ 0, we use a conformal map, to move a part of the unit circle into a part of an axis, and after we apply the previous Pohozaev-Rellich identity to have: On the second connected component C(1/2), we use directly the Pohozaev identity on a small neighborhood of a nonregular point y 0 (obtained by charts around y 0 ), we multiply, by x • ∇u i and x • ∇v i , and we integrate by parts, we obtain (here ν = -2x on C(1/2) and u i = v i = 0 on C(1/2)):

2( Ω 1 ǫ V i e vi + Ω 1 ǫ W i e ui ) + C(1/2)∩Bǫ(y0) -(-2||x|| 2 )(∂ ν u i )(∂ ν v i )dσ+ + C(1/2)∩Bǫ(y0) -2(-||x|| 2 )(V i + W i ) = = Ω 1 ǫ (x • ∇V i )e vi + (x • ∇W i )e ui + O(ǫ).
The terms of the previous left hand side are non-negatives.

We tend i → +∞ and then ǫ → 0, ∇V i → 0 and ∇W i → 0 to obtain: Remark: Usually in the Pohozaev-Rellich identity we multiply the equations by (x -y 0 ) • ∇u i and (x -y 0 ) • ∇v i , around the blow-up point y 0 , but here because we have the terms x • ∇u i and x • ∇v i , one can remove them only if we multiply the equations of the system by these terms and not (x -y 0 ) • ∇u i and (x -y 0 ) • ∇v i . This is a reason why we assume that ∇V i → 0, ∇W i → 0, to have the integrals which contain those terms close to 0.

a) On C( 1 )

 1 after using a conformal map, x • ν = 0 and u i = v i = 0 on the axis:Bǫ V i e vi + Bǫ W i e ui dx = O(ǫ) + o(1), However Bǫ V i e vi + Bǫ W i e ui dx = ∂Bǫ ∂ ν u i dσ + ∂Bǫ ∂ ν v i dσ = α 1 + β 1 + O(ǫ) → α 1 + β 1 > 0,which a contradiction. b) On C(1/2):

lim ǫ→0 lim i→+∞ Ω 1 ǫ 1 ǫ 1 ǫ∂ ν u i dσ + ∂Ω 1 ǫ

 1111 (V i e vi + W i e ui ) = 0, however:Ω (V i e vi + W i e ui )dx = ∂Ω ∂ ν v i dσ + O(ǫ) + o(1) → α 1 + β 1 > 0, a contradiction.