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The Molecular Landscape of ETMR at Diagnosis and Relapse

A full list of authors and affiliations appears at the end of the article.

Abstract

ETMRs are aggressive pediatric embryonal brain tumors with universally dismal outcome1. We 

collected 193 primary ETMRs and 23 matched relapses to investigate the genomic landscape of 

this distinct entity. We found that patients having tumors without C19MC amplification, the 

proposed driver3–5, frequently harbor DICER1 germline mutations or other miRNA-related 

aberrations including somatic miR-17–92 amplifications. Whole-genome sequencing revealed an 

overall low recurrence of SNVs, but prevalent R-loop-associated chromosomal instability, of 

which we show that this can be induced by loss of DICER1 function. Comparing primary tumors 

and matched relapses revealed a strong conservation of SVs but low conservation of SNVs. 

Moreover, many newly acquired SNVs are associated to a new cisplatin treatment related 

mutational signature. Finally, we show that targeting R-loops with topoisomerase and PARP 

inhibitors might be an effective treatment strategy for this deadly disease.
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ETMR (Embryonal Tumor with Multilayered Rosettes) is a malignant type of brain tumor 

occurring almost exclusively in young children1. The tumors show diverse histological 

patterns described as EBL (Ependymoblastoma), MEPL (Medulloepithelioma) or ETANTR 

(Embryonal Tumor with Abundant Neuropil and True Rosettes), but together form one 

distinct biological entity termed ETMR1,2. Genetically, ETMRs are characterized by 

amplification and fusion of a microRNA cluster on chromosome 19 (C19MC) with TTYH1, 

present in ~90% of the tumors3–5. As current treatment options fail for nearly all patients, a 

better understanding of ETMR tumorigenesis is needed to develop new treatment strategies. 

Here, we have characterized the molecular landscape of a large cohort of primary and 

relapsed ETMRs to get more insight into the inter- and intra-tumor heterogeneity of ETMRs 

at diagnosis and relapse, and to identify tumor driving mechanisms that may lead to more 

effective treatment strategies.

Inter-tumor heterogeneity

Cluster analysis of ETMR DNA methylation profiles (n=193; Supplementary Table 1) or 

mRNA data (n=28), confirmed that ETMRs are clearly distinct from other brain tumor 

entities (Fig. 1a–b)6,7. ETMRs without C19MC amplification (n=23) tend to cluster together 

at the edge of the main ETMR cluster but do not really separate, also not when clustering 

only ETMRs (Extended Data Fig. 1a). Additionally, miRNAs are expressed in a distinct 

pattern in ETMRs, but are similar between ETMRs with (n=7) and without (n=3) C19MC 
amplification (Extended Data Fig. 2). C19MC miRNAs are also expressed in ETMRs 

without C19MC amplification, albeit at a ~10-fold lower level, but not in normal brain or 

other brain tumors (Fig. 1c). Mature miRNAs specifically upregulated in ETMRs included 

all C19MC miRNAs and members of the miR-17–92 miRNA cluster, while several members 

of the let-7 family of miRNAs are specifically downregulated in ETMRs (Supplementary 

Table 2).

ETMRs occur throughout the brain, without any association to different histological 

variants, but tumors without C19MC amplification were significantly more often located in 

infratentorial regions (Fisher’s exact test, P-value: 8.80E-7). None of the other clinical 

annotations was associated to any molecular subgrouping (Extended Data Fig. 1a, b). 

Altogether, these data show that ETMRs are a molecularly distinct entity, with limited 

molecular inter-tumor heterogeneity despite diverse histopathological features, absence of 

C19MC amplification in a subset of tumors, and a variety of anatomic locations.

Intra-tumor heterogeneity

By comparing ETMR mRNA data against normal brain and other brain tumors 

(Supplementary Table 3), we identified several upregulated pathways related to 

development, including RNA processing, Hippo, WNT, NOTCH, and SHH signaling 

(Extended Data Fig. 3). Additionally, compared to other tumors, most ETMRs showed 

upregulation of DNA repair pathways, including base excision repair, Fanconi anemia and 

the p53 pathway (Extended Data Fig. 4a, Supplementary Table 4)8. However, a subset of 

tumors (10/28) lacked this upregulation. Since no distinct molecular subgroups were 

detected we investigated whether this was due to differences in intra-tumor heterogeneity. 
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CIBERsort analysis was applied by comparing tumor expression data with single cell RNA-

seq data of the developing pre-frontal cortex to delineate distinct tumor cell populations9,10. 

This resulted in the identification of stem cell-like, more differentiated oligodendrocyte 

precursor-like and astrocyte-like tumor cells (Extended Data Fig. 4b). A higher proportion of 

differentiated progeny corresponded to lower levels of stem cell markers LIN28A and 

HMGA2, lower levels of DNA damage checkpoint genes WEE1 and CHEK2, but higher 

levels of astrocyte markers AQP4 and GFAP (Extended Data Fig. 4c).

Interestingly, these observations correlated with the histology of the tumors. Tumors with 

more differentiated cells and lower expression of DNA repair genes tended to be more often 

diagnosed as ETANTRs, while tumors with less differentiated cells and higher expression of 

DNA repair genes were more likely described as EBL or MEPL (Extended Data Fig. 4d). 

These findings were validated by methylation profiling and RNA-sequencing of micro-

dissected neuropil (more differentiated) and rosettes (less differentiated) of an ETMR 

diagnosed as ETANTR. While RNA-sequencing confirmed that expression of stem cell 

markers and astrocyte markers differed between the two cell populations, methylation 

profiles were highly similar and clustered together with other ETMRs (Extended data Fig. 

4e–g) (Supplementary Table 3).

Previously, we reported that LIN28A is more widely expressed upon relapse and histology 

shifts towards a more EBL or MEPL phenotype1. To investigate whether this is due to 

outgrowth of the stem cell-like population after treatment, we compared the expression of 

LIN28A, HMGA2, WEE1, CHEK2, AQP4 and GFAP between a primary ETANTR and two 

matched recurrences and saw indeed that in both relapses the gene expression is shifting to 

be more stem cell-like (Extended Data Fig. 4h). Differences in expression of DNA repair 

genes and histology are therefore likely explained by the levels of differentiated progeny, 

while undifferentiated cells with high levels of DNA repair expression grow out upon 

relapse.

Recurrent aberrations

We sequenced (see methods) 82 tumors, including 16 cases without C19MC amplification 

and 12 recurrences (Supplementary Table 5, 6), to see whether there were any recurrent 

DNA aberrations other than C19MC amplification. Other recurrently mutated genes detected 

in the primary tumors included DICER1 (8/70), CTNNB1 (7/70), and TP53 (5/70), while 

mutations (apart from CTNNB1) in developmental pathways, previously suggested to play a 

role in ETMR tumorigenesis11, were detected only sporadically (Fig. 2a).

Interestingly, all DICER1 mutations occurred in cases that lacked the C19MC amplification. 

All eight cases harbored compound heterozygous mutations, including one somatic mutation 

(E1705K (3x), D1709N (2x), G1809R, E1813G and E1813K) in the hotspot region affecting 

the RNASE IIIb domain important for miRNA processing12. The second mutation was 

found in the germline (validated for 7/8 cases) and was in all cases deleterious (Fig. 2b). 

Sequencing mature miRNAs indeed showed a strongly increased ratio of 3’ over 5’ mature 

miRNAs in one of the DICER1 mutated cases (ET31) as compared to cases that have no 

DICER1 mutations (Fig. 2c).
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Two ETMRs (ET68 and ET173, lacking C19MC amplification and DICER1 mutations) 

harbored amplifications of the miR-17–92 miRNA cluster at chromosome 13. In ET68 this 

was fused to a region at chromosome 11 to form a circular chromosome, confirmed by mate 

pair-sequencing (MP-seq), copy number profiles and FISH (Extended Data Fig. 5a, b). 

Genes on the circular chromosome, including the miR-17–92 miRNA cluster, were ~4-fold 

higher expressed compared to other ETMRs (Extended Data Fig. 5c). The miR-17–92 
miRNA cluster amplification was also found once in an ETMR (ET85) with C19MC 
amplification.

Three other samples (ET89, ET160, and ET168, lacking C19MC amplification and DICER1 
mutations) showed clustered breakpoints affecting the C19MC locus, suggesting that even 

though C19MC is not amplified its expression might be driven by structural rearrangements 

(Extended Data Fig. 5d). In ET160 we indeed found a fusion between C19MC and MYO9B, 

also located on chromosome 19. Alternative fusion partners to TTYH1 were not unique for 

cases lacking the C19MC amplification, as MP-seq also identified an alternative fusion 

partner, MIRLET7BHG, in ET20 with C19MC amplification.

Finally, we identified several cases throughout the cohort with severe chromosomal 

instability, including four cases without C19MC amplification (ET57, ET72, ET74, and 

ET104) (Extended Data Fig. 5e). Altogether, our data show that ETMRs harbor very few 

recurrently mutated genes, and are largely characterized by mutually exclusive aberrations 

affecting the miRNA pathway, including amplifications of the C19MC and miR-17–92 
clusters and mutations in the miRNA processing gene DICER1.

Unlike SNVs and small indels, many copy number aberrations (CNAs) were recurrent 

throughout the cohort based on methylation array-derived copy number profiling (n=193). 

As shown previously, 90% of all ETMRs had C19MC amplification and chr2 gain was 

detected in 76% of the cases. Other recurrent CNAs included 6q loss (25%), and gain of 1q 

(26%), 17q (11%), 7 (12%), 3q (11%), and 11q (11%). However, no significant differences 

were found between ETMRs with or without C19MC amplification (Extended Data Fig. 6a–

c). We also compared copy number profiles of 18 matched primary relapse pairs, identifying 

frequently acquired CNAs, including 6q loss (22%), and gains of 1q (33%), 17q (33%), and 

7 (17%) (Extended Data Fig. 6d) (Supplementary Table 7). In addition, polyploidy was 

detected in 18% of the primary tumors, and acquired in 28% of the cases upon relapse 

(Extended Data Fig. 6d, e).

Furthermore, ETMRs sequenced by WGS were investigated to detect translocations, 

inversions, deletions and insertions (Supplementary Table 8). Many clustered breakpoints 

resembling found surrounding C19MC, but other chromosomes were also sporadically 

affected (Extended Data Fig. 6f). These breakpoints were also observed in copy number 

profiles: 16% of the cohort had visible alternating copy number states around C19MC. 

Together, the high number of CNAs, recurrent polyploidy, and recurrent complex 

rearrangements suggest that ETMR genomes are structurally instable.
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Primary-relapse comparisons

To investigate which events are retained in relapses and therefore potentially tumor driving, 

we used WGS data of nine matched recurrences and analyzed allele frequencies of all 

detected SNVs in primary-relapse pairs (Supplementary Table 9). Overall, we found that 

only 51% (2138/4226) of all SNVs that are present at allele frequencies of at least 20% in 

the four matched primary tumors are also detectable at allele frequencies of 2% or more in 

the respective matching relapse (Fig. 3a). In addition, two out of four tumors did not have a 

single coding non-synonymous SNV detected in both primary tumor and first relapse, 

suggesting that acquiring somatic SNVs is not an early (driving) event (Extended Data Fig. 

7).

Relapsed tumors have a large increase in somatic SNVs as compared to primary tumors 

suggesting that new mutations may have been induced by treatment (Extended Data Fig. 8a). 

To investigate this, we compared mutational signatures between primary tumors and 

recurrences and observed a shift from mainly signature 1 and 16 (both associated to aging) 

in primary tumors to signature P1 in recurrences, which is a novel signature found in our 

pediatric pancancer cohort not associated to a mutagenesis process yet (Fig. 3b)13,14. To find 

the potential underlying mechanism we tested for mutational strand bias in somatic SNVs. 

No bias was detected in primary tumors, however, recurrences showed an increased bias of 

mainly C>A, C>T and T>A mutations towards the transcribed strand (Extended Data Fig. 

8b), previously also observed in tumors treated with platinum based agents and 

cyclophosphamide15. Comparing matched primary tumors with multiple recurrences 

confirmed that the composition of SNVs changed upon treatment, but remained similar in 

subsequent relapses (Fig. 3c). Furthermore, the trinucleotide counts changed towards a 

signature highly similar to signature P1 and a cisplatin induced mutational signature derived 

from cisplatin treated cell lines16 (Extended Data Fig. 8c, d), suggesting that the majority of 

acquired mutations in relapsed ETMRs is induced by cisplatin treatment.

Despite the poor conservation of SNVs there was a strong conservation of breakpoints 

between primary tumors and recurrences. On average 73% (96%, 54%, 63%, 80%, 

respectively) of all breakpoints were conserved between primary tumors and relapses, 

including all breakpoints surrounding and forming C19MC aberrations (Extended Data Fig. 

7). In the same case analyzed for shifts in mutational signatures, only one out of 110 

breakpoints in the primary tumor was not detected in any recurrence (Fig. 3d, e). These data 

suggest that formation of SVs are early events in ETMR tumorigenesis. Further supporting 

this observation is an increased density of conserved mutations in close proximity to 

breakpoints, which were enriched for C>T and C>G mutations, previously described in 

association with chromothripsis and replication stress (Extended Data Fig. 9)17. The process 

of forming breakpoints continues upon relapse and relapses gain many new SVs as well, 

which may have a role in tumor progression (Extended Data Fig. 7). Therefore, even though 

we cannot fully exclude that acquisition of sporadic SNVs, also in non-coding regions of the 

genome, might play a role in tumor formation, the high conservation of breakpoints and 

recurrent chromosomal instability is more likely to be driving ETMRs than the poorly 

conserved SNVs
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R-loop associated chromosomal instability

In recent years, multiple papers have described an association between the formation of R-

loops, structures that form upon stalling of RNA polymerase resulting in a displaced non-

template single stranded DNA loop, and DNA damage18. R-loops, which can form following 

disrupted helicase activity, can either facilitate or result from collision of transcription and 

replication and can potentially lead to chromosomal instability18,19. Interestingly, expression 

of DNA/RNA helicases and processes associated to helicase activity were highly 

upregulated in ETMRs suggesting a possible role for R-loops in the formation of 

breakpoints (Fig. 4a).

To investigate this, we applied prediction of R-loop forming sequences (RLFS)20 and 

performed DNA-RNA hybrid immunoprecipitation (DRIP) sequencing on the C19MC-

amplified BT183 ETMR cell line. To compare how well the datasets matched we compared 

RLFS and the DRIP-seq data to published DRIP-seq data for Ewing sarcoma (EWS)21 and 

observed a similar genome-wide pattern (Extended Data Fig. 10a, b). R-loops in ETMRs 

were mostly observed in regions surrounding the TSS, CpG islands and g-quadruplex 

forming repeats and were also strongly enriched in peaks observed in EWS and RLFS 

(Extended Data Fig 10c). Overall, we observed a high density of R-loops on chromosome 

19, but only in ETMRs we observed a large peak surrounding C19MC (Fig. 4b). Genome 

wide, many breakpoints overlapped with R-loops, and formation of breakpoints had a 

stronger association for regions that are enriched for R-loops, which was similar for 

breakpoints occurring in EWS but not for breakpoints occurring in other tumor entities 

(Extended Data Fig. 10d)22. Therefore, we compared the relative number of breakpoints in 

DRIP-seq peaks and RLFS as compared to regions outside R-loops and found a strong 

enrichment of all SV types, including those not forming the C19MC aberrations, in both 

DRIP-seq peaks and RLFS (Extended Data Fig. 10b, Fig. 4c). Compared to multiple other 

tumor entities the enrichment of breakpoints falling into R-loops or RLFS was specifically 

present in ETMRs (Fig. 4d). Furthermore, we observed an increased density of breakpoints 

in close proximity of R-loops and RLFS compared to other tumors which did not occur for 

other genomic elements (Extended Data Fig. 10e, f), most likely resulting from damage 

induced by stalled replication forks23. Finally, we also observed an increased density of 

SNVs falling into R-loops and RLFS, in line with the observed increased density of SNVs 

around breakpoints (Extended Data Fig. 10g). Together, these data suggest that R-loops may 

indeed play a role in generating breakpoints in ETMR, including the breakpoints observed 

around C19MC.

To validate the high levels of R-loops in ETMRs we stained five ETMRs for R-loops using 

the R-loop specific antibody S9.6 and compared them to staining in medulloblastomas 

(n=10) (Fig. 4e). ETMRs were highly positive for R-loops in the rosette structures while 

medulloblastomas were negative throughout the entire sections. Most ETMRs with or 

without C19MC amplification have miRNA related aberrations, and multiple miRNA 

processing factors have been associated with R-loop formation24,25, including DICER1 
which has shown to be directly involved in DNA repair and contains helicase activity26. To 

test this, we generated dot blots and immunostainings for R-loops and double stranded 

breaks (DSBs) in a Dicer1 knockout (Dcr-KO) mouse stem cell line and its isogenic control. 
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Indeed, both levels of R-loops and DSBs indicated by increased y-H2AX staining were 

increased in the Dcr-KO cells (Fig. 4f–h). In addition, sequencing detected chromothripsis 

events and many breakpoints in RLFS that resemble the phenotype in ETMRs around 

C19MC (Extended Data Fig. 10h, i). These data suggest that R-loops may cause the 

chromosomal instability in ETMRs and defective miRNA processing might play a role in 

generating the elevated R-loop levels.

Efficacy of PARP and TOP1 inhibition

Finally, we investigated whether R-loops could potentially be exploited for therapy. 

Previously, we reported that ETMRs are highly sensitive to inhibitors of topoisomerase, an 

enzyme that can resolve R-loops among other functions19,27. Other studies have shown that 

topotecan or irinotecan act as a TOP1 poison by covalently binding TOP1 to the DNA28, 

which can be further enhanced by trapping PARP1, as PARP1 is able to release TOP1 by 

parylation29. Therefore, we tested whether a combination treatment with PARP and TOP1 

inhibitors would lead to a further increase in R-loops and increased response to therapy.

First, we tested whether there is synergy between PARP and TOP1 inhibition in ETMR 

cells. Topotecan alone is effective with IC50 values of ~5nM while PARP inhibitors are less 

effective with IC50 values of ~10μM for Pamiparib (BGB-290) and ~15μM for Veliparib. 

Both PARP inhibitors, however, act highly synergistically when used in combination with 

topotecan and lead to a larger decrease in viability than monotherapy (Fig. 5a). Synergy and 

cell death are only observed once concentrations of topotecan were higher than 1.25nM 

suggesting that the synergy is mostly dependent on sufficient levels of topoisomerase 

inhibition (Fig. 5b).

Next, we investigated whether topotecan alone or combined with PARP inhibitors is 

correlated with R-loop levels. Topotecan treatment (6h) increased the number of nuclear R-

loops while Pamiparib had almost no effect on R-loops (Fig. 5c). Combination therapy 

induced R-loops at an even higher rate and caused more DNA damage as shown by y-H2AX 

staining. Quantification of the nuclear signals shows that y-H2AX and R-loop signals highly 

correlate, suggesting that an increase in R-loops increases the amount of DNA damage (Fig. 

5d). Together, these data show that PARP and topoisomerase inhibitors act synergistically in 

ETMRs and combination treatment could, after thorough in vivo testing, potentially be used 

as treatment for ETMR patients.

Discussion

Here, we present the molecular landscape of ETMRs at diagnosis and relapse, resulting in a 

set of hallmarks describing the entity (Fig. 6). We show that all ETMRs are molecularly 

similar, despite differences in histology, the presence or absence of C19MC amplification 

and their location in the brain. C19MC amplification is still considered the main driver based 

on its strong conservation and high recurrence. Moreover, we have identified DICER1 as the 

first predisposition gene for ETMR. Our data give a better insight in what is driving these 

tumors and how they change after treatment, largely because of the cisplatin treatment.
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miRNA expression profiles correlate strongly between ETMRs even though the underlying 

mechanism deregulating miRNAs may be different. A possible explanation for this might be 

that tumors with C19MC or miR-17–92 amplification oversaturate the miRNA processing 

machinery. This could potentially mimic deregulated processing by DICER1 and also 

explains why RNA transport, vital for miRNA processing and shown to be affected by 

miRNA saturation, is highly upregulated in ETMRs (Extended Data Fig. 3)30,31. 

Oversaturation of the miRNA machinery could also explain why all ETMRs regardless of 

amplification status show many structural aberrations since several members of the miRNA 

processing machinery, including DICER1 and DROSHA, have been associated to R-loop 

formation as well24,25.

Other mechanisms causing chromosomal instability may play a role as well. Breakpoints 

were enriched in RLFS, which are an intrinsic property of the genome, suggesting that R-

loops predispose certain loci to acquiring DNA damage. Especially since R-loops were 

found in close proximity of C19MC, there could be an event prior to C19MC amplification. 

Considering the early onset of the disease and strong conservation of SVs it is possible that 

there is a genetic predisposition that increases the levels of R-loops, which in turn causes 

breakage at sites that form R-loops, leading to C19MC amplification in ETMRs. Also, 

C19MC amplification itself might further increase the levels of R-loops causing the number 

of breakpoints to increase.

One such genetic predisposition is identified here through recurrent DICER1 germline 

mutations. With this finding, ETMR is added to the large spectrum of tumors that may arise 

in the context of the DICER1 syndrome32. The link between chromosomal instability, R-

loops and DICER1 mutations in ETMRs may occur in other cancers as well, providing a 

rationale for the cancer susceptibility seen in those patients. Indeed, tumors associated to 

DICER1 syndrome seem to frequently acquire CNAs33,34, but whether this is related to R-

loop formation remains to be elucidated. We recommend that ETMR patients and their 

families should consider genetic counseling for DICER1 syndrome, at least when C19MC is 

not amplified.

Presence of R-loops can also have therapeutic implications. A recent study in Ewing 

sarcoma has shown that R-loops may be associated with hyper transcription, which 

sequesters BRCA1 and prevents it from promoting double strand break repair21. That study 

explains why targeting these tumors with PARP inhibitors is successful. Here, we show that 

TOP1 inhibition can increase the levels of R-loops causing an increased amount of damage 

to cells already having high levels of R-loops. This mechanism may also be applicable to 

other drugs, providing potential novel treatment strategies.

Summarizing, by fully characterizing the events that drive ETMRs, we have provided a 

valuable resource for future ETMR research and potential novel therapies that could be 

further pursued to treat patients with this deadly tumor entity.
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Methods

Experimental model and subject details

All patient samples included in this study were acquired under informed consent according 

to the ICGC (www.icgc.org) guidelines or INFORM (www.dkfz.de/en/inform/) guidelines 

(for cases ET85 and ET86) and included all relapses from those tumors. For all included 

cases consent was approved by the review board of the contributing centers before shipment. 

Primary tumors were derived from patients that did not undergo radiotherapy or 

chemotherapy prior to surgical removal of the tumor. Material from relapses was derived 

from patients that received therapy as described in Supplementary Table 1 

(CHT=chemotherapy in all cases including cyclophosphamide and either cisplatin or 

carboplatin), (RT=radiotherapy).

Samples were included based on different ETMR histologies as described previously1 450k/

EPIC classification7,35 and amplification of C19MC by visual inspection of copy number 

profiles. Since many tumors with CNS-PNET histologies could be reclassified as shown by 

Sturm et al.6, tumors with CNS-PNET and pineoblastoma histologies were also included if 

there was sufficient evidence based on 450k/EPIC clustering. The presence or absence of 

C19MC aberrations, based on copy numbers, were validated in approximately half of the 

cohort of primary tumors (90 tumors) using FISH and/or whole genome sequencing (WGS) 

and mate-pair sequencing (MP-seq) when available.

All experiments involving cell culture of ETMR cells were performed using the BT183 cell 

line that was obtained from J.A. Chan and the characteristics of this cell line have been 

described in the original publication36. Cells were cultured in low adhesion cell culture 

flasks as spheroid cultures as was described previously36. The cell line was derived from a 

primary tumor of a 2-year old patient and was acquired under informed consent. DICER1−/

− and DICER1f/f mouse stem cells were obtained from ATCC (CRL-3220, CRL-3221) and 

cultured as specified by the manufacturer. All cell lines have been tested for mycoplasma 

contamination and were found to be negative.

Sample and library preparation for DNA sequencing

Out of the 70 primary tumors, we performed whole genome sequencing (WGS) for 20 cases, 

all with matched germline, and whole exome sequencing (WES) for 17 cases without 

germline to find (recurrent) genetic events that could potentially deregulate important 

pathways. In addition, we performed targeted sequencing for another 33 primary ETMRs 

and one matched recurrence, using a gene panel of 158 genes that were found recurrently 

affected in other brain tumors (Supplementary Table 4)37.

DNA was isolated from fresh frozen tumor material using either the Qiagen DNeasy Blood 

and Tissue kit or using the Promega Maxwell RSC Tissue DNA Kit (AS1610). DNA from 

the matching blood was extracted using the Qiagen Blood and Cell Culture Midi Kit or 

Promega Maxwell RSC Blood DNA Kit (AS1400) according to the provided protocol. For 

samples sequenced using targeted sequencing and methylation profiling of samples for 

which only FFPE material was available DNA was extracted using the Maxwell RSC FFPE 

kit (AS1450) following manufacturer’s instructions.

Lambo et al. Page 9

Nature. Author manuscript; available in PMC 2020 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.icgc.org/
http://www.dkfz.de/en/inform/


WGS libraries were prepared using the Illumina TruSeq Nano DNA LT Library Prep or 

TruSeq Nano DNA HT Library Prep Kit following the manufacturer’s instructions. Briefly, 

100 ng of genomic DNA was fragmented to ~350 bp using a Covaris ultrasonicator (Covaris, 

Inc.). The fragmented DNA was then end-repaired, size-selected using magnetic beads, 

extended with an ‘A’ base on the 3′ end and ligated with TruSeq paired-end indexing 

adapters. The adapter-ligated fragment libraries were enriched using eight cycles of PCR 

and purified 1–2 times using magnetic beads. All generated libraries were validated using 

the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific) and using Agilent 2200 or 4200 

TapeStation (Agilent Technologies). Libraries were sequenced on the Illumina HiSeq X 

(2×151 bp paired-end) according to the manufacturer’s protocol.

For samples ET1, ET12, ET16, ET19, ET20, ET30, ET31, ET66, ET68, ET71, ET72 and 

ET87 next generation sequencing libraries were created as described previously using 

Illumina, Inc. v2 protocols38. Libraries for those samples were subsequently sequenced 

using HiSeq 2000 v4 (Paired-End 125bp) instruments using three lanes on the machine 

achieving a comparable coverage to samples sequenced on the HiSeq X. The average 

sequencing coverage was 33.95X for tumor material and 34.99X for blood.

All samples sequenced for WGS were submitted to the DKFZ genomics and proteomics 

core facility and were only included for library preparation after passing all standard quality 

controls. Only samples with a DNA integrity (DIN) over 7 were included in the study.

Sequencing of samples using WES was performed by creating libraries using the 

IlluminaTruSeq exome enrichment kit following the manufacturer’s instructions after size 

selection. Size selection was performed by fractionation using a Covaris ultrasonicator and 

subsequent selection was performed using a 1.5% gel Pippin Prep cassette (Sage Science, 

Beverly, MA). Sequencing was performed at the Genome Quebec Innovation Centre, 

Montreal, Quebec using Illumina HiSeq 2000 instruments or at the ICGex NGS platform of 

the Institut Curie using HiSeq 2500 instruments for the two DICER1 mutated cases which 

were reported previously39.

Targeted sequencing was performed by creating libraries using the Agilent SureSelect XT 

technology. Libraries were sequenced using molecular barcode-indexed ligation-based 

sequencing at a NextSeq500 (Illumina) instrument19. For the targeted sequencing, we 

sequenced genes at an average coverage of roughly 100x for the genes listed in 

Supplementary Table 4.

DNA methylation array

DNA methylation profiling was performed as described previously6,7. DNA was extracted in 

the same manner as described for WGS using 500ng as input material for fresh frozen tissue 

and 250ng input material for FFPE tissue. Array data was created using the Infinium 

HumanMethylation450 BeadChip array (450k array) according to the manufacturer’s 

instructions (Illumina, San Diego, USA) at the DKFZ Genomics and Proteomics Core 

Facility (Heidelberg, Germany). For a subset of samples (described in Supplementary Table 

1) Methylation BeadChip (EPIC) arrays were used. CpG probes that were used for the 

analysis were filtered based on presence of a common SNP within five bases of the probe, 

Lambo et al. Page 10

Nature. Author manuscript; available in PMC 2020 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reads not mapping uniquely to the reference genome, probes mapping to the X and Y 

chromosome and reads not overlapping between 450K arrays and EPIC arrays.

Clustering was performed after correction of samples for the origin of the DNA (FFPE or 

Fresh frozen) using Surrogate Variable Analysis (sva)40 and only the 10000 most variable 

probes based on the full dataset after correction were selected for clustering. Distance was 

calculated using 1-Pearson correlation and linkage was calculated using average as measure. 

Subsequently, t-stochastic neighbourhood embedding (t-SNE) analysis using RTSNE 

(v0.13) was applied to generate the figures41.

Copy number profiling and analysis

Copy number profiles were created using the conumee package (v.1.3.0). For the analysis of 

copy numbers the average copy number change observed for chromosome 2 gains in 

annotated samples from Korshunov et al. was used as a cutoff to determine gains and 

losses1. Copy numbers were subsequently manually assessed to prevent false positives and 

false negatives due to differences in tumor cell content or ploidy. Calling of focal 

amplifications/deletions was performed similarly using three times the average copy number 

change for chromosome 2 gains followed by manual assessment. For samples with increased 

ploidy CNAs were filtered out manually that were likely due to ploidy changes to reduce the 

number of false positives.

Processing and alignment of DNA sequencing

Sequenced reads using WGS or WES approaches were aligned to the human genome 

version 19 (hg19) reference genome using bwa-0.7.8-r455 mem using default settings and T 

−0. Lanes were sorted using biobambam bamsort (version 0.0.148) and duplicate reads were 

removed using biobambam bammark duplicates. For data generated using the HiSeq X 

Picard (v1.125) (https://broadinstitute.github.io/picard/) was used to filter out duplicate 

mapping reads. Reads were removed if the phred-scaled base quality was below 25 taken 

over the length of the read. For targeted sequencing, reads were aligned to the human 

reference genome version 19 (hg19) using bwa mem v0.7.12-r1039. Duplicated reads were 

removed using Picard v1.113 and reads were sorted using SAMtools 0.1.17-r97342. Reads 

were removed if the phred-scaled base quality was below 25 taken over the length of the 

read.

Somatic SNV and indel calling

Detection of somatic SNVs and indels in WGS data was performed using our in-house 

pipeline Roddy (version 1.1.73). The pipeline is based on SAMtools (version 0.1.17-r973) 

mpileup and bcftools using parameter adjustments allowing for SNV calling38. Besides 

those filtering steps we applied additional filtering to remove low quality SNVs as described 

previously43. Variants were excluded that fell into ENCODE DAC blacklisted regions, Duke 

excluded regions, the hiSeqDepthTopPt1Pct track from UCSC genome browser or variants 

that had both the reference and altered allele annotated in DBsnp (version 135). In addition, 

we applied filtering criteria restricting the overlap of variants with features including tandem 

repeats, simple repeats, low complexity, satellite repeats, or segmental duplications to a 

maximum of two. Finally, all variants were filtered out that did not fulfill the heuristic 
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criteria of having at least five reads in the sequenced tumor covering the position, a coverage 

of more than 10 reads but less than 300 reads in the germline control, more than 3% of the 

reads of the alternative variant in the germline, no bases other than wildtype or variant at the 

position, at least one read on every strand supporting the variant (or more than five reads in 

total) and a variant allele frequency at least over 10%. The final results were annotated using 

ANNOVAR (2016–02-01)44 using data derived from Interpro (https://www.ebi.ac.uk/

interpro/ date: 2015–10-15), the CADD phred score45 (ljb26 date: 2014–09-25), cosmic 

(https://cancer.sanger.ac.uk/cosmic date: 2014–09-11), dbSNP (https://

www.ncbi.nlm.nih.gov/SNP/ date: 2015–11-02) and clinvar (https://www.ncbi.nlm.nih.gov/

clinvar/ date: 2016–03-02).

For targeted sequencing SNVs were detected using SAMtools mpileup and bcftools using a 

similar method described for WGS with few changes to increase stringency: variants were 

filtered out that did not have a minimum read depth of 20, a minimum RMS mapping quality 

of 30, a minimum of three reads supporting the variant, at least one read on every strand that 

supported the variant and an allele frequency of at least 10%. In addition, variants were 

filtered out that occurred in more than 0.1% of the 1000genomes population (http://

www.internationalgenome.org date: 2015–08-24) or in more than 0.1% of the nonTCGA 

ExAc population (http://exac.broadinstitute.org date: 2016–04-23). All coding reported 

SNVs, SNVs and coding indels detected using panel sequencing were annotated using 

ANNOVAR and benign variants were filtered out.

For indel calling (< 50bp) in targeted sequencing both SAMtools mpileup and Platypus 

(version 0.8.1) was applied as described previously38.The same criteria were applied to 

indels that were applied to SNVs including read depth, mapping quality, reads supporting 

the variant allele frequency, allele frequency in general population, filtering of benign 

variants and manual reviewing. Indel calling and SNV calling in exome sequencing was 

performed in a similar manner as targeted sequencing with an extra filtering at alignment: as 

two germlines were available both were combined to form a pseudo-germline and used for 

filtering variants.

Germline SNV and indel calling

Germline SNV and indel calling was performed as described previously using freebayes 
(https://github.com/ekg/freebayes v1.1.0) applying the same settings and using the same 

filtering criteria46 using a panel of genes described in Supplementary Table 4. Genes not in 

the panel were excluded from analysis. In brief, raw variant predictions were filtered 

(QUAL>20, QUAL/AO>2, SAF>1, SAR>1, RPR >1 and RPL >1), and normalized across 

patients with vt (https://genome.sph.umich.edu/wiki/Vtv0.5).

Putative germline mutations were defined as frameshift, stop gain/loss, start loss, canonical 

splice site, exon/gene deletions, and damaging non-canonical splice site variants or 

pathogenic missense variants based on Clinvar annotation. In addition, homozygous 

missense variants, or missense variants having a somatic second hit that are present in a 

functional domain with a CADD score higher than 20 were annotated as putative germline 

mutation.
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Putative germline mutations were filtered out if the minor allele frequency was higher than 

0.1% in any continental population based on the non-TCGA ExAC database the 1000 

genomes project or ESP (http://evs.gs.washington.edu/EVS/).

After annotation, filtered germline mutations were excluded from the analysis if annotated 

as benign in clinvar. In addition, variants with a reduction in allele frequency to less than 

40% in the tumor were excluded. Finally, we only took along variants that were recurrent 

within the cohort. The context of all remaining variants was reviewed manually using IGV to 

prevent false positives.

For investigation of non-coding regions we included regions 100 bps preceding the TSS 

(based on known protein coding genes defined in gencode v19) and putative enhancers 

(based on H3K27ac data from cultured H9 neural progenitor cells, Encode, 

ENCSR449AXO, Bernstein lab)47.

Structural variant discovery using paired-end sequencing data

For structural variant (SV) discovery, aligned reads were processed with Delly (version 

0.7.5) using paired-end mapping and split-read analysis21. Centromeric and telomeric 

regions of hg19 were excluded from analysis and to maximize specificity for the latter 

somatic filtering was run jointly on each pair of tumor sample and matched control. For 

germline SV discovery, we merged all SVs using the Delly merge command and genotyped 

all SV sites in all control samples. We then discarded SVs with an allele count of zero and 

filtered SVs using the germline mode of the Delly filter command. All germline SVs were 

then intersected with genes and protein truncating variants such as the DICER1 germline 

exon 19 deletion were manually inspected using IGV.

For somatic SV discovery, we first filtered each tumor sample against the matched control 

using the somatic mode of the Delly filter command. We then aggregated all somatic 

variants and genotyped them once more across all samples to fetch putative mismapping 

artifacts of high allele count. All somatic SVs that passed the second round of filtering 

against a panel of normal samples were collected for each tumor sample and overlayed on 

read-depth plots for manual inspection.

Mate-pair sequencing

Mate-pair DNA library preparation was carried out using the Illumina MP v2 reagents and 

protocol as described previously38. In brief, fragmentation of genomic DNA was performed 

using a Hydroshear device to an insert size of 4.5 kb followed by sequencing with Illumina 

HiSeq 2000 instruments. Alignment was performed using Eland (v2) retaining only uniquely 

aligned reads for downstream rearrangement analysis using Delly. Mate-pair sequencing was 

applied on complex rearrangements detected using WGS mainly as validation and 

reconstruction of the rearrangements but was not applied for discovery of structural 

alterations.
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Oncoplots

Oncoplots were generated using custom scripts. Events (either germline or somatic) were 

only included if the minor allele frequency in the non-TCGA ExAC population was under 

1% or unknown and the variant allele frequency was higher than 20%. In addition, every 

event had to fulfill one of the following criteria: the gene was either recurrently affected with 

at least one event present in the WGS cohort or a loss of function mutation within a 

recurrently affected pathway. Events were only included in the figure if events occurred in 

ETMRs without C19MC amplification, in multiple ETMRs with C19MC amplification or 

were loss of function (LOF) mutations in deregulated pathways. For the CNA oncoplot all 

CNAs were included after manual filtering for CNAs that were likely the result of increased 

ploidy.

Conservation between primary and relapse

Conservation of events between primary tumors and recurrences was performed using 

somatic calls of SNVs, indels and SVs. VAFs were recalculated at the defined positions 

using SAMtools mpileup followed by Varscan pileup2cns (version 2.3.9)48. Variants were 

only included if coverage in both germline and tumor was at least 10 reads, the coverage in 

both primary and recurrence was at least 10 reads, and no alleles other than wildtype or 

variant were detected in the germline, primary tumor or recurrence. In all sample 

combinations, more than 95% of SNVs had sufficient reads for further analysis. Retained 

events were defined as events having an allele frequency over 20% in both primary and 

recurrence, gained mutations in recurrences were defined as mutations that had an allele 

frequency less than 2% in the primary tumor and more than 10% in the recurrence and 

events that were lost in recurrence were defined as events with allele frequencies over 10% 

in primary tumors but less than 2% in recurrences.

Calculation of mutational signatures

Mutational signatures were calculated as described previously and compared to 30 

signatures described by Alexandrov et al. and the novel P1 signature described by Gröbner 

et al.13,14. In brief, somatic mutations and mutation context (adjacent bases) were extracted 

from the called SNVs and used to construct a catalogue of every possible context for all 

samples. By using the formula M (mutational catalogue) = P (mutational signature) × E 

(exposures: contribution of mutational process within the mutational landscape) exposures 

were calculated.

Signatures were calculated over both primary tumors and recurrences with a mutation count 

over 200. Whole exomes and samples sequenced using targeted sequencing were therefore 

excluded from analysis. Exposures present under 5% in a sample were removed and 

exposures over 5% were reconstructed to form 100% of the sample to reduce the amount of 

noise. Changes in mutational signatures between primary tumors and recurrences were also 

calculated using only the 30 signatures described by Alexandrov et al.14 (data not shown). 

Signature calculation was also performed de novo and five signatures were called. Compared 

to the 30 signatures described by Alexandrov et al. one novel signature was found. This 

novel signature only had a cosine similarity over 0.85 for signature P1 therefore the P1 

signature was included in the analysis instead of only the 30 classical signatures.
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Calculation of transcriptional asymmetry

Transcriptional asymmetry was calculated using the MutationalPatterns (v1.4.3) R package 

based on methods described in Haradvala et al.49,50. Mutations were considered that 

overlapped gene bodies and were combined from either all primary tumors or all relapses. 

Substitutions were assigned as transcribed when present on the same strand as the gene 

definition (UCSC, hg19) and untranscribed if present on the opposite strand compared to the 

gene definition. When multiple genes in different directions overlapped, events were 

excluded in this region. Events were split in different substitution types and asymmetry was 

calculated separately for every substitution type for both primary and relapse.

RNA profiling

RNA was isolated from 28 ETMRs using the Qiagen RNeasy mini kit or the Maxwell RSC 

simplyRNA Tissue Kit (AS1340) using homogenized tumor tissue. All RNA isolations were 

performed according to the manufacturers protocol. QC was performed using an Agilent 

Bioanalyzer 2100 instrument and samples with an RNA integrity index (RIN) over 7 were 

included. Samples were profiled using Affymetrix GeneChip Human Genome U133 Plus2.0 

arrays at the DKFZ genomics and proteomics core facility applying the manufacturers 

protocol for preparation, hybridization and QC.

Analysis of mRNA data

Samples were normalized and probe detection P-values were calculated using the MAS5.0 

algorithm (Affymetrix), followed by QC of the percentage of present calls and manual 

inspection of GAPDH levels and 5’ to 3’ ratios. All probes were filtered to contain every 

gene once in the analysis. Analysis of ATRT51, MB52 and CNS-PNET6 data was performed 

in the same way for every sample included in the analysis.

Differential expression was calculated using anova using a P-value of 0.01 as a cut-off 

(corrected using false discovery rate). In addition, an absolute fold change of 2 and a 

minimum log2 gene expression value of 5 in at least one of the compared sets was used as 

criteria for the definition of differentially expressed genes. Heatmaps were generated using 

supervised clustering of expression of 450 DNA repair genes shown in (Supplementary 

Table 4) and pathways described by Pearl et al.8. All samples were z-score normalized and 

clustering was performed using Euclidean distance. All mRNA expression data was 

analyzed using the R2 platform (http://R2.amc.nl).

t-SNE clustering was performed by using z-score normalized gene expression using only 

representative probes by applying HugoOnce (http://R2.amc.nl). Gene expression data was 

derived from a set of 580 samples deposited in the R2 platform and 28 ETMRs which were 

all processed in the same way. Using these samples a 50-dim PCA was performed followed 

by t-SNE clustering using RTSNE.

GO and KEGG enrichment analysis

GO term enrichment and KEGG pathway enrichment was performed using TOPPgene53 and 

filtered using significant terms also found using the DAVID algorithm (v6.8)54. For all terms 

a P-value cut-off of 0.05 was used and P-values were corrected using False Discovery Rate 
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(FDR), Bonferroni and Benjamini-Hochberg (BH). For GO term enrichment a gene limit of 

200 was chosen to acquire more specificity in the results. Processes were defined using 

similarity between GO terms that was calculated using NaviGO55 using a minimum co-

occurrence score of 0.05. For terms without similarity to any significant terms this was 

manually assessed.

Estimating cell populations from bulk mRNA sequencing

The Cibersort algorithm (v1.06)9 was applied to estimate the relative frequencies of different 

cell populations using normalized expression data. Signature genes were derived from the 

median gene expression levels of defined cell populations from the prefrontal cortex 

described by Zhong et al.10. Only informative genes were selected having a median 

expression higher than 1 in any of the subgroups. Both Relative and Absolute mode were 

applied using 500 permutations to estimate the relative abundance of each sample type.

Micro-dissection of FFPE material

Representative FFPE tissue sample of ET174 was histologically identified, targeted, and 

micro-dissected with a puncher for nucleic acid extraction. DNA was extracted in a similar 

manner as described for other FFPE material, RNA was extracted using the automated 

Maxwell system with the Maxwell 16 LEV RNA FFPE Kit (Promega, Madison, WI, USA), 

according to the manufacturer’s instructions. In order to evaluate FFPE RNA quality we 

used the percentage of RNA fragments > 200 nt fragment determination value (DV200). 

Only RNA samples with DV200 > 70% were included for sequencing on a NextSeq 500 

(Illumina). RNA-seq data was quantified using the quant option of kallisto (v0.43.0) using 

standard settings56.

miRNA sequencing and processing

Small RNAs were isolated as described previously57,58 from fresh frozen tumor material. In 

summary, total RNA is extracted using GITC/phenol extraction followed by 3’-adaptor 

ligation of barcoded adenylated adaptors. Samples were pooled in two sets of five samples. 

Subsequently, gel electrophoresis was used to isolate small RNAs (19–35nt) and purified 

using ethanol precipitation. Fragments were then amplified using standard PCR, isolated 

using gel electrophoresis and purified using ethanol precipitation. Samples were sequenced 

on a HiSeq 2000 v4 machine.

Small RNA-seq was aligned using Bowtie v1.00 (--seedmms 1 --maqerr 1000 --seedlen 21 --

norc -M 1 --best --strata) to mirbase 18 after Reads were selected by cutting off adapters 

using cutadapt 9.5 (-e 0.1 -m 18 -M 34 -O 8 TCGTATGCCGTCTTCTGCTTG) and taking 

reads between 18 and 34 nucleotides. Subsequently reads were counted using SAMtools 

0.1.17-r973 mpileup.

Analysis of miRNA data

Mature miRNA counts were quantified relatively to the total read count separately for both 

the 5’ (5p) and 3’ (3p) strand and the resulting RPM values were used in all subsequent 

analysis. Supervised clustering of miRNAs was performed using only significantly 

differentially expressed miRNAs between ETMRs with C19MC amplification and other 
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samples (excluding ETMRs without C19MC amplification) using adjusted negative 

binomial testing with the DESeq2 package(1.18.1)59. Samples were normalized using z-

score normalization and clustered using hierarchical clustering using average as method. 

Unsupervised clustering was performed after filtering for miRNAs that had an expression 

over 32 RPM in any included sample. Samples were normalized and clustered in the same 

way as the supervised analysis.

miRNA processing was quantified comparing the normalized levels of 3p mature miRNAs 

against the levels of 5p mature miRNAs using sequences provided by miRbase 1860. For 

every sample, RPM levels were compared for each 5p versus 3p miRNA and the mean value 

was calculated as processing ratio. miRNAs with multiple 5p or 3p variants were averaged. 

All miRNA data was compared against a set of 10 random samples per entity derived from 

unpublished ICGC data (Aichmuller et al., manuscript in preparation) that was processed in 

the same way as the ETMR data.

Analysis of R-loop levels

DNA:RNA hybrids were extracted from tissue derived from ETMR PDX models (BT183) 

that were treated using topotecan or saline as described in Schmidt et al.27. Tumors were 

subsequently frozen and pelleted using ultracentrifugation. DNA:RNA hybrids were 

extracted as described previously using the same protocol that is applied for cultured cells21. 

DNA was extracted using proteinase K followed by phenol/chloroform extraction and 

ethanol precipitation. Subsequently the DNA was fragmented using the restriction enzymes 

HindIII, EcoRI, BsrGI, XbaI and SspI (New England Biolabs). Digested DNA was 

subsequently incubated with anti-DNA:RNA hybrid antibody S9.6 (Merck, MABE1095) 

and immunoprecipitated using agarose beads. Bound DNA:RNA hybrids were eluted and 

incubated with proteinase K and cleaned with an additional phenol/chloroform/ethanol 

extraction. The DNA was subsequently sonicated and sequenced using a Hiseq 2000 

machine with a 50bp-single-read protocol. Each treatment condition was performed in 

duplicate and both RNASE H and the input was included as negative control.

DRIP-seq analysis

DRIP-seq data was aligned using bwa using standard settings to hg19. Aligned reads were 

normalized to the input signal using bamCompare (deeptools 3.0.2) using log2 fold change 

increase as output for visualization purposes61. Peak calling was performed using MACS 2.0 

(https://github.com/taoliu/MACS) using settings -g 2.7e9 -q 0.05, -B -m 2 30 and the input 

signal as background. Peak files were combined for each condition and each subsequent 

analysis was performed both for topotecan treated samples and untreated samples. Peak 

calling was compared to data from Ewing sarcoma21 and correlated to mRNA expression to 

ensure the quality of the dataset.

R-loop forming sequences (RLFS) were predicted using the qmRLFS finder (v1.5) tool20 by 

applying standard settings and using models m1 and m2 for both the human genome (hg19) 

and mouse genome (mm10) depending on the analysis. Both the RIZ and REZ were 

included in RLFS peaks.
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Calculating R-loop enrichments

For the analysis comparing the overlap of SVs with R-loops, overlapping SVs were defined 

as either the start position of the SV, the end position of the SV or both positions falling in 

either an RLFS or DRIP peak depending on the analysis. Duplicate breakpoints were 

excluded when overlapping between matched primary tumor and relapse. The analysis 

comparing breakpoints in R-loops against the rest of the genome was performed by taking 

the total number of SVs falling in R-loop regions and by comparing this to 10000 randomly 

generated regions of the same size, with the same number of regions as the R-loop regions. 

For the comparison against other tumor entities 68018 somatic rearrangements were used 

from the study of Kloosterman et al.22 and locations were compared to either RLFS or R-

loops derived from ETMRs. P-values were calculated using Fisher’s exact tests and 

corrected for multiple testing using BH correction. The same 10000 random regions were 

used for each entity and a P-value was calculated using Fisher’s exact test for every iteration 

and adjusted using Bonferroni correction. Only entities with more than 50 breakpoints were 

used for the comparison. For comparisons of R-loops with genomic regions ranges from 

both non-B-db 2.062 and repeatmasker 4.0.8. (http://www.repeatmasker.org/) were 

aggregated and the median enrichment over the input signal was calculated for 10000 

randomly selected regions of every DNA element.

FISH analysis

Fluorescence in situ hybridization was applied as described previously to validate C19MC 
amplification63. Briefly, two probes corresponding to the 19q13.42 and 19q13 loci were 

applied, utilizing the 19q13 probe as a reference. The minichromosome formed between 

chromosome 11 and 13 was validated using probes at the loci 11q22.2 and 13q31.3. Ploidy 

of 28 different ETMRs was validated in a similar manner using FISH probes at the 

chromosome 9 and chromosome 11 centromeres as those chromosomes were found to be 

relatively stable in our cohort.

Detection of R-loop levels

DNA:RNA hybrids were extracted from cell pellets of DICER1 WT and KO (Dcr-KO) cells 

after lysis for 12–24 hours, with a solution containing TE, SDS and proteinase K as 

described previously64. DNA:RNA hybrids were subsequently extracted using Phenol/

Choloform Isoamyl alcohol (Affymetrix, #75831) followed by phase-lock gel separation 

(Quantabio, 5prime phase lock gel light, #cat 2302820). DNA:RNA hybrids were 

subsequently purified using ethanol precipitation. DNA:RNA hybrids were diluted in 10x 

SSC buffer and loaded on a charged nylon membrane (Roche, 11209299001). Membranes 

were blocked in 1x TBS containing 5% skimmed milk and incubated overnight using an 

anti-DNA-RNA hybrid (S9.6) antibody (Merck, MABE1095) at a concentration of 1:1000. 

Subsequently an HRP linked secondary antibody (Santa cruz, sc-2005) was used followed 

by incubation with ECL (GE healthcare, RPN2232). Methylene blue staining (Sigma-

Aldrich, M9140) supplemented with 0.3 mM NaOAc was used as a loading control for all 

dot blots. Dot blots were developed using a chemoluminescence imaging system (Intas, ECL 

chemostar). Experiments involving dot blots were performed five times to ensure 

reproducibility.
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R-loop stainings for tumor material were performed on formalin fixed tissue slides of five 

ETMRs, five Group4 medulloblastomas and five WNT medulloblastomas using the same 

conditions as described by Gorthi et al.21 For all IHC slides representative pictures were 

taken in addition to pictures covering the entire slide.

In vitro drug response

Response to treatment with Pamiparib (BGB-290) (MedChemExpress, HY-104044) or 

Veliparib (Abbvie, S1004) and Topotecan (ApexBio, B4982) was evaluated using dose 

response curves. BT183 cells were plated in 96 well plates 24 hours before treatment. 2-fold 

increasing concentrations of the inhibitor were added with concentrations ranging from 

0.08nM-20nM for Topotecan and 156,25nM- 40mM for Pamiparib and Veliparib. 72 hours 

after treatment cell viability was measured using an automated plate reader after using 

CellTiter-Glo (Promega, G7570). Graphpad Prism was used to generate dose response 

curves. For combination treatment, the IC20 was determined using the dose response curves 

of single inhibitors and added to increasing concentrations of the other drug. Synergism 

between inhibitors was calculated by applying the Chou-Talay method as described 

previously65.

Immunofluorescence

BT-183 cells were grown on sterilized glass coverslips coated with Human Laminin (Sigma, 

L2020) and Poly-L-Lysine (Sigma, P8920) for 24 hours before treatment with either DMSO 

(0.6%), Topotecan, Pamiparib or both Pamiparib and Topotecan. Before fixation using 4% 

PFA spheres were washed with 0.5% NP-40 for five minutes on ice to increase the 

permeability. Subsequently, cells were permeabilized using 0.3% Triton-X-100 for 10 

minutes followed by one hour blocking with 10% donkey serum. Slides were incubated with 

primary antibody 1:100 for either y-H2AX (Abcam, ab11174) or S9.6 in 10% donkey serum 

overnight. Subsequently, coverslips were incubated with DAPI (1:1000) and Alexa Fluor 

488/568 (1:500) (Life Technologies). Coverslips were mounted on glass slides using 

mountant (Invitrogen, P36930) and imaged at a confocal microscope (Zeiss LSM 800). 

Representative pictures were taken at 400x magnification and processed using Airyscan 

processing (included in the Zeiss LSM 800 software) and applying the middle of 21 Z-

stacks. Red and green channels were normalized to the blue channel (DAPI) in all shown 

pictures.

Signals were quantified using ImageJ applying a custom-made macro over three random 

neurospheres having seven Z-stacks each for every treatment condition. Signal intensity was 

measured in separate regions by binarizing DAPI signal and using watershed image 

segmentation to generate regions that simulate cells within the neurosphere. Subsequently, 

background subtraction (rolling ball radius of 50 pixels) was applied on every Z-stack for 

every channel. For each channel the average signal per cell was calculated and the y-H2AX 

signal and S9.6 signal was normalized by DAPI signal per cell.

DICER1 WT and DICER1 KO cells were grown and mounted in the same way but were not 

grown on coated coverslips as cells were adherent. Representative pictures were taken at a 

630x magnification using the middle of 11 Z-stacks. Quantification was performed at a 200x 
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magnification using three representative regions with more than five cells using five different 

Z-stacks. Background correction, signal calculation and normalization was performed in the 

same manner as the neurospheres.

Statistics and Reproducibility

Statistical enrichment was calculated using Fisher’s exact tests for calculations of binary 

values and proportions unless stated otherwise. For comparison between continuous values 

Mann-Whitney U/Wilcoxon Rank sum tests were used unless otherwise stated in either the 

figure legend or method details. Multiple testing correction was performed using the 

Benjamini-Hochberg method unless otherwise stated in the figure legend. All statistical 

analysis was performed in R(v3.4.3) except for dose response curves which were calculated 

using Graphpad Prism 6. Unless stated otherwise, results from representative experiments 

were performed at least three times. Pictures shown in Fig. 4f, g are representative of three 

different regions each containing more than three cells, experiment is representative of three 

biological replicates. Dot blots in Fig 4h. are representative of five biological replicates. 

Dose response curves in Fig. 5a were based on three biological replicates for each 

concentration of every drug and combination of drugs. The experiment was repeated three 

times and a representative curve is given for each drug combination. Figures shown in Fig. 

5c, d are representative of three different regions each containing more than three cells, 

experiment is representative of three biological replicates.

Extended Data
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Extended Data Figure 1. Clinicopathological differences are not associated with molecular 
subgrouping.
a, t-SNE clustering analysis of DNA methylation profiles of 193 ETMRs. Samples were 

colored according to their clinical, histological or molecular annotation. b, Schematic 

representation of location (position of the circle), histological diagnosis (outer ring) and 

C19MC status (inner ring) of ETMRs. Circle size denotes the relative number of primary 

tumors that have been diagnosed in each part of the brain, each wedge representing one 
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tumor. Tumors could be assigned to multiple locations depending on the diagnosis. Tumors 

were excluded for which no information on the site of occurrence was available.
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Extended Data Figure 2. miRNA expression correlates strongly between ETMRs with or without 
C19MC amplification.
a, Supervised clustering of the 416 differentially expressed mature miRNAs (two-sided neg. 

binomial, BH adjusted p-value <0.05) between ETMRs (n=7) (excluding ETMRs without 

amplification) and other tissues (n=38). b, Unsupervised clustering of mature miRNAs with 

a minimum expression of 32 in at least one sample and a variance higher than 10 between all 

samples (n=294). Hierarchical clustering using average as distance measure was used to 

cluster the samples after values were z-score normalized. c-g, Regression of the median 
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expression of mature miRNAs derived from ETMRs (n=7) against normal brain (n=8), other 

entities (n=10 for all entities) or ETMRs without C19MC amplification (n=3). miRNAs that 

had a median expression under 32 RPM in either of the compared entities were excluded. 

miRNAs that were differentially expressed between ETMRs (with and without C19MC 
amplification) against other entities (two-sided neg. binomial, BH adjusted p-value <0.05) 

were highlighted. For each comparison, the Pearson correlation was calculated (p-value 

<0.0005 for all comparisons).
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Extended Data Figure 3. KEGG pathway enrichment in ETMRs.
a-b, Summary of KEGG pathway enrichment of ETMRs (n=28) against normal brain (n=38) 

(a) or 580 different brain tumors (b). Pathways are colored by similarity based on NaviGO 

co-occurrence scores55 and manual assessment. Significantly upregulated genes were 

calculated using ANOVA (FDR adjusted p-value <0.01).
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Extended Data Figure 4. ETMRs consist of at least two distinct subtypes of cells
a, Heatmap showing z-score normalized expression of 450 DNA repair genes and the 

corresponding pathways8 for 190 tumors of different entities including 28 ETMRs. 

Supervised clustering was used and samples were sorted by entity or C19MC amplification 

status. Entities include three ATRT subgroups, four MB subgroups, CNS EFT-CIC, CNS-

NB FOXR2, HGNET-MN1, HGNET-BCOR, ETMRs with amplification of C19MC (red) 

and ETMRs without amplification (blue). ETMR subsets were manually assessed based on 

DNA repair pathway expression. b, Debulking of mRNA expression using CIBERsort by 
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using the median expression of scRNA-seq data of the forebrain as gene signature10. The 

cumulative fraction of each cell type was calculated and samples were sorted according to 

the percentage of modeled neural stem cells. Samples were annotated based on the subsets 

derived from a. c, Boxplots showing expression of stem cell markers (HMGA2, LIN28A), 

astrocyte markers (AQP4, GFAP) and genes involved in the DNA damage response (WEE1, 

CHEK2) in ETMRs with high DNA repair expression (n=18) and low DNA repair 

expression (n=10). P-values were calculated using a two-sided Mann-Whitney U test (***= 

P<0.0005, **= P<0.005, *= P<0.05, NS= not significant). Boxes show the median, first and 

third quartile and whiskers extending to 1.5x the interquartile range. d, Distribution of 

histology annotation of 18 ETMRs for which these data were available divided into two 

subsets. The number of EBL phenotypes was significantly enriched in the high DNA repair 

expression group using a two-sided Fisher’s exact test (P-value = 3.7E-02). e, t-SNE 

clustering based on methylation profiles of a micro-dissected ETMR (ET174) (split in bulk, 

rosettes and neuropil) and 192 other ETMRs. f, Expression of LIN28A and AQP4 in rosette 

tissue and neuropil tissue of the same tumor. g, Copy number profiles of micro-dissected 

neuropil and rosettes from the same tumor. h, Fold change of expression of six markers in 

two matched recurrences normalized to the primary tumor.
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Extended Data Figure 5. Recurrent events in ETMRs without C19MC amplification.
a, Schematic representation of the translocation / amplification of a region on chromosome 

11 with the host-gene of the miR-17–92 miRNA cluster (MIR17HG) shown in red on 

chromosome 13. Regions were reconstructed using mate-pair sequencing. The actual 

amplified region is circular denoted by arrows on each end. b, Copy number profile of a 

tumor harboring the miR-17–92 cluster translocation / amplification. Copy numbers were 

derived from methylation array data with each dot representing a probe. Inset shows 

validation of both the chromosome 11 (YAP1; green) and chromosome 13 (MIR17HG; red) 

amplifications using FISH. c, Quantification of mature miRNAs in the miR-17–92 miRNA 

cluster (n=20) confirms that the ETMR (blue) with the chromosome 11 and chromosome 13 

amplification/translocation has higher expression of miR-17–92 cluster miRNAs. Each bar 

represents one tumor corresponding to the given entity. P-values were calculated using a 
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one-sided Mann-Whitney U test (*= P<0.05). d, Example of a copy number profile of a case 

showing clustered rearrangements around C19MC. This case did not have a C19MC 
amplification or DICER1 mutations. e, Copy number profile of an ETMR without C19MC 
amplification or DICER1 mutation showing an overall instable genome with many regions 

containing clustered breakpoints.
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Extended Data Figure 6. ETMRs recurrently show genomic instability
a, Oncoplot showing the co-occurrence of all CNVs separated by C19MC amplification 

status. b, Overview of copy number profiles of all ETMRs (n=193). Bars (gain, balanced, 

loss) add up to 100% for each chromosome arm. c, Overview of copy number profiles of all 

ETMRs with (n=170) or without (n=23) C19MC amplification. P-values were calculated 

using a two-sided Fisher’s exact tests and adjusted for multiple testing (BH) (*** P<0.0005, 

** P<0.005, * P<0.05, NS= not significant). d, Overview of CNVs in matched primary 

tumor and recurrence pairs for the most variable CNVs. Events (copy number changes, 
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clustered breakpoints or increases in ploidy) that were gained upon recurrence have a thicker 

outline. Percentages denote the percentage of matched samples acquiring a CNA or genome 

duplication. e, Example of a case in which polyploidy was validated using FISH (n=28 

tested samples), the chromosome 9 and 11 centromeres were used as probes. f, Examples of 

cases showing clustered breakpoints on chromosome 19. Chromosome 19 is shown as a 

circular representation, translocations to other chromosomes were annotated as single 

positions. All SVs were detected using mate pair sequencing.
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Extended Data Figure 7. Conservation of events for individual cases.
Summary of events occurring in seven matched primary tumors compared to recurrences 

(first second or third relapse) and two matched relapses. For every sample conservation of 

SNVs is given as a graph with the allele frequencies (AF) of the primary tumor on the x-axis 

and the recurrence on the y-axis. In the last panel two matched recurrences are shown with a 

recurrence on each axis. Boxes show events that are lost, conserved or gained. Each 

comparison has a table showing the total number of events in each quadrant (lost: AF 

primary >10% and AF recurrence < 2%, stable: AF primary >20% and AF recurrence >20% 

Lambo et al. Page 32

Nature. Author manuscript; available in PMC 2020 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and gained: AF primary < 2% and AF recurrence >10%). Conservation of SVs is given as a 

circular representation of the genome having the CNVs from the primary tumor in the outer 

rim and the recurrence in the inner rim. SVs were colored by detection in either only the 

primary tumor (red), only in the relapse (grey) or in both (blue). Each combination also has a 

Venn diagram showing the total number of SVs that were detected in the primary tumor, the 

recurrence or both.
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Extended Data Figure 8. Mutations in primary tumors and relapses
a, Boxplots showing the total number of SNVs or indels in primary tumors (n=20) compared 

to relapses (n=12). Boxes show the median, first and third quartile and whiskers extending to 

1.5x the interquartile range. We detected, on average, 1180 SNVs (range: 339–2544) and 

468 indels (range: 299 – 1026) in primary tumors and 5162 SNVs (range: 2992–7773) and 

847 indels (range: 554–1187) in relapsed tumors throughout the genome. In coding regions, 

there were on average 14 non-synonymous SNVs (range: 3 – 45) and two indels (range: 0 – 

7) in primary tumors and 59 non-synonymous SNVs (range: 37 – 92) and six indels (range: 

2 – 11) in relapsed tumors. b, Barchart showing the percentage of substitutions of either the 

combined primary tumors (n=20) or combined relapses (n=12) divided by substitution type 

and affected strand for SNVs residing in transcribed regions. Transcriptional asymmetry is 

defined as the difference between the amount of SNVs on the transcribed strand versus the 

untranscribed strand for each substitution type. Error bars denote mean ± s.e.m, P-values 

were calculated using two-sided Poisson tests (*** P<0.0005, ** P<0.005, * P<0.05, NS= 

not significant). c, Substitution type probability based on the 96 different trinucleotide 

contexts for a matched primary relapsed pair shown in d. compared to a cisplatin signature16 

and new pediatric cancer signature (P1)13. d, Cosine similarity between the cisplatin 

signature and other signatures (n=36). P-values were calculated using an M-test after 
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comparing all signatures pairwise (*** P<0.0005, ** P<0.005, * P<0.05, NS= not 

significant).
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Extended Data Figure 9. ETMRs have dense and strongly conserved C>T and C>G mutations 
around breakpoints.
a, Rainfall plot showing an example of kataegis around C19MC. Every point represents a 

somatic SNV colored by substitution type, the x-axis represents the position in the genome 

and the position on the y-axis represents the density of SNVs. b, Lollipop plot showing 

SNVs per 1kb in a region of 10000 bp surrounding breakpoints for all ETMRs. Pins 

represent the percentage of substitution types of all SNVs within 1kb, while the height of the 

lollipops represents the substitutions per kb. c, Barchart showing the percentages of 
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substitution types in regions 10kb around breakpoints (left, n= 543 SNVs) and the rest of the 

genome (right, n= 84991 SNVs). P-values were calculated using a one-sided Fisher’s exact 

test and annotated as *** P<0.0005, ** P<0.005, * P<0.05 or NS= not significant. d, 

Combined mutation density of four primary tumors colored by conservation in the matched 

recurrence (blue is conserved, grey is not conserved) as shown by a rainfall plot in the upper 

panel, density distribution is shown in the middle panel and breakpoint density is shown in 

the lower panel. e, Graph of allele frequencies (AF) of all primary (x-axis) versus relapse (y-

axis). Boxes show conservation (lost: AF primary >10% and AF recurrence < 2%, 

conserved: AF primary >20% and AF recurrence >20% and gained: AF primary < 2% and 

AF recurrence >10%) (n=2100 SNVs over 20% allele frequency in the primary tumor). P-

value was calculated using a two-sided Chi-square test f, Barchart showing the percentage of 

substitution types for SNVs in each quadrant (lost: AF primary >10% and AF recurrence < 

2%, conserved: AF primary >20% and AF recurrence >20% and gained: AF primary < 2% 

and AF recurrence >10%). g, Graph showing the ratio of conserved SNVs against not 

conserved SNVs in regions around breakpoints with increasing sizes. Conservation is 

defined as SNVs with an allele frequency over 20% in the primary tumor and an allele 

frequency over 20% in the recurrence, SNVs with an allele frequency lower than 20% in the 

recurrence but higher than 20% in the primary tumor were defined as not conserved. P-value 

between 10kb around breakpoints and the rest of the genome using a two-sided Chi-square 

test (n=2100, p-value 5.4e-11).
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Extended Data Figure 10. Context of R-loops and DNA damage in ETMRs and after Dicer1 KO
a, Genome-wide density of R-loops in ETMRs, R-loops in Ewing sarcoma (EWS), RLFS 

and gene density. b, Representation of SVs genome-wide and their breakpoint context. Outer 

layers show the density of DRIP peaks (blue) or RLFS (red). The inner part shows all SVs 

from ETMRs sequenced using WGS, depicting SVs that fall in DRIP-seq peaks (blue) or 

RLFS (red). c, R-loop signal detected in genomic regions sorted by R-loop signal (including 

elements from non-B-DB62 and repeatmasker). R-loop signal was determined for 10000 

randomly selected elements for every type of genomic feature (n=21). Violin plots depict 
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kernel density estimates and represent the density distribution d, Genome-wide association 

of breakpoints with genomic regions sorted by R-loop signal shown in c. Genome-wide 

associations were calculated as distance to nearest element compared to a set of 10000 

randomly generated breakpoints. Enrichments were calculated for EWS breakpoints66 and 

breakpoints from other entities22 (reference set). P-values were calculated using a two-sided 

Mann-Whitney U test and adjusted for multiple testing (BH). e, Density of distances 

between genomic regions and breakpoints detected in ETMR, EWS, random breakpoints 

and reference breakpoints. f, Total percentage of breakpoints within 1kb of genomic regions. 

g, Enrichment of SNVs (n=85534) in ETMR R-loops (n=16002 regions) and RLFS 

(n=85534 regions) compared to random regions of the same size. P-values were calculated 

using a two-sided Chi-square test (*** P<0.0005, ** P<0.005, * P<0.05, NS= not 

significant). h, Genome-wide distribution of mouse RLFS and breakpoints occurring in 

DICER1 KO cells compared to WT. The outer rim shows the genome wide density of mouse 

RLFS, the inner rim the CNAs that were found between WT and KO and the inner part 

shows the SVs that were detected between WT and KO. Breakpoints falling within RLFS 

are highlighted in red. i, Copy number profiles of an example of a translocation coupled to 

duplication in RLFS which were found in DICER1 KO compared to DICER1 WT cells. Red 

arrows depict the location of translocation/duplication.
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Figure 1. ETMRs regardless of C19MC amplification show high molecular similarity
a-b, t-SNE clustering using either DNA methylation (a) or mRNA expression data (b). 

Colors represent different tumor entities classified as described previously7. c, Violin plot 

showing log2 transformed expression of C19MC miRNAs (n=56) in ETMRs and other 

tissues. P-values were calculated using two-sided Mann-Whitney U tests (***= P<0.0005). 

Boxplots show the median ± interquartile range, whiskers extend to 1.5x the interquartile 

range, violin plots depict kernel density estimates and represent the density distribution.
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Figure 2. ETMRs without C19MC amplification recurrently harbor miRNA related aberrations
a, Oncoplot showing somatic events occurring in ETMRs. b, Overview of identified 

DICER1 mutations. Alternating blue colors represent exons, yellow bars represent domains 

and pins represent the different aberrations found. c, Quantification of miRNA processing 

using the median ratio between 3p and 5p miRNAs (n=375), each bar representing one 

tumor. P-values were calculated using a one-sided Mann-Whitney U test (*** P<0.0005).
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Figure 3. Primary/relapse comparison reveals poor conservation of SNVs but high conservation 
of SVs
a, Graph depicting allele frequencies of combined SNVs found between four primary tumors 

and matched initial relapses. Boxes represent SNVs that are gained, conserved and lost upon 

relapse. b, Analysis of mutational signatures of primary and relapsed tumors based on 

previously defined mutational signatures13,14. c, Radial plot depicting log2 fold changes of 

the somatic SNV burden between primary tumor (PRIM) and subsequent relapses (REC1 

and REC2) colored by exposures shown in b. Number of mutations in primary tumor was set 

to 1 for visualization purposes. d, Venn diagram showing the overlap of breakpoints between 

a primary tumor and matched relapses. e, Circular representation of the genome of SVs and 

CNAs in a primary tumor with two matched recurrences shown in d. The outer rim 

represents, from outer to inner, the CNAs found in the primary tumor, the first recurrence 

and second recurrence. The middle part represents the different SVs found between primary 

tumors and recurrences. Chromosome 19 and X have been enlarged.

Lambo et al. Page 48

Nature. Author manuscript; available in PMC 2020 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Breakpoint context reveals a possible role for R-loops in initiating ETMRs
a,Schematic representation of GO-term enrichment. Circles represent GO-terms, sizes 

enrichment and colors groups based on similarity scores (Co-occurrence Association Score 

>0.05) (Supplementary Table 3). b, Enrichment in DRIP signal around C19MC (fold 

enrichment over input). c, Density of ETMR breakpoints (n=2301) overlapping DRIP-peaks 

(left; n=16002) and RLFS (right; n=85534) compared to random regions of the same size. P-

values were calculated using a two-sided Chi-square test (***= P<0.0005). d, Enrichment of 

breakpoints overlapping RLFS compared to 10000 randomly generated sets of regions of the 

same size for ETMRs and other entities22. Boxes show the range (median, first and third 

quartile) of BH adjusted P-values calculated using one-sided Fisher’s exact tests, whiskers 

extend to upper and lower limits of the data (90% and 10% respectively). e, 

Immunohistochemistry pictures of full slides (left) and magnifications (right) for ETMRs 

(n=5) and a representative case of WNT (n=5) and Group4 MB (n=5). f, 
Immunohistochemistry of WT and DCR-KO cell lines stained for DAPI (blue), S9.6 (red) 

and y-H2AX (green). g, Quantification of signals shown in f, in mean signal per cell (n=255 

WT cells, n=227 DCR-KO cells), normalized to DAPI signal. P-values were calculated 

using a two-sided Mann-Whitney U test (***= P<0.0005). Boxes show median, first and 

third quartile and whiskers extending to 1.5x the interquartile range. h, Dot blot of DNA-

RNA hybrids extracted from WT and DCR-KO cells, ssDNA was used as loading control.
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Figure 5. ETMR cells are sensitive to combination therapy with PARP and TOP1 inhibitors
a, Dose response curves of ETMR cells treated with either Pamiparib or Veliparib, 

Topotecan and a combination of both drugs, P-values were calculated using two-way 

ANOVA. Error bars denote mean ± s.e.m. b, Calculation of synergy using the Chou-Talay 

method of drug treatments shown in a. c, Immunohistochemistry of ETMR cells stained for 

y-H2AX and S9.6. Cells were treated using IC50 concentrations of every drug or 

combination. d, Quantification of signal shown in c, in mean signal per cell (n=59 DMSO 

treated, n=158 Pamiparib treated, n=88 Topotecan treated, n=20 Combination treated cells), 

normalized by the total DAPI signal in the cell. P-values were calculated using two-sided 

Mann Whitney U tests (***= P<0.0005).
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Figure 6. Hallmarks of ETMR
Schematic summary of ETMR characteristics
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