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Numerical Simulation of Sound Propagation Through 
Time-Dependent Random Media 

D. Juve, Ph. Blanc-Benon, and K. Wert
Laboratoire de Mecanique des Fluides et d' Acoustique,

U.M.R. C.N.R.S. 5509, Ecole Centrale de Lyon,
B.P. 163, 69131 Ecully Cedex, France

The propagation of acoustic waves through spatially random, time-independent media 
has been extensively studied in recent years using a direct simulation approach. In this
paper we present an extension of this technique to media that slowly evolve in time. 
A "classical" parabolic equation is used for computing the acoustic field, but with time­
dependent coefficients determined eitl1er by a fluid dynamics code (Large Eddy Simulation) 
or with time-dependent Random Fourier Modes. 1 Introduction 

An acoustic wave propagating through a turbulent atmosphere is significantly affected by the vari­
ation in the value of the refractive index along the propagation path. The influence of temperature 
and wind velocity fluctuations has been demontrated in many experimental studies. In recents years 
several authors have taken into account the effect of turbulence on sound propagation through numer­
ical simulations for realistic cases. As an example, for sound propagation over long distances when 
strong negative vertical sound-speed gradients refract sound upward, it has been confirmed that the 
increase of the mean sound-pressure level in the shadow zone is due to the scattering of sound by 
turbulence. Currently, the numerical simulations are based on a parabolic equation with a random­
in-space-but-static index of refraction (frozen turbulence hypothesis). In this paper we describe some 
possible extensions of the previous analyses to take into account the (slow) evolution in time of the 
propagation medium. 

This paper is organized as follows. In section 2 we describe the method used to compute sound 
propagation through a random medium, modelled as a series of static, independent realizations. In 
section 3 we give typical results obtained with this technique for atmospheric propagation. Section 4 
presents the extension of the method to slowly varing time-dependent turbulence. Results are given for 
two different methods of generating the evolving random field: Large Eddy Simulations, and Random 
Fourier Modes. The paper ends with a conclusion. 
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2 The "direct" numerical simulation of sound propagation through 
turbulence 

The classical method of handling the propagation of waves through random media relies on a sta­tistical approach. Starting from a parabolic approximation of the Helmholtz equation with a random refraction index, equations are deduced for the various statistical moments of the field: mean intensity, spatial coherence function, etc. However, to obtain equations in closed form, a priori hypotheses have to be made about the correlation of the field ( delta-correlation along the mean direction of propa­gation). Furthermore, the theory has been essentially developped for an homogeneous deterministic medium on which random fluctuations are superimposed. No theoretical results are available when the deterministic part of the refraction index is varying with height or when reflections occur on an impedance surface, as is the case in sound propagation through the atmosphere. In recent years, a different approach has been developped to overcome these limitations ( Gilbert et aJ,7 Juve et a,]8 ). A deterministic wave equation is solved for a series of realizations of a simulated turbulent field; sta­tistical results are then obtained through ensemble averaging. In our group, we have developped a new strategy to construct the synthetized turbulent fields (Random Fourier Modes method); its main advantage is the possibility of easily generating vector (velocity) random fields in addition to scalar ones.2 In most studies, the Helmholtz equation with random index of refraction is generally accepted: 
[v2 + k5 (1 + 2µ(x))) p' (x) = 0 

µ (x) = _ Ux (x) _ T'(x).co 2T 
(1) 
(2) 

where p' (x) denotes the spatial dependence of the pressure,k0 is the acoustic wave number and µ (x)is the random part of the index of refraction, which is related to the fluctuation of the temperature 
T' and to the component u1 = Ux of the velocity fluctuation in the direction of propagation x. c0 and T are, respectively, the sound speed without turbulence and the mean temperature. The Helm.holtz equation is then approximated by a parabolic, one-way equation solved through a marching algorithm. For example, the "standard" parabolic equation can be used. Assuming that the spatial dependence of the acoustic pressure has an envelope ill (x, p) slowly varying with x: 

p' ( x) = p' ( x, p) = ill ( x, p) exp ( ikox) (3) 
wherep is the lateral distance. The Helmholtz equation is tranformed into: 

(4) 
In practice more efficient, wide-angle equations are used, solved through finite difference or Fourier techniques. Results have been obtained in the case of a homogeneous deterministic background for the intensity fluctuations at one or two points, as well as the spatial transverse or longitudinal correlation function. Most of the computations have been conducted in 2D, but some limited results are also available for the 3D case (3 and4). In the following section we describe some of the results obtained 
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along this line for atmospheric sound propagation. 

3 Some examples of _sound propagation through a random atmo­
sphere 3.1 Modelling of the random turbulent field 

Here the medium is to be modelled by a sequence of independent realizations of a frozen random 
field. Following Kraichnan,15 the velocity at a given point x is simulated by the sum of a limited
number N of incompressible random Fourier modes 

U (x) = I: Un cos [kn.X + 'if!n] ( 5) 
n=l 

A similar expression is used for scalar fluctuations (temperature fluctuations for example): 

T' (x) = I: Tn COS [kn.X + <Pn] (6 ) 
n=l 

The direction of the wave vector kn and the phases '¢In, <Pn are independent random variables with 
uniform probability distributions, resulting in homogeneous, isotropic fields. The amplitude of each 
mode is considered to be a deterministic variable whose value is set according to the energy spectrum 
under consideration. The most used forms are the Gat1.ssian-derived spectrum ( corresponding to a 
Gaussian longitudinal correlation function), and the von Karman spectrum. Examples of simulated 
scalar fields are shown on Fig. 1 

With the Gaussian spectrum, characterized by one single scale L , blobs of size roughly equal to L 
are clearly seen with smooth transition between hot and cold regions. In the case of the von Karman 
spectrum, characterized by an outer scale Lo (large eddies), an inner scale lo ( small eddies) and a sig­
nificant inertial range between them (Kolmogorov -5/3 law), the behaviour is markedly different: The 
map displays both large and small structures; the boundaries between hot and cold zones are highly 
twisted and reminiscent of fractal curves. These differences in the spatial structure of the index of 
refraction have been shown to strongly influence the sound scattered by turbulence in shadow zones.11 3.2 Sound propagation in an upward-refracting atmosphere 

In this paragraph we present two types of results obtained using the approach described above and 
pertaining to the propagation of sound waves in an upward-refracting atmosphere. In such conditions, 
a deterministic shadow zone appears at short distance from a near-ground source. For a receiver 
located in this zone, there is no direct ray coming from the source, and energy can penetrate into the 
shadow only through diffraction effects. A deterministic parabolic equation computation shows that 
the predicted levels are well below measured values. When the random nature of the atmosphere is 
correctly taken into account, our simulations lead to a very good agreement with the experimental 
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Figure 1: One realization of the refraction index field. The figure on the left is calculated using a 
Gaussian-derived spectrum, and the figure on the right is calculated using a von Karman spectrum. 

data. This is illustrated on Fig. 2 for two values of the frequency and for "weak refraction" conditions 
(Wiener et a/16 ). 

Results for other refraction conditions and details of the computations are given in Chevret et aJ.6 

More complex acoustic quantities are also easily obtained with the direct simulation method. As an 
example, we consider in Fig. 3 the evolution of the normalized squared pressure amplitude computed 
for each of 600 realizations of the turbulent field. For a receiver located in the shadow zone, the 
squared pressure displays an intermittent evolution, with sporadic peaks of very high level ( up to 
100 times the mean value). The associated amplitude distribution is very far from a Gaussian (the 
classical distribution law in the region of small perturbations) and is well approximated by a Gamma 
distribution, see Fig. 4 . Experimental studies (13) in the atmosphere have indeed demonstrated the 
intermittent character of the received sound amplitude in a shadow zone. It is then tempting to 
interpret the numerical results as a time series; but it must be remembered that every realization 
is independent from the other, and that the numerical results can only be interpreted on a statis­
tical basis. To compare to the experimental work, we have developped a time-dependent numerical 
simulation, which we describe in the following section. 4 Simulation of sound propagation through time-dependent tur­bulence 
4.1 Characteristic time scales 

The usual static approach considers the turbulent field as frozen during the transit time of the 
acoustic wave. To relax this restrictive condition, we adopted an heuristic point of view. The strategy 
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Figure 2: Relative sound pressure level: comparisons between the Wiener & Keast measurements (• ),a 
deterministic calculation (- - - -) and our model (--) ( h s = 3. 7 m, hr = l. 5 m, a = 300000 N X m -4 X s,
(µ2 ) = 2 x 10-6, L = 1.1 m ). The left-hand plot is for weak refractive conditions with f = 424 Hz,the
right-hand plot is for weak refractive conditions with f = 848 Hz. 
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Realization number Figure 3: Normalized mean square pressure in the deep shadow zone calculated with the same param­

eters as considered in the experiments of vViener and Keast (f = 848 Hz, hs = 3.7 m, hr = 1.5 m, 
r '.:::'. 300 m, u = 300000 Nxm-4 xs, (µ2) = 2 x 10-6, L = 1.1 m )
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0.1 Normalized amplitude (A/crA) Figure 4: Amplitude distribution (-) theoretical gamma law and ( •) our computations with the 
same parameters as considered in the experiments of Wiener and Keast (J = 848 Hz, hs = 3.7 m,hr = 1.5 m, r ':::'. 300 m, u = 300000 Nxm-4xs, (µ2 ) = 2 x 10-6, L = 1.1 m )
can then be summarized as follows. A wide-angle parabolic wave equation in the frequency domain 
is used, but with coefficients depending on time. When the marching algorithm arrives at position x = N 6-x, we simply update the random part of the index of refraction; that is, the Ux component
of the velocity at point x is evaluated at the associated mean propagation time t = N 6-x / c0 plus
the emission time. It is then possible to record the time evolution of the acoustic pressure at a given 
location. This simple approach can be justified by an analysis of the characteristic time scales for the 
acoustic wave and of the turbulent field. As an example for a distance of 1500m, the transit time tt 

of the acoustic wave is about 5s; the characteristic global time scale for the evolution of turbulence 
( eddy turn-over time) is given by t9 = L / u', where L is the integral scale and u' the rms value of the
velocity fluctuations. For atmospheric applications L and u' are in the range 1-lOm and 0.1-lm/s,
so that t9 and tt are of comparable value. But it can be argued that what really matters for con­
sidering the random medium as a series of independent realizations is that t9 be large compared to 
the transit time through a correlation length. The ratio between the global turbulent time scale and 
this transit time is simply the turbulent Mach number and is therefore of order 10-3_ For evaluation 
of the phase fluctuations of acoustic waves, this reasoning seems correct as they are governed by the 
largest turbulent structures (12). However it is also known that the amplitude fluctuations are due to
smaller turbulent structures. The time scale of these structures is given by tk = 21r / ku' (Heisenberg
time scale), where k is the modulus of the turbulent wave vector (the "size" of the structure is 21r /k). 
In the atmosphere, the range of values of k is very large,. extending roughly from 21r / L to 21r / lo, lo
being of the order of millimeters (Kolmogorov length scale). However the very fine structures bear 
little energy and their role is limited by diffraction when they are much smaller than the acoustic 
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wavelength >. of interest. Taking a minimum effective scale of >./10, with f=3400 Hz and u'=lm/s, 
one obtains an estimate of the shortest "influential" turbulent time scales equal to 0.0ls; during this 
time, an acoustic wave has travelled approximately 3m. So considering the random field as effectively 
time-independent for spatial steps smaller than this value for frequencies up to several kiloHertz seems 
very reasonable. The only remaining problem is now to generate a realistic time-evolving velocity field 
at a reasonable cost. 4.2 Large eddy simulations 

The first idea is to appeal to a fluid mechanics approach. Solving the full Navier-Stokes equations 
is not feasible due to the extended range of turbulent structures of interest; for atmospheric studies 
only the Large Eddy Simulation approach (LES) seems appropriate. The basic idea in LES is to 
solve equations only for the largest scales of the flow, which are often most significant for the transfer 
of momentum or heat. Filtered Navier-Stokes equations are written for the largest turbulent scales 
(resolved scales), in which the smaller scales intervene due to the non-linear structure of the fluid 
mechanics equations. These smaller scales have to be modelled, often as an extension of the eddy 
viscosity concept (Lesieur9). A recent example of application of LES for air-pollution dispersion is 
given by Nieuwstadt et al.1° The typical numerical grid is 200*100*100 points for a physical domain 
of size 8km*2km*lkm; based on the Nyquist criterion, the minimum resolved scales are then of order 
10 to 40m. We apply such an approach to the propagation of acoustic waves of frequency lkHz in 
a "box" of homogeneous turbulence of dimensions 36m*36m*200m with a resolution of 23*23*160 
points (resolved scales larger than 1.5m). The computations have been done using a finite-volume 
code (TRIO-VF). As an initial condition, a velocity field having an r.m.s. magnitude of 3m/ s and 
integral scale of 5m was generated using the tehcniques described in section 3.1. This field was 
evolved in time for approximately 4 eddy turnover times (based on the initial conditions) to allow 
the artificial structures introduced by the initial field to be replaced by those governed by the N avier­
Stokes equation (see Fig. 5). At this point the r.m.s. velocity had reached lm/s, and the acoustic 
calculation commenced. 

Acoustic computations have been done with a wide-angle 3D parabolic equation code based on 
the split-step Fourier algorithm first described by Thomson and Chapman5

; the FFT was done on 
a 256*256 points grid (tly = tlz = .14m, ie 2.5 points per wavelength) with a marching step of 
tlx = 2m. The source consisted of a plane wave of unit amplitude and lkH z frequency introduced at 
the end ( x = 0) of the "box". Results are shown in Fig. 6 for the amplitude of the acoustic pressure
in a plane located at 200m from the source. The two plots are snapshots taken at two times separated 
by 4.7s. 

Large blobs of amplified or rarefied sound are visible, but no fine structure of the field is apparent 
(say for dimensions less than lm). The two plots display significant differences, but the time-evolution 
of the received pressure at a given location (not shown) proved disappointing. Only very slow vari­
ations were present; in fact the characteristic time scale of the smaller resolved eddies is about 1.5s, 
and this appears to be far too large a value for acoustics; the problem being that we have no acoustic 
modelling for the role of the smaller turbulent structures. · Of course it is possible to increase the 

7



10.0 

0.0 

-10.0 

-10.0 

-1.5 -0.5 

0.0 

Y(m) 

0.5 

ul (mis), t = 7.72 s 

10.0 

1.5 

Figure 5: One instant in time of the velocity component in the direction of propagation, ux, obtained 
from the LES simulation. A plane perpendicular to the propagation direction is depicted. 
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spatial resolution of the LES code ( the number of  grid points being around 105); but for acceptable 
computation times the number of points in each direction can at most be increased by a factor of 
3. This seems to be too small for describing a significant part of the inertial range of the turbulent
spectrum; and the problem would be even more dramatic if full scale application would be considered.
So we turned to a different approach, based on an extension of the Fourier modes technique described
above.4.3 Time-evolving Fourier modes 

The basic idea is to add a time dependence to the static Fourier modes described in section 3. 
Following Bailly et al (1) (see also Drummond et aJ14) ,  we simulate the velocity at point x as: 

U (x, t) = E Un COS [kn. (x - tUc) + '1/Jn + Wnt] CT n (7) n=l 
Because of the fluid incompressibility kn is normal to its associated Fourier contribution Un. The field 
.isotropy in 3D requires that the directions of kn and Un have the following p.d.f. 

P(¢) = �
7r 

P(0) = � sin 0 1 
P(a) = 21r (8) 

with O � 0 � 1r, 0 � ¢ � 1r and O � a � 21r. The field homogeneity is obtained by selecting '1/J from a 
uniform p.d.f. between O and 21r. The modulus of Un is such that: 

with (9) 
E(kn) is the 3D kinetic energy spectrum, which is approximated by a von Karman expression: 

u2 (k/ke)4 [ ( k ) 
2
] E(k) = Ak 1716 exp -2 k e [1 + (k/ke )2] 'f/ 

(10) 

where kri is the Kolmogorov length scale. The two parameters A _ a.nd ke are adjusted so as to give
the desired total energy and integral length scale. We consider a temporal evolution of each mode 
governed by a circular frequency Wn . This frequency is a random variable whose mean value is related 
to the turbulent wave number through the Heisenberg formula: w0 = k * u'; the pdf of Wn is chosen as
a Gaussian according to: 

1 ( (w - w  )2 )
g ( w) = ,v'27r exp - 2 / 

Wo 7r Wo 
(11) 

This synthetic turbulence model has been successfully applied to the study of the generation of 
noise by turbulent flows (1 ) .  In Fig. 7 we have plotted the spatial evolution of the "effective" component 
of the velocity fluctuation ux, computed with the time-evolving Fourier modes. 

The integral scale is 5m ( corresponding wavenumber equals to 1.25 ), the r .m.s. value of the velocity 
fluctuations is lm/s; 100 modes have been distributed between kmin=.l and kmax=lO. Comparison 
with the LES results (see Fig. 5) reveals that much smaller turbulent structures can be represented 
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Figure 7: One instant in time of the velocity component in the direction of propagation Ux obtained 
using the time-evolving random Fourier modes model. A plane perpendicular to the direction of the 
acoustic wave propagation is depicted. 

in this way. The amplitude of pressure fluctuations ,  obtained for th� s.3:me conditions used in the 
LES computations are shown (save for the marching step:�x = lm), in Fig. 8 for four values of the 
observation time. Consecutive snapshots are separated by 1.2s. It is clear that, in reference to the 
LES results (Fig. 5) fluctuations of smaller spatial scales are now visible. 

However, it can be noted that the differences between LES and RFM are less striking for the 
acoustic field than for the velocity field. A sort of filtering effect takes place, so that there is very 
low acoustic energy for structures smaller than around lm. As a final result we display on Fig. 9 the 
time evolution of the normalized squared pressure at a point located at the end of the computational 
domain (x=200m). The computation has been done for 128 points with a time step of 80ms. Even 
if the sample is relatively short compared to the characteristic time scales of the turbulence field 
( eddy tum-over time equals to 5s ), this plot demonstrates the large variability of the amplitude of 
the received signal: Periods of high intensity alternate with other periods where the amplitude is near 
zero. The frequency spectrum of the amplitude fluctuations ( Fig. 10 ) ,  averaged over the plane at 
x=200m, shows that most of the energy is concentrated in the low frequencies (below lHz); for the 
highest frequencies, a power law is apparent with a variation in 1-5/3 . 5 Conclusion 

In this paper we have presented a first approach to the numerical simulation of the propagation of 
acoustic waves through time-dependent random media. Two methods for generating the random index 
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of refraction field have been considered: Large Eddy Simulations and an extension of the Random 
Fourier Modes method. The LES approach suffers from a resolution limitation, as small turbulent 
structures, in the inertial range zone of the spectrum, seem to play an important role in determining 
the amplitude fluctuations of the sound waves. A parametric study, using RFM, of the importance 
of spatial-frequency cut-off of the turbulent field will allow us to make clear what resolution is really 
needed for atmospheric propagation studies and if the LES approach is viable. Acknowledgment Support for K .  Wert was provided by a Chateaubriand Fellowship awarded by the government of France. References 
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