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Abstract—The paper considers a coded caching setup with two
libraries and where only one of them needs to be kept secret from
an external eavesdropper. We provide upper and lower bounds
on the secrecy rate-memory tradeoff for systems with K = 2 or
K = 3 receivers. Our bounds are tight in some regimes and show
that the standard (non-secure) coded caching upper bound can
be approached for a wide range of parameters. In some cases,
the proposed upper bound on the secrecy rate-memory tradeoff
is even lower than the lower bound for standard coded caching.
The reason is that in our setup the ratio of receivers requesting
secure files over those requesting nonsecure files is fixed and
known to everyone in advance. The transmitter can thus adjust
the contents stored in the cache memories to this ratio.

I. INTRODUCTION

Coded caching [1] promises to reduce peak-traffic in net-
works by smartly prefetching popular contents at the receivers
during periods of low network congestion so as to create
coding opportunities. This method is useful for transmitting
stable and popular contents such as on-demand videos. To
protect these transmissions from external eavesdroppers, [2]
and [3] (see also [4], [5], [6], [7] for related works) proposed
to additionally prefetch shared secret keys and to secure
the coded transmissions with these secret keys. A crucial
assumption in these works is that the entire library needs to
be kept secret from the external eavesdropper.

In this paper, we consider a modified setup with two
libraries and where only one of them needs to be kept secret
from the eavesdropper. In our setup, each receiver demands
a file from only one of the two library. This differs from
the setup in [8] (which does not impose secrecy constraints),
where each receiver demands a file from each libraries. Like
in the standard coded caching scenario, the transmitter ignores
the receivers’ demands during the placement phase. It knows
however the fraction of receivers demanding secure files,
which can be seen as some form of popularity information.

We derive lower and upper bounds on the secrecy rate-
memory tradeoff of the described setup for systems with 2 or
3 receivers. The upper bound is achieved by schemes based on
coded caching [1] and on securing some of the transmissions
by XORing them with nonsecure files and prefetched secret
keys. In view of this, notice that the XOR of two files from the
secure library is not secure and needs to be further protected,
but the XOR of a file from the secure library and a file
from the nonsecure library is secure. The lower bound is
obtained by noting that some (but not all) of the lower bounds
[9] previously derived for the standard coded caching setup,
remain valid also in our new setup.

The obtained results allow us to conclude that the secrecy
rate-memory tradeoff of the present setup can be smaller
than the (worst case) rate-memory tradeoff of standard coded
caching. The reason is that the transmitter can exploit the
knowledge of the fraction of receivers demanding a secure
file when designing the cache contents.

II. PROBLEM DEFINITION

We consider a system with a single transmitter connected
through an error-free link to K receivers and one eavesdropper,
as shown in Figure 1.

Secure Library: W1,W2, . . . ,WDsec

Nonsecure Library: WDsec+1, . . . ,WD

θTx

Xd

Shared link

Rx 1 Rx 2 . . . Rx K Eve

M M M

Fig. 1. Shared link with K legitimate receivers with cache memories of size
M and an eavesdropper.

The transmitter can access two libraries Lsec and Lnosec
containing Dsec and Dnosec := D− Dsec files respectively:

Lsec := {W1, . . . ,WDsec
} (1)

Lnosec := {WDsec+1, . . . ,WD}. (2)

All files are independent of each other and consist of F i.i.d.
random bits. So,

Wd uniform over
{

1, . . . , 2F
}
, ∀d ∈ {1, . . . ,D}. (3)

As described later on, the messages in the secure library Lsec
have to be kept secure from an external eavesdropper.

Each receiver wishes to learn one of the D files. A fraction

α ∈ {0, 1/K, 2/K, . . . , 1} (4)

of all demanded files belongs to the secure library and the
remaining fraction 1−α to the nonsecure library. The number
of receivers asking for secure files, resp., for non-secure files,
are thus given by:

Ksec = αK (5)



and
Knosec = (1− α)K. (6)

We consider a scenario where all receivers ask for a different
file and thus we require that

αK ≤ Dsec and (1− α)K ≤ Dnosec. (7)

In our system, each receiver k ∈ K := {1, . . . ,K} is
equipped with a local cache memory Vk of size MF bits and
communication takes place in two phases. In a first placement
phase, the transmitter can store MF bits in each of the
receivers’ cache memories. During this phase, the transmitter
does’nt know which file each receiver wishes to learn. This
information is only available in the second phase, the delivery
phase, where the transmitter sends a signal Xd to all receivers
over a shared link. We explain the two phases in more detail.

A. Placement Phase

The transmitter stores the outcome of a caching function

gk :
{

1, . . . , 2F
}D ×Θ→ {1, . . . , 2FM} (8)

in the cache memory for receiver k, for each k ∈ K. After
this phase, receiver k has cache content

Vk = gk (W1, . . . ,WD, θ) . (9)

We notice that the cache contents only depend on the two
libraries Lsec and Lnosec and some local randomness θ.

B. Delivery Phase

Prior to the delivery phase, each receiver k ∈ K produces a
demand dk ∈ {1, . . . ,D}. It is assumed that all demands are
different, so

dk 6= dk′ , k 6= k′, (10a)

and that a fraction α of the demands are between 1 and Dsec,
whereas the remaining fraction 1−α of demands are between
Dsec + 1 and D:∣∣{k : dk ∈ {1, . . . ,Dsec}}

∣∣ = αK (10b)

and ∣∣{k : dk ∈ {1, . . . ,Dnosec}}
∣∣ = (1− α)K (10c)

The demand vector

d := (d1, . . . dK) (11)

is learned by the transmitter and all receivers.1

The transmitter aims at providing to each receiver k its
demanded file Wdk . To this end, it can send a signal Xd

consisting of RF bits over a shared link to all receivers, where
R denotes the rate of communication. The transmitted signal
is of the form

Xd = fd (W1, . . . ,WD, θ) , (12)

1In fact, the communication of the demand vector requires zero communi-
cation rate since it takes only K ·

⌈
log(D)

⌉
bits to describe d.

for some function

fd :
{

1, . . . , 2F
}D ×Θ→

{
1, . . . , 2RF

}
. (13)

Each Receiver k ∈ K attempts to decode its demanded
message Wdk based on the received signal Xd and its cache
content Vk:

Ŵk := ϕk,d(Xd, Vk), k ∈ K, (14)

for some function

ϕk,d :
{

1, . . . , 2RF
}
×
{

1, . . . , 2MF
}
→
{

1, . . . , 2F
}
. (15)

C. Secrecy Rate-Memory Tradeoff

A decoding error occurs whenever Ŵk 6= Wdk , for some
k ∈ K. For a given demand vector d, the probability of error
is defined as

Pe,d := P

[
K⋃
k=1

{
Ŵk 6= Wdk

}]
. (16)

We assume a system with an external eavesdropper that
observes the shared link during the delivery phase, but has
no access to the cache memories. All files W1, . . . ,WDsec

in the secure library Lsec have to be kept secret from this
eavesdropper.

Definition 1. Given a fraction α ∈ {0, 1/K, 2/K, . . . , 1}, a
rate-memory pair (R,M) is securely achievable if for every
ε > 0 and sufficiently large file size F, there exist caching,
encoding, and decoding functions as in (8), (13), and (15) so
that for each demand vector d satisfying (10), the following
two conditions hold:

Pe,d ≤ ε and I (W1, . . . ,WDsec
;Xd) < ε. (17)

Definition 2. Fix a fraction α ∈ {0, 1/K, 2/K, . . . , 1}. For a
given cache memory size M, the secrecy rate-memory tradeoff
R?α(M) is the smallest rate R so that the pair (R,M) is
securely achievable:

R?α (M) := inf {R : (R,M) securely achievable} . (18)

III. K = 2 RECEIVERS

Throughout this section, we assume

K = 2, (19)

and distinguish different values for Dsec and Dnosec.

A. Single Files

We start with the simplest model:

Dsec = Dnosec = 1 (20)

The only possible value for α in this case is

α = 1/2, (21)

and its secrecy rate-memory tradeoff is easily found to be:

R?1
2

(M) = 1− M

2
, M ∈ [1, 2]. (22)



To see this, notice first that M < 1 is not admissible because it
does not allow any of the receivers to learn W1 while keeping
it secret from the eavesdropper. For M ≥ 1, coded caching
[1] is secure because the XOR of a secure and a nonsecure
message is secure. Moreover, it achieves the smallest possible
delivery rate even when there is no secrecy constraint.

B. Multiple Files
Consider now the case where

Dnosec ≥ 2 and Dsec ≥ 2. (23)

The admissible values for α in this case are

α ∈ {0, 1/2, 1}. (24)

When α = 0, then both receivers ask for files in the nonsecure
library Lnosec, and we can limit attention to this library. We
thus recover the standard coded caching problem [1] for files
in Lnosec and the corresponding upper and lower bounds on
the rate-memory tradeoff. Similarly, when α = 1, we fall into
the standard secure caching setup of [2] with library Lsec and
the nonsecure library can simply be ignored.

The most interesting case is

α = 1/2, (25)

and in the following we restrict attention to this value.
Depending on the available cache memory, we propose to

use either of the following schemes: the coded caching scheme
[1] for the combined library Lnosec∪Lsec with parameters t = 1
or t = 2; one of the two schemes that we describe in the
following; or linear combinations of these four schemes. The
coded caching schemes with parameters t = 1 or t = 2 are
secure because either nothing is transmitted at all or because
only the XOR of a secure message with a nonsecure message
is transmitted. These two schemes achieve the rate-memory
pairs (recall that here K = 2, see (19)):

R1 =
1

K
and M1 = D

K− 1

K
(26)

R2 = 0 and M2 = D. (27)

We now describe a new scheme tailored to our scenario.
Split each file into two subfiles

Wd = (W
(A)
d ,W

(B)
d ), d ∈ {1, . . . ,D} (28)

of F/2 bits each. Split further each of these subfiles as

W
(A)
d = (W

(A1)
d ,W

(A2)
d ) (29)

W
(B)
d = (W

(B1)
d ,W

(B2)
d ) (30)

of sizes (F/2)/Dnosec bits and F/2(1 − 1/Dnosec) bits. Place-
ment is performed as indicated below.

Cache at Rx 1{
W

(A)
d

}Dsec

d=1{
W

(A1)
d

}D

d=Dsec+1

Cache at Rx 2{
W

(B)
d

}Dsec

d=1{
W

(B1)
d

}D

d=Dsec+1

To describe the delivery communication, we assume that Re-
ceiver 1 demands a secure file and Receiver 2 a nonsecure file.
For this demand vector d = (d1, d2), with d1 ∈ {1, . . . ,Dsec}
and d2 ∈ {Dsec + 1, . . . ,Dnosec}, the transmitter sends

Xd = [(W
(B)
d1
⊕W (A1)

nosec ), W
(A2)
d2

, W
(B2)
d2

] (31)

where ⊕ denotes the componentwise XOR operation and

W (A1)
nosec := (W

(A1)
Dsec+1, . . . ,W

(A1)
D ). (32)

It is not hard to verify that with this signal and its own
cache content, each receiver can reconstruct its demanded
file. Moreover, an eavesdropper cannot learn anything about
the secure files W1, . . . ,WDsec

because the part of it that is
transmitted is secured by an XOR with a nonsecure file.

The proposed scheme achieves the rate-memory pair

R3 =
3

2
− 1

Dnosec
and M3 = (Dsec + 1)/2. (33)

The last scheme, stores individual secret keys in the cache
memories of the receivers, and communicates with each re-
ceiver separately using this key. This scheme achieves

R4 := K and M4 := 1. (34)

Time- and memory-sharing these schemes yields the upper
bound in the following theorem. The lower bound in the
theorem is obtained from the existing lower bounds for the
standard coded caching setup, see for example in [1], [9], that
are derived by restricting to a single receiver. In fact, when
considering a single receiver, the additional constraints (10b)
and (10c) in our setup are meaningless. In this case, the lower
bounds for standard coded caching apply. In contrast, when
considering two receivers, constraints (10b) and (10c) become
active and the lower bounds derived in [1], [9] by considering
both users do not apply.

Theorem 1. Fix α = 1/2. For all M ∈ [1,D]:

R?α (M) ≤ lower hull
(
{(Ri,Mi)}4i=1

)
(35)

R?α (M) ≥ 1− M

D
. (36)

Figure 2 shows the derived upper and lower bounds for a
total library of D = 20 files, and either Dsec = 6 or Dsec =
4, consequently, either Dnosec = 14 or Dnosec = 16. on the
standard coded caching problem with only a single, nonsecure
library of size D = 20.

Remark 1. From Figure 2, we observe that the rate-memory
tradeoff can be smaller in this partially secure model than in
the original coded caching setup. The reason is that here we
have a restricted demands model. For example, for α = 1/2
we know exactly that one of the receivers will demand a secure
message. A demand vector d = (1, 2) is thus not possible. In
fact, in the proposed scheme leading to (R1,M1), we take
advantage of this knowledge during the placement phase.

The placement should be adapted to the value of α. This
can easily be inferred from the discussion in the previous
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Fig. 2. Upper and lower bounds on the secrecy rate-memory tradeoff for
K = 2, Dsec + Dnosec = 20, Dsec = 6 or Dsec = 4. The dashed red
(resp. black) line is given by connecting the rate-memory pairs (R4,M4),
(R3,M3), (R1,M1) and (R2,M2) given in order from left to right.

paragraph or from the proposed placement strategies for
α = 0 or α = 1. In fact, in these cases, the optimal strategy
was simply to ignore one of the libraries depending on the
value of α and to restrict to the other.

IV. K = 3 RECEIVERS

In this section, we consider K = 3 receivers and focus on

Dnosec ≥ 3 and Dsec ≥ 3. (37)

The admissible values for α are

α ∈ {0, 1/3, 2/3, 1}. (38)

As before, the cases α = 0 and α = 1 are equivalent to the
standard coded caching setup or to the secure coded caching
setup with reduced libraries. We therefore focus on the cases
α = 1/3 and α = 2/3.

A. Ratio α = 2/3

Consider first the case α = 2/3. The rate-memory pairs
(R1,M1), (R2,M2), and (R4,M4) defined in (26), (27), and
(34) specialized to K = 3 are achievable using similar schemes
as described for K = 2 receivers.

We now present two new coding schemes and their corre-
sponding rate-memory pairs. Define the parameters

δ0 :=
(Dnosec − 1)2

3Dnosec + (Dnosec − 1)2
(39a)

δ1 :=
3(Dnosec − 1)

3Dnosec + (Dnosec − 1)2
(39b)

δ2 :=
3

3Dnosec + (Dnosec − 1)2
(39c)

and split each file Wd into three independent subfiles

Wd =
(
W

(A)
d ,W

(B)
d ,W

(C)
d

)
, d ∈ {1, . . . ,D}. (40)

of sizes δ0F, δ1F and δ2F bits. (Notice that (δ0+δ1+δ2) = 1.)
Further split each subfile W (B)

d and each subfile W (C)
d into

three parts:

W
(B)
d :=

(
W

(B1)
d ,W

(B2)
d ,W

(B3)
d

)
, (41)

W
(C)
d :=

(
W

(C12)
d ,W

(C23)
d ,W

(C13)
d

)
, (42)

where the first three parts are of (δ1/3)F bits and the latter
three parts of (δ2/3)F bits.

The placement phase is as described in the following table:

Cache at Rx 1{
W

(B1)
d

}D
d=1{

W
(C12)
d ,W

(C13)
d

}D
d=1

Cache at Rx 2{
W

(B2)
d

}D
d=1{

W
(C12)
d ,W

(C23)
d

}D
d=1

Cache at Rx 3{
W

(B3)
d

}D
d=1{

W
(C13)
d ,W

(C23)
d

}D
d=1

We describe the delivery phase, where for ease of exposition
we assume that receivers 1 and 2 demand messages from the
secure library and receiver 3 demands a message from the
nonsecure library. So:

d1, d2 ∈ {1, . . . ,Dsec} and d3 ∈ {Dsec + 1, . . . ,D}.
(43)

For the delivery phase, time-sharing is applied over three
subphases. In Subphase 1 we apply the standard coded caching
delivery scheme of parameter t = 2 for the files {W (C)

d }.
Specifically, the transmitter sends

W
(C23)
d1

⊕W (C13)
d2

⊕W (C12)
d3

. (44)

This transmission is secured because the nonsecure subfile
W

(C12)
d3

acts as a one-time pad on the other two subfiles.
In Subphase 2 we apply the coded caching delivery scheme

for parameter t = 1 for the files {W (B)
d }. Since in standard

coded caching for t = 1 one XOR message is composed only
of secure messages, a secret key is required to secure this
transmission. We propose to use fragments of {W (C12)

d : d ∈
{Dsec + 1, . . . ,D}\{d3}} to act as a secret key for both
receivers. So, the transmitter first creates

Wkey1 := [W
(C12)
d : d ∈ {Dsec + 1, . . . ,D}\{d3}] (45)

and then sends the three XORs

W
(B3)
d2
⊕W (B2)

d3
, W

(B3)
d1
⊕W (B1)

d3
, W

(B2)
d1
⊕W (B1)

d2
⊕Wkey1.

(46)
Subphase 3 is dedicated to the transmission of the subfiles

{W (A)
d } that are not stored in any cache memory. Thus,

secret keys are required to secure the transmission to both



receivers. We propose to use fragments of {W (B)
d : d ∈

{Dsec + 1, . . . ,D}\{d3}} so that the transmitter first creates

Wkey2 := [W
(B1)
d : d ∈ {Dsec + 1, . . . ,D}\{d3}] (47)

Wkey3 := [W
(B2)
d : d ∈ {Dsec + 1, . . . ,D}\{d3}] (48)

and then sends

W
(A)
d1
⊕Wkey1, W

(A)
d2
⊕Wkey2, W

(A)
d3

. (49)

With their cache contents, the receivers can decode their
respective subfiles. At the end of the entire delivery phase,
each Receiver k assembles its guesses of W (A)

dk
,W

(B)
dk

and
W

(C)
dk

to produce the desired message Wdk .
The scheme achieves the rate-memory pair

R5 := 3δ0 + δ1 +
1

3
δ2 and M5 :=

1

3
δ1D +

2

3
δ2D. (50)

If in the above coding scheme one eliminates subfiles W (A)
d

and changes the size of subfiles W (B)
d to δ1

δ1+δ2
F bits and the

size of subfiles W (C)
d to δ2

δ1+δ2
F bits, one obtains a coding

scheme achieving the rate-memory pair

R6 :=
1

3
+

2

3

δ1
δ1 + δ2

and M6 :=
2

3
D− 1

3

δ1
δ1 + δ2

D. (51)

B. Ratio α = 1/3

Consider now α = 1/3. The rate-memory pairs (R1,M1),
(R2,M2), and (R4,M4) defined in (26), (27), and (34), are
achievable for K = 3. Moreover, when α = 1/3 then also
the standard coded caching scheme with parameter t = 1 is
secure and thus the following rate-memory pair is achievable:

R7 := 1 and M7 :=
D

3
. (52)

For α = 1/3, the coding scheme leading to (R5,M5) is
also secure when specialized to the parameters δ2 = 0, δ1 =

3
Dnosec+2 =: δ̃1, and δ0 = Dnosec−1

Dnosec+2 =: δ̃0 and when in the key
constructions (45), (47), (48) not only demand d3 but also
demand d2 is excluded. It then achieves the rate-memory pair

R9 := 3δ̃0 + δ̃1 and M9 :=
1

3
δ̃1D. (53)

Finally, generalizing the coding scheme leading to (R3,M3)
to K = 3 receivers, one can show (details omitted due to page
limitation) that the following rate-memory pair is achievable:

R8 =
2

3

(
4− 5

Dnosec

)
, M8 =

Dsec + 2

3
. (54)

Theorem 2. Let Dsec,Dnosec ≥ 3. Then,

R?2
3

(M) ≤ lower hull
{

(R`,M`) : ` ∈ {1, 2, 4, 5, 6}
}

(55)

R?1
3

(M) ≤ lower hull
{

(R`,M`) : ` ∈ {1, 2, 4, 7, 8, 9}
}

(56)

and irrespective of the value of α:

R?α (M) ≥ 1− M

D
. (57)

Proof: The upper bounds follow by taking convex combi-
nations of the presented rate-memory pairs. The lower bound
is obtained by repeating the steps in the proof of [9, Theorem
1] for a single receiver.

Figure 3 shows the derived upper and lower bounds for
Dsec = 10 and Dnosec = 20 and α = 1

3 or α = 2
3 .
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Fig. 3. Upper and lower bounds on the secrecy rate-memory tradeoff for
K = 3, Dsec = 10 and Dnosec = 20 for ratios α = 1/3 and α = 2/3.
The black line is given by connecting the rate-memory pairs (R4,M4),
(R9,M9), (R8,M8), (R7,M7), (R1,M1), (R2,M2) and the red line is
given by connecting the rate-memory pairs (R4,M4), (R5,M5), (R6,M6),
(R1,M1), (R2,M2), given in order from left to right.

Remark 2. We observe from Figure 3 that for large values of
Dnosec the standard coded caching lower bound can closely be
approached in our secrecy setup both for α = 2/3 and for α =
1/3. In fact, by nesting coded caching schemes for multiple
parameters, we can use the non-secure library to secure the
“a priori non-secure” transmissions.
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