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Distributed Hypothesis Testing Over a Noisy
Channel

1Sadaf Salehkalaibar and 2Michèle Wigger
1ECE Department, College of Engineering, University of Tehran, Tehran, Iran, s.saleh@ut.ac.ir

2LTCI, Telecom ParisTech, Université Paris-Saclay, 75013 Paris, France, michele.wigger@telecom-paristech.fr

Abstract—A coding and testing scheme is presented for the
distributed hypothesis testing problem over a noisy channel. The
coding scheme combines the Shimokawa-Han-Amari hypothesis
testing scheme with Borade’s unequal error protection (UEP)
channel coding. The type-II error exponent of our scheme consists
of three competing error exponents: two of them coincide with
the exponents found by Shimokawa-Han-Amari for distributed
hypothesis testing over a noiseless link (with the rate be replaced
by the mutual information between channel input and output),
and the third includes Borade’s miss-detection exponent for UEP
over a noisy channel. Depending on the problem setup, any of the
three exponents can be active. When testing against conditional
independence, only the two Shimokawa-Han-Amari exponents
are active, and the scheme achieves the optimal type-II error
exponent found by Sreekuma and Gündüz.

I. INTRODUCTION

Consider a distributed hypothesis testing problem where a
sensor describes its collected information to a remote decision
center over a noisy channel. The decision center decides on
a binary hypothesis (H = 0 or H = 1) that determines the
joint probability distribution underlying its own observation
and the information observed at the sensor. The goal of the
communication is to maximize the type-II error (deciding Ĥ =
0 when H = 1) exponent under a constrained type-I error
(deciding Ĥ = 1 when H = 0).

The special case of this problem where communication
takes place over a noiseless link was studied in [1]–[4]. These
works present achievable type-II error exponents for general
joint probability distributions underlying the two hypotheses
and the optimal type-II error exponent for the special case
called “testing against conditional independence” [4]. Dis-
tributed hypothesis testing problems over noiseless networks
with multiple sensors or decision centers or with relays have
been considered in [4]–[8]. The work most closely related
to this paper is by Sreekumar and Gündüz [9]. It proves
that the optimal type-II error exponent for “testing against
conditional independence” over a noisy channel, coincides
with the optimal type-II error exponent of the same test over a
noiseless link of rate equal to the capacity of the noisy channel.
Their result is based on a joint hypothesis-testing and channel-
coding scheme, see also [9, Remark 6] for a discussion on this.

In this work, we propose a coding scheme for distributed hy-
pothesis testing over a noisy channel with general probability
distributions. The coding and testing scheme applies separate
hypothesis testing and channel coding by combining the
Shimokawa-Han-Amari (SHA) hypothesis-testing scheme [3]

Fig. 1. Hypothesis testing over a noisy channel

with Borade’s unequal error protection (UEP) channel coding
[12]. The idea is to reinforce the protection of the message
that the SHA scheme produces to indicate that the transmitter
decides on the alternative hypothesis H = 1. Our analysis in
general shows three competing error exponents, two of them
coincide with the two competing error exponents obtained
for testing over a noiseless link [3] when the communication
rate is replaced by the mutual information between input and
output of the channel. The third error exponent depends again
on this mutual information, and on Borade’s miss-detection
exponent [12] for channel coding with UEP. In the special
case of “testing against conditional independence”, recover the
optimal exponent by Sreekuma and Gündüz [9]. In this case,
our third error exponent is never active and the overall type-II
error exponent depends on the noisy channel only through its
capacity.

Notation: We mostly follow the notation in [10]. Moreover,
we use tp(·) to denote the joint type of a tuple. For a joint
type ⇡AB over alphabets A⇥B, we denote by I⇡AB

(A; B) the
mutual information of a pair of random variables (A, B) with
probability mass function (pmf) ⇡AB . Similarly for entropy,
conditional entropy, and conditional mutual information. When
it is unambiguous, we may abbreviate ⇡AB by ⇡. We also
abbreviate independent and identically distributed by i.i.d.

II. SYSTEM MODEL

Consider the distributed hypothesis testing problem in
Fig. 1, where a transmitter observes source sequence Xn and
a receiver source sequence Y n. Under the null hypothesis:

H = 0: (Xn, Y n) i.i.d. ⇠ PXY , (1)

and under the alternative hypothesis:

H = 1: (Xn, Y n) i.i.d. ⇠ QXY . (2)

for two given pmfs PXY and QXY . The transmitter can
communicate with the receiver over n uses of a discrete
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memory channel (W, V, PV |W ) where W denotes the finite
channel input alphabet and V the finite channel output alpha-
bet. Specifically, the transmitter feeds inputs

Wn = f (n)(Xn) (3)

to the channel, where f (n) denotes the chosen (possibly
stochastic) encoding function

f (n) : X n !Wn. (4)

Based on the sequence of channel outputs V n and the source
sequence Y n, the receiver decides on the hypothesis H. That
means, it produces the guess

Ĥ = g(n)(V n, Y n), (5)

by means of a decoding function

g(n) : Vn ⇥ Yn ! {0, 1}. (6)

Definition 1: For each ✏ 2 (0, 1), an exponent ✓ is said ✏-
achievable, if for each sufficiently large blocklength n, there
exist encoding and decoding functions (f (n), g(n)) such that
the corresponding type-I and type-II error probabilities at the
receiver

↵n
�
= Pr[Ĥ = 1|H = 0], (7)

�n
�
= Pr[Ĥ = 0|H = 1], (8)

satisfy

↵n  ✏, (9)

and

� lim
n!1

1

n
log �n � ✓. (10)

The goal is to maximize the type-II error exponent ✓.

III. CODING AND TESTING SCHEME

We describe a coding and testing scheme for the general
distributed hypothesis testing problem over a noisy channel.
The analysis of the scheme is postponed to Section V.
Preparations: Choose a large positive integer n, an auxiliary
distribution PT over W , a conditional channel input distribu-
tion PW |T , and a conditional source distribution PS|X over a
finite auxiliary alphabet S so that

I(S; X) < I(S; Y ) + I(V ; W |T ), (11)

where the mutual informations in (11) are calculated according
to the following joint distribution

PSXY WV T = PS|X · PXY · PT · PW |T · PV |W . (12)

Then choose a sufficiently small µ > 0 and nonnegative rates
(R, R0) so that

R + R0 = I(X; S) + µ (13)
R < I(V ; W |T ) (14)
R0 < I(S; Y ). (15)

Code Construction: Construct a random codebook

CS =
�
Sn(m, `) : m 2 {1, ..., b2nRc}, ` 2 {1, ..., b2nR0c}

 
,

by independently drawing all codewords i.i.d. according to
PS(s) =

P
x2X PX(x)PS|X(s|x).

Generate a sequence Tn i.i.d. according to PT . Construct a
random codebook

CW =
�
Wn(m) : m 2 {1, ..., b2nRc}

 

superpositioned on Tn where each codeword is drawn in-
dependently according to PW |T conditioned on Tn. Reveal
the realizations of the codebooks and the sequence Tn to all
terminals.
Transmitter: Given that it observes the source sequence Xn =
xn, the transmitter looks for a pair (m, `) that satisfies

(sn(m, `), xn) 2 T n
µ/2(PSX). (16)

If successful, it picks one of these pairs uniformly at random
and sends the codeword wn(m) over the channel. Otherwise
it sends the sequence of inputs tn over the channel.
Receiver: Assume that V n = vn and Y n = yn and that the
“time-sharing sequence” Tn = tn. The receiver first looks for
an index m0 2 {1, . . . , b2nRc} so that

(wn(m0), vn, tn) 2 T n
µ (PWV T ). (17)

If it is not successful, it declares Ĥ = 1. Otherwise, it
randomly picks one of the indices `0 that satisfy

Htp(sn(m0,`0),yn)(S|Y ) = min
˜̀2{1,...,b2nR0c}

Htp(sn(m0,˜̀),yn)(S|Y ),

(18)

and checks whether

(sn(m0, `0), yn) 2 T n
µ (PSY ). (19)

If successful, it declares Ĥ = 0. Otherwise, it declares Ĥ = 1.

IV. AN ACHIEVABLE ERROR EXPONENT

The coding and testing scheme described in the previous
section allows to establish the following theorem.

Theorem 1: Every error exponent ✓ � 0 that satisfies the
following condition (33) is achievable:

✓  max
PS|X ,PT W :

I(S;X|Y )I(W ;V |T )

min
�
✓1, ✓2, ✓3

 
, (20)

where

✓1 = min
P̃SXY :

P̃SX=PSX

P̃SY =PSY

D(P̃SXY ||QXY PS|X), (21)

✓2 = min
P̃SXY :

P̃SX=PSX

P̃Y =PY

H(S|Y )HP̃ (S|Y )

h
D(P̃SXY ||PS|XQXY )

+ I(V ; W |T )� I(S; X|Y )
i
,

(22)

✓3 = D(PY ||QY ) + I(V ; W |T )� I(S; X|Y )
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+
X

t2W
PT (t) · D(PV |T=t||PV |W=t),

(23)

and all expressions are calculated with respect to the joint
distribution in (12).

Proof: Based on the scheme in Section V.

Lemma 1: It suffices to consider the auxiliary random
variable S over an alphabet S that is of size |S| = |X | + 2.
For the specical case of PY = QY , it suffices to consider
|S| = |X | + 1.

Proof: Based on Carathéodory’s theorem. Omitted.

Our coding and testing scheme combines the SHA hypoth-
esis testing scheme for a noiseless link [3] with Borade’s UEP
channel coding that protects the 0-message (which indicates
that the transmitter decides on H = 1) better than the other
messages [11], [12]. In fact, since here we are only interested
in the type-II error exponent, the receiver should decide on
H = 0 only if the transmitter also shares this opinion.

The expressions in Theorem 1 show three competing error
exponents. In (21) and (22), we recognize the two competing
error exponents of the SHA scheme for the noiseless setup:
✓1 is the exponent associated to the event that the receiver
reconstructs the correct binned codeword and ✓2 is associated
to the event that either the binning or the noisy channel
introduces a decoding error. The exponent ✓3 in (23) is new
and can be associated to the event that the specially protected
0-message is wrongly decoded. We remark in particular that
✓3 contains the term

Emiss :=
X

t2W
PT (t) · D(PV |T=t||PV |W=t), (24)

which represents the largest possible miss-detection exponent
for a single specially protected message at a given rate
I(W ; V |T ) [12, Th. 34].

Which of the three exponents ✓1, ✓2, ✓3 is smallest depends
on the source and channel parameters and the choice of PS|X
and PW . Notice that the third error exponent ✓3 is inactive
for channels with large miss-detection exponent (24), such as
binary symmetric channels with small cross-over probability,
or for sources where

min
P̃SXY :

P̃SX=PSX

P̃Y =PY

D(P̃SXY ||PS|XQXY ) = D(PY ||QY ), (25)

This is the case for example when “testing against conditional
independence” [4] where both terms are 0.

Corollary 1 (Lemma 5 in [9]): Consider the “testing against
independence” setup where

Y = (Ȳ , Z), (26)

and QXȲ Z decomposes as

QXȲ Z = PXZ · PȲ |Z . (27)

Error exponent ✓ � 0 is achievable if,

✓  max
PS|X , PW :

I(S;X|Z)I(W ;V )

I(S; Ȳ |Z), (28)

where mutual informations are calculated with respect to the
joint law PXȲ ZPS|XPW PV |W .

Proof: Fix independent random variables T and W and
a random variable S so that

I(S; X|Z)  I(W ; V |T ) = I(W ; V ). (29)

Then, Theorem 1 specializes to:

✓1 = min
P̃SXȲ Z :

P̃SX=PSX

P̃SȲ Z=PSȲ Z

D(P̃SXȲ Z ||QXȲ ZPS|X)

= min
P̃SXȲ Z :

P̃SX=PSX

P̃SȲ Z=PSȲ Z

D(P̃SXȲ Z ||PXZPȲ |ZPS|X)

= D(PSȲ Z ||PZPȲ |ZPS|Z)

= I(S; Ȳ |Z).

Moreover, exponents ✓2 and ✓3 cannot be smaller than
I(S; Ȳ |Z) because of the nonnegativity of the KL-divergence
and the mutual information and because

I(V ; W )� I(S; X) + I(S; Ȳ , Z)

= I(V ; W )� I(S; X|Z) + I(S; Ȳ |Z)

� I(S; Ȳ |Z), (30)

where the inequality holds by (29).
Notice that the error exponent in Corollary 1 is optimal [9].

We now present an example and evaluate the largest type-II
error exponents attained by our scheme. We also show that
depending on the choice of the model parameters, a different
error exponent ✓1, ✓2, or ✓3 is active.

Example 1: Let under the null hypothesis

H = 0: X ⇠ Bern(p0), Y = X �N0,

N0 ⇠ Bern(q0), (31)

for N0 independent of X . Under the alternative hypothesis:

H = 1: X ⇠ Bern(p1), Y ⇠ Bern(p0 ? q0), (32)

with X and Y independent. Assume that PV |W is a binary
symmetric channel (BSC) with cross-over probability r 2
[0, 1/2].

For this example, PY = QY and Theorem 1 simplifies to:

✓  max
PS|X ,PT W :

I(S;X|Y )I(W ;V |T )

min
�
✓1, ✓2, ✓3

 
, (33)

where

✓1  D(PX ||QX) + I(S; Y ), (34)
✓2  D(PX ||QX) + I(V ; W |T ) + I(S; Y )� I(S; X), (35)
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✓3 
X

t2W
PT (t)D(PV |T=t||PV |W=t)

+ I(V ; W |T ) + I(S; Y )� I(S; X). (36)

Depending on the parameters of the setup and the choice of
the auxiliary distributions, either of the exponents ✓1, ✓2, or
✓3 is active. For example, when the cross-over probability of
the BSC is large, r � 0.4325,

D(PX ||QX) �
X

t2W
PT (t)D(PV |T=t||PV |W=t)

+ I(V ; W |T ), (37)

and irrespective of the choice of the random variables S, T, W
the exponent ✓3 is smaller than ✓1 and ✓2. It is then optimal
to choose S constant and (T, W ) so as to maximize the sumP

t2W PT (t)D(PV |T=t||PV |W=t)+I(V ; W |T ). In particular,
for a scenario with parameters p0 = 0.1, q0 = 0.25, p1 = 0.2
and r = 4

9 one obtains numerically that the optimal error
exponent achieved by our scheme is ✓ = 0.0358.

In contrast, when the cross-over probability of the BSC
is small, the miss-detection exponent (24) is large and the
exponent ✓3 is never active irrespective of the choice of the
auxiliary random variable S. The overall exponent is then
determined by the smaller of ✓1 and ✓2, and in particular by
a choice S, X, W that makes the two equal. In this case, for
a scenario with parameters p0 = 0.2, q0 = 0.3, p1 = 0.4,
and r = 0.1, the largest exponent achieved by our scheme is
✓ = 0.19.

V. PROOF OF THEOREM 1

The proof of the theorem is based on the scheme in
Section III. Before analyzing this scheme, notice that by the
functional representation lemma, there exists a function �
over appropriate domains and for each time t 2 {1, . . . , n}
a random variable �t over a finite alphabet � so that the time-
t channel input and output satisfy:

Vt = ⇠(Wt,�t). (38)

Let Pn be the set of all types over the product alphabets
Sn ⇥ Sn ⇥Wn ⇥Wn ⇥Wn ⇥ Vn ⇥ �n ⇥ X n ⇥ Yn, and
let Pn

µ be the subset of types ⇡SS0TWW 0V �XY 2 Pn that
simultaneously satisfy the following conditions:

|⇡SX � PSX |  µ/2, (39a)
|⇡S0Y � PSY |  µ, (39b)

|⇡TW 0V � PTWV |  µ, (39c)
⇡V |�TW = {V = ⇠(�, T, W )}, (39d)

H⇡S0Y (S|Y )  H⇡SY
(S|Y ). (39e)

We first analyze the type-I error probability averaged over
the random code construction. Let (M, L) be the indices of the
codeword chosen at the transmitter, if they exist, and define
the following events:

ETx : {@(m, `) : (Sn(m, `), Xn) 2 T n
µ/2(PSX)} (40)

E(1)
Rx : {(Sn(M, L), Y n) /2 T n

µ (PSY )} (41)

E(2)
Rx : {9m0 6= M : (Tn, Wn(m0), V n) 2 T n

µ (PTW PV |W )}
(42)

E(3)
Rx : {9`0 6= L :

Htp(sn(M,`0),yn)(S|Y ) = min
˜̀

Htp(sn(M,˜̀),yn)(S|Y )}.

(43)

With these definitions, we obtain for all sufficiently small
values of µ and sufficiently large blocklengths n:

↵n  Pr[ETx] + Pr[E(1)
Rx |Ec

Tx] + Pr[E(2)
Rx |Ec

Tx, E(1)c
Rx ]

+ Pr[E(3)
Rx |E(1)c

Rx , Ec
Tx] (44)

 ✏/4 + ✏/4 + ✏/4 + ✏/4 = ✏, (45)

where the first summand of (44) can be upper bounded by
means of the covering lemma [10] and the rate constraint (15);
the second by means of the Markov lemma [10]; the third by
means of the packing lemma [10] and the rate constraint (14);
and the fourth by following similar steps as in analysis of the
type-I error probability in [5, Appendix H].

Now, consider the type-II error probability. Let Pn
µ,0 be the

subset of types ⇡S0TW 0�V XY over the alphabets Sn ⇥Wn ⇥
Wn ⇥ �n ⇥ Vn ⇥ X n ⇥ Yn that satisfy (39b), (39c), and

⇡V |�T = {V = ⇠(T,�)}. (46)

Define for each pair (m, m0) 2 {1, . . . , b2nRc}2 and (`, `0) 2
{1, . . . , b2nR0c}2 the set:

A(m, m0, `, `0) :=
n

('n, xn, yn) : tp
�
Sn(m, `), Sn(m0, `0),

Wn(m), Wn(m0),'n, ⇠n(Wn(m),'n), xn, yn
�
2 Pn

µ

o
;

and for each m0 2 {1, . . . , b2nRc} and `0 2 {1, . . . , b2nR0c}
the set:

A(0, m0, `0) :=
n

('n, xn, yn) : tp
�
Sn(m0, `0), Tn,

Wn(m0),'n, ⇠n(Tn,'n), xn, yn
�
2 Pn

µ,0

o
. (47)

By ⇠n(Wn(m),'n), here we mean the component-wise ap-
plication of the function ⇠(., .) defined in (38) to the n-length
sequences Wn(m) and 'n.

Define the region ARx,n ✓ �n ⇥ X n ⇥ Yn

ARx,n
�
=

[

m,m0

[

`,`0

A(m, m0, `, `0) [
[

m0,`0

A(0, m0, `0), (48)

where m and m0 take value in {1, . . . , b2nRc} and ` and `0

in {1, . . . , b2nR0c}. Notice that ARx,n is deterministic for a
given codebook, but random in the analysis here.

Since ARx,n includes the acceptance region at the receiver,
the average (over the random codebooks) type-II error proba-
bility is upper bounded as:

EC [�n]  Pr
⇥
(�n, Xn, Y n) 2 ARx,n|H = 1

⇤
. (49)

We can then write:

EC [�n]

 Pr
h
(�n, Xn, Y n) 2
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[

m,m0

[

`,`0

A(m, m0, `, `0) [
[

m0,`0

A(0, m0, `0)|H = 1
i

 Pr
h
(�n, Xn, Y n) 2

[

(m,`)

A(m, m, `, `)|H = 1
i

+ Pr
h
(�n, Xn, Y n) 2

[

(m,`) 6=(m0,`0)

A(m, m0, `, `0)|H = 1
i

+ Pr
h
(�n, Xn, Y n) 2

[

m0,`0

A(0, m0, `0)|H = 1
i
. (50)

In a similar way as in [5], it can be shown that for sufficiently
large blocklengths n, the first probability in (50) is upper
bounded as:

Pr
h
(�n, Xn, Y n) 2

[

m

[

`

A(m, m, `, `)|H = 1
i
 2�n✓1,µ ,

(51)

where

✓1,µ := min⇡SXY 2Pn
µ
D(⇡SXY ||PS|XQXY )� �(µ) (52)

for a function �(µ) that goes to zero as µ ! 0. Moreover,
for sufficiently large n, the second probability in (50) is upper
bounded as:

Pr
h
(�n, Xn, Y n) 2

[

(m,`) 6=(m0,`0)

A(m, m0, `, `0)
i
 2�n✓2,µ ,

(53)

where

✓2,µ := min
⇡SS0W W 0V XY 2Pn

µ

D(⇡SXY ||PS|XQXY )

+ I(S; Y ) + I(V ; W |T )� I(S; X)� �0(µ), (54)

for a function �0(µ) that goes to zero as µ! 0.
The last term in (50) is upper bounded for sufficiently large

blocklength n:

Pr
h
(�n, Xn, Y n) 2

[

m0,`0

A(0, m0, `0)|H = 1
i


X

m0,`0

Pr
h
(�n, Xn, Y n) 2 A(0, m0, `0)|H = 1

i


X

m0,`0

X

⇡S0T W 0�V XY 2Pn
µ,0

Pr
h
tp
⇣
Sn(m0, `0), Tn, Wn(m0),�n, ⇠n(Tn,�n), Xn, Y n

⌘

= ⇡S0TW 0�V XY

���H = 1
i


X

m0,`0

X

⇡S0T W 0�V XY 2Pn
µ,0

2�nD
�
⇡S0T W 0�V XY

��PSPT W P�⇡V |�T QXY

�

where the last inequality holds by the way the random code-
books are generated and because given H = 1, the sources
Xn, Y n are i.i.d. ⇠ QXY . Define now

✓̃3,µ := min
⇡S0T W 0�V XY

2Pn
µ,0

D(⇡S0TW 0�V XY ||PSPTW P�⇡V |�T QXY )

�R�R0 � µ (55)

and notice that there exist functions �00(µ) that ! 0 as µ! 0
and so that the following inequalities hold:

✓̃3,µ

(a)

� min
⇡S0T W 0�V XY 2Pn

µ,0

h
D(⇡TW 0�V ||PTW P�⇡V |�T )

+ D(⇡XY ||QXY ) + E⇡XY
[D(⇡S0|XY ||PS)]

i

� I(S; X)� 2µ

(b)

� min
⇡S0T W 0V XY 2Pn

µ,0

h
D(⇡TW 0V ||PTW PV |W=T )

i

+ D(PY ||QY ) + I(S; Y )� I(S; X)� �00(µ)

(c)

� EPT W
[D(PV |W ||PV |W=T )]

+ D(PY ||QY ) + I(S; Y )� I(S; X)� �00(µ)

= D(PY ||QY ) + I(V ; W |T ) + I(S; Y )� I(S; X)

+
X

t

PT (t) · D(PV |T=t||PV |W=t)� �00(µ)

:= ✓3,µ. (56)

All three inequalities are based on the data processing inequal-
ity for KL-divergences; (a) also uses (13); and (b) and (c) also
use the continuity of KL-divergences and that all types in Pn

0,µ

satisfy (39b), (39c), and (46). Thus, for sufficiently large n:

Pr
h
(�n, Xn, Y n) 2

[

m0,`0

A(0, m0, `0)|H = 1
i
 2�n✓3,µ .(57)

Combining (50), (51), (53), and (57), taking µ ! 0 and
n!1, the proof can be established by standard arguments.
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