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Abstract—We consider a K-receiver wiretap broadcast channel
where Kw receivers are weak and have cache memories and Ks

receivers are strong and have no cache memories. We derive
an upper bound on the secrecy rate-memory tradeoff under
a joint secrecy constraint and under decentralized caching. In
contrast to previous works, prefetching in our scheme is purely
decentralized and receivers randomly sample from a random key
stream available at the transmitter and from the files in a library.
For small cache sizes, the performance of our scheme improves
with increasing length of the random key stream. For moderate
and large cache sizes, a small key stream suffices to perform
close to the information-theoretic limit of the system.

I. INTRODUCTION

This paper investigates the secrecy rate-memory tradeoff of
wiretap erasure broadcast channels (BCs) with cache mem-
ories at the receivers in the presence of an external eaves-
dropper. Cache memories can be used to prefetch fragments
of popular contents or secret keys during off-peak periods
(called prefetching) with the goal to reduce and secure network
traffic during subsequent peak-traffic periods (called delivery
phase). The main challenge of these systems is that during
the prefetching, the users have not yet decided which files
they will download during the delivery phase, and thus cache
memories should be filled with contents that are relevant
for all possibly demanded files. The pioneering work in [1]
proposed to diversify cache contents across users, so as to
allow coded-multicast communication that can simultaneously
serve multiple users during the delivery phase.

In this framework, one generally distinguishes between
centralized and decentralized caching scenarios. In centralized
caching [1], the set of active users is known in advance, even
before prefetching starts. In contrast, in decentralized caching
[2], the set of users that will be active during the delivery
phase, is unknown to the transmitter during prefetching. In
this scenario, users thus have to fill their cache memories in an
uncoordinated way by independently downloading information
that they store in their cache memories.

The focus of this work is on a decentralized caching
scenario with an external eavesdropper that can access the
delivery communication but not the prefetching and that is
not allowed to learn anything about the set of all possibly
demanded files. Such a setup has first been studied in [3]
assuming that all legitimate receivers have cache memories

of equal sizes and delivery communication takes place over a
common noise-free bit-pipe to all receivers and to the eaves-
dropper. The scheme proposed in [3] is based on the coded
caching scheme in [1], but where additional random keys are
prefetched in the receivers’ cache memories and used to secure
delivery transmissions. The work in [3] deviates from the
classical decentralized setup in assuming that prefetching of
keys can be performed in a centralized (coordinated) manner.

In this work, we propose a purely decentralized prefetching
protocol where also key distribution is performed in an de-
centralized manner. Moreover, we consider the more general
erasure BC model for the delivery communication, where each
transmitted bit is erased at each of the legitimate receivers and
at the eavesdropper with a certain probability. We also backoff
from the assumption that all legitimate receivers have cache
memories of same size. For simplicity, we partition the set
of receivers into two groups: a first group of weak receivers
with same erasure probability δw and same cache size, and a
second group of strong receivers with same erasure probability
δs ≤ δw and without cache memories. Previous works [4], [5]
have shown that generally, this is the most interesting scenario
from a technical point of view, because it allows for new
innovative coding techniques. Practically, this corresponds to
a scenario where some of the users (e.g., femto base-stations)
are further apart from the main BS than others, and for a
given application one decides to occupy more storage space
at weaker users than at stronger users.

In this paper, we present two new coding schemes for the
described scenario. In our proposed prefetchings, receivers
independently sample from the library of all files and/or
from a random key stream available at the transmitter. The
sampled key bits are then combined with wiretap BC coding
to secure delivery communication. As we see, the length of
this key stream (i.e., the amount of randomness available at the
transmitter) influences the performance of our coding schemes.
Our coding schemes further build on coded caching and the
more general secure piggyback coding scheme in [5].

We analytically derive the upper bounds on the secrecy
rate-memory tradeoff (the smallest securely achievable rate for
given cache sizes) corresponding to our new coding schemes.
Numerical simulations show that when the key stream is
sufficiently long, then these upper bounds are close to the best
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Fig. 1. Erasure BC with Kw weak receivers with cache memories of size MF
bits, Ks = K− Kw strong receivers without caches, and an eavesdropper.

upper bound on the centralized secrecy rate-memory tradeoff.
Moreover, for small cache memories, the upper bounds are
also close to a lower bound on the secrecy rate-memory
tradeoff, thus establishing the tradeoff almost exactly.

In a line of previous works [5], [6], we have addressed
similar questions for centralized caching. Our previous work
on decentralized caching [7] was based on the weaker secrecy
requirement that the eavesdropper is not allowed to learn
anything about any of the files in the library individually. In
this case, there is no need for prefetching secret keys in cache
memories, parts of non-demanded files can be used as onetime
pads to secure delivery communication.

II. PROBLEM DEFINITION

Consider the erasure BC with a single transmitter, K re-
ceivers and an eavesdropper in Figure 1. The input alphabet
of the BC is X := {0, 1} and the K receivers and the
eavesdropper have same output alphabet Y := X ∪∆, where
∆ indicates the loss of a bit. The K receivers are partitioned
into sets Kw := {1, . . . ,Kw} and Ks := {Kw+1, . . . ,K}, and
the receivers in each of the sets have same channel statistics.
The Kw receivers in set Kw are weak and have same erasure
probability δw > 0, and the Ks = K−Kw receivers in Ks are
strong and have same erasure probability δs > 0, where

0 < δs ≤ δw < 1. (1)

The eavesdropper is assumed to be weaker than all legitimate
receivers. So, its erasure probability δz satisfies

0 < δs ≤ δw ≤ δz < 1. (2)

Assumption δz ≤ δw is only made for simplicity. Similar
results hold when δz > δw .

The transmitter can access a library of D > K independent
files (messages) W1, . . . ,WD, each consisting of F i.i.d. ran-
dom bits. We assume that all files in the library have same
popularity. It also has access to a key stream S consisting of

Fkey := αmaxF

i.i.d. random bits, for a given parameter αmax ≥ 0 that is
determined by the hardware in the system.

Each weak receiver is equipped with a local cache memory
of size MF bits. Strong receivers have no cache memories.

Every receiver k ∈ K := {1, . . . ,K} demands exactly one
file Wdk from the library. So, dk ∈ D := {1, . . . ,D} describes
the demand of Receiver k, and d := (d1, . . . , dK) ∈ DK the
demand vector of all the receivers.

Communication takes place in two phases: a decentralized
prefetching phase where each weak receiver fills its cache
memory with randomly chosen bits from the library and the
random key stream S, and a centralized delivery phase where
the demanded files Wdk , for k ∈ K, are conveyed to the
receivers. During the placement phase, the demand vector d is
unknown to the transmitter and the receivers. As is standard for
decentralized caching, the cache placement at a given receiver
cannot depend on the number of receivers K (or Kw) in the
system. That means, each weak receiver i ∈ Kw computes its
cache content Vi by means of a universal prefetching function
g :
{

1, . . . , 2F
}D × {1, . . . , 2Fkey

}
×Θ→

{
1, . . . , 2MF

}
:

Vi := g(W1, . . . ,WD,S, θi), (3)

where θi is a random seed stored locally at Receiver i.
Prior to the delivery phase, the demand vector d as well as

the realization of all random seeds θ1, . . . , θKw are learned by
the transmitter, all legitimate receivers, and the eavesdropper.
The centralized delivery phase takes place over

n = RsecF

uses of the erasure BC, so Rsec denotes the secrecy delivery
rate. For a given demand vector d, the transmitter thus sends

Xn = fd(W1, . . . ,WD,S, θ1, . . . , θKw
), (4)

for some choice of the encoding function fd :
{

1, . . . , 2F
}D×{

1, . . . , 2Fkey
}
× ΘKw → Xn that can depend on the demand

vector d as well as on the realizations of the random seeds.
Each weak receiver i ∈ Kw decodes its demanded message

Wdi based on its observed binary erasure channel (BEC)
outputs Y ni := (Yi,1, . . . , Yi,n) and its cache content Vi:

Ŵi := ϕi(Y
n
i , Vi), i ∈ Kw, (5)

for some function ϕi : Yn × V →
{

1, . . . , 2F
}

. Each strong
receiver j ∈ Ks decodes its demanded message based only on
the observed outputs Y nj :

Ŵj := ϕj(Y
n
j ), j ∈ Ks, (6)

for some function ϕj : Yn →
{

1, . . . , 2F
}

. Notice that all
functions ϕ1, . . . , ϕK can depend on the demand vector d and
the realizations of the random seeds θ1, . . . , θKw

.
A decoding error occurs whenever Ŵk 6= Wdk , for some

k ∈ K. We consider the worst-case probability of error over
all feasible demand vectors

PWorst
e := max

d∈DK
P

[
K⋃
k=1

{
Ŵk 6= Wdk

}]
. (7)

In the described communication, the set of all files



W1, . . . ,WD needs to be kept secret from an external eaves-
dropper that observes the (delivery) channel outputs Zn, but
has no access to the cache memories. So, here Zn is the
result of passing the transmitters’ (delivery) channel inputs
Xn through a BEC with erasure probability δz > 0.

Definition 1. A tuple (Rsec,M, αmax) is securely achievable, if
for every ε > 0 and sufficiently large F, there exist prefetching,
encoding, and decoding functions so that

PWorst
e ≤ ε, (8a)

1

n
I(W1, . . . ,WD;Zn,d, θ1, . . . , θKw

) < ε. (8b)

Definition 2. Given cache memory size M and αmax, the se-
crecy rate-memory tradeoff R?sec(M, αmax) is the smallest rate
Rsec so that the tuple (Rsec,M, αmax) is securely achievable:

R?sec(M, αmax) := inf
{
Rsec : (Rsec,M, αmax)

securely achievable
}
. (9)

Without cache memory, i.e., M = 0, the secrecy rate-
memory tradeoff does not depend on αmax and is [8]:

R(0)
sec := R?sec(0, αmax) =

Kw
δz − δw

+
Ks

δz − δs
. (10)

III. MAIN RESULTS

If
αmax ≥

Kw(1− δz)
1− δw

,

define the secrecy rate-memory pair

M(Key) := αmax

(
1− Kw

√
1− Kw(1− δz)

αmax(1− δw)

)
, (11a)

R(Key)
sec :=

Kw
1− δw

+
Ks

δz − δs
. (11b)

For any 0 ≤ α ≤ αmax, define the secrecy rate-memory pairs

M(Mixed)(α) :=
(D + α)(1− δz)

α(1− δw) + (1− δz)
, (12a)

R(Mixed)
sec (α) :=

1−p
p

[
1− (1− p)Kw

]
1− δw

+
Ks(1− p)Kw

δz − δs

+

[
1− (1− p)Kw

][
Ks(1− δw)− (δw − δs) 1−p

p

]+
(1− δw)(δz − δs)

, (12b)

where [x]+ := max{0, x}, and

p :=
1− δz

α(1− δw) + (1− δz)
. (13)

Theorem 1. The secrecy rate-memory tradeoff is upper
bounded by the lower convex hull of the secrecy rate-memory
pairs satisfying (11) and (12):

R?sec(M, αmax) ≤
lower hull

{(
R(0)

sec ,M = 0
)
,
(
R(Key)

sec ,M(Key)
)
,

M
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Fig. 2. Upper and lower bounds on R?
sec(M) for δw = 0.6, δs = 0.3,

δz = 0.8, Kw = 10, Ks = 5, and D = 20.

and
(
R(Mixed)

sec (α),M(Mixed)(α)
)
∀α ∈ [0, αmax]

}
. (14)

Notice that M(Mixed)(α) and R(Mixed)
sec (α) are monotonically

increasing and decreasing functions for α ∈ [0, αmax].
Figure 2 depicts the upper bound in Theorem 1 for different

values of αmax. The figure also shows upper and lower bounds
for the centralized case. The upper bound is obtained by
improving [5, Theorem 2] using ideas from [9] and the lower
bound is from [5, Theorem 1]. (Being a lower bound on the
centralized case, it is also a lower bound on the decentralized
case.) For small cache sizes, the performance of our scheme
improves with growing αmax, i.e., with the length of the key
stream S. The reasons is that a large key size implies a large
probability of receivers prefetching long independent secret
keys that the transmitter can apply as one-time pads to secure
communication. For αmax exceeding 10 (i.e., Fkey ≈ 10F),
the gap between our upper bound and that of the centralized
setup is negligible. For moderate and large cache sizes, the gap
between the decentralized and the centralized upper bounds
is negligible irrespective of αmax. We also observe that both
upper bounds are close to the lower bound.

Figure 3 compares the upper bound in Theorem 1 with
the lower bound from [3]. Note that in [3], a centralized
prefetching of secret keys is applied before the centralized
delivery phase. The required coordination between the trans-
mitter and receivers during the prefetching phase is however
incompatible with the decentralized caching paradigm. In our
scheme, prefetching of key bits is also decentralized and does
not necessitate any coordination with the server. Nevertheless,
Figure 3 shows that our scheme outperforms that of [3]. This is
due to the fact that our scheme is a joint cache-channel coding
scheme where the encoder and the decoders simultaneously
exploit the cache content and the channel statistics. In contrast,
the scheme in [3] is designed for error-free links and we
combine it here with a standard BC code for communications
to weak receivers. In a subsequent phase, we use a wiretap
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BC code to communicate to the strong receivers, which do
not have cache memories. The red curve in Figure 3 depicts
the upper bound obtained when in our joint coding scheme
the usage of secret keys is replaced by random binning.

In the sequel, we describe the two schemes achieving the
secrecy rate-memory pairs in (11) and (12). In the first scheme,
only keys are prefetched in the cache memories. In the second
scheme, prefetching includes keys and data.

IV. SCHEME WITH ONLY KEYS IN THE CACHE

In this scheme, weak users prefetch only key bits. Assume

αmax ≥
Kw(1− δz)

1− δw
.

Fix a file size F and a small positive ε > 0, and define

qε := 1− Kw

√
1− Kw(1− δz)

αmax(1− δw)
+ ε. (15)

Fix also a small positive ε′ > 0 so that

αmax

[
1− (1− qε)Kw

]
>

Kw(1− δz)
1− δw

+ ε′. (16)

This is possible because qε is increasing in ε and because
αmax[1− (1− q0)Kw ] = Kw(1−δz)

1−δw .

A. Decentralized Prefetching Phase

For each b ∈ {1, . . . ,Fkey}, every weak receiver i ∈ Kw
prefetches the b-th bit of the stream S, i.e., Sb, with probability
qε, independently of all other bits and of all other receivers.
For any given subset of receivers G ⊆ Kw, define the key bits
stored exclusively at receivers in G:

SG :=
{
Sb : Sb cached exclusively at receivers in G

}
.

No data is cached in this scheme. The cache content at a given
weak receiver i can then be written as:

Vi = {SG : G so that i ∈ G} . (17)

By the weak law of large numbers, for sufficiently large key
sizes Fkey and all ` ∈ {1, . . . ,Kw}, approximately the same
number of key bits is exclusively cached at any subset of `
weak receivers. Let F(`)

key be the expected number of key bits
commonly and exclusively cached at any given size-` subset of
receivers and F

(0)
key be the expected number of key bits cached

at no receiver. For ` ∈ {1, . . . ,Kw}, F(`)
key is given by

F
(`)
key := γ(`)ε αmaxF, (18)

where

γ(`)ε := q`ε (1− qε)Kw−` . (19)

The number of effectively cached key bits is approximately
equal to its expectation with high probability. The described
cache placement will thus be admissible with high probability
and when F is sufficiently large, if the cache size satisfies

MF ≥
Kw∑
`=1

(
Kw − 1

`− 1

)
γ(`)ε αmaxF + ε

= αmaxF
Kw∑
`=1

(
Kw − 1

`− 1

)
q`ε (1− qε)Kw−` + ε

= αmaxF
Kw−1∑
i=0

(
Kw − 1

i

)
qi+1
ε (1− qε)Kw−1−i + ε

= αmaxqεF + ε. (20)

B. Centralized Delivery Phase

Delivery communication is split into two subphases. Sub-
phase 1 consists of

n1 =
KwF

1− δw
+

ε′

1− δz
F (21)

channel uses and is dedicated to send information to the Kw
weak receivers. Specifically, the transmitter extracts the Kw
independent keys S?1, . . . ,S

?
Kw

from S, of length

nkey :=

(
1− δz
1− δw

+
ε′

Kw

)
F, (22)

so that each Si, i ∈ Kw, is stored in Receiver i’s cache
memory. This is possible with high probability when F is
sufficiently large because the expected number of totally
cached bits is

Fkey − F
(0)
key = αmax

[
1− (1− qε)Kw

]
F, (23)

which by (16) and (22) exceeds Kwnkey.
The transmitter then time-shares Kw wiretap codes with

secret keys [10] to send message Wd1 to Receiver 1 using
key S?1, message Wd2 to Receiver 2 using key S?2, message
Wd3 to Receiver 3 using key S?3 and so on.

The probability of decoding error in this Subphase 1 tends
to 0 as F → ∞, because the communication rate of
each message satisfies F/(n1/Kw) < 1 − δw. Transmission
is secured from the eavesdropper because each transmitted



message is secured with a key of rate
nkey

n1/Kw
> (1− δz). (24)

Subphase 2 consists of

n2 =
KsF

δz − δs
+ ε′F. (25)

channel uses and is dedicated only to the Ks strong receivers.
Specifically, in Subphase 2, the transmitter uses a wiretap BC
code [8] to send messages WdKw+1

, . . . ,WdK to the strong
receivers. Communication in this subphase is thus secured
from the eavesdropper. Moreover, the probability of decoding
error tends to 0 as F → ∞ because the rate of communication
satisfies F/(n2/Ks) < δz − δs.

Combine all these observations and sum up n = n1 + n2.
Then, letting ε, ε′ → 0, we can conclude achievability of the
secrecy rate-memory pair in (11).

V. SCHEME WITH KEYS AND DATA IN THE CACHE

In this scheme, weak users prefetch key and data bits. Fix
file size F, and choose α ∈ [0, αmax] and ε > 0. Define

pε := p+ ε (26)

where p is defined in (13). Moreover, for each ` ∈
{0, 1, . . . ,Kw}, define

γ(`) := p` (1− p)Kw−` (27)

and
γ(`)ε := p`ε (1− pε)Kw−` . (28)

Choose a sufficiently small ε′ > 0.

A. Decentralized Prefetching Phase

For each b ∈ {1, . . . ,Fkey}, every weak receiver i ∈ Kw
prefetches the b-th bit of the stream S, i.e., Sb, with probability
pε, independently of all other bits and of all other receivers.
Similarly, for each d ∈ D and each b ∈ {1, . . . ,F}, every
weak receiver i ∈ Kw prefetches the b-th bit of file Wd, i.e.,
Wd,b, with probability p, independently of all other bits and
of all other receivers.

For any given subset of receivers G ⊆ Kw, define the key
bits stored exclusively at receivers in G:

SG :=
{
Sb : Sb cached exclusively at receivers in G

}
,

and for each file Wd, the data bits stored exclusively at
receivers in G:

Wd,G :=
{
Wd,b : Wd,b cached exclusively at receivers in G

}
.

(29)
The cache content at weak receiver i can then be written as:

Vi =
⋃
G : i∈G

{
SG ,W1,G , . . . ,WD,G

}
, i ∈ {1, . . . ,Kw}. (30)

Notice that the expected number of key bits commonly and
exclusively prefetched at a given size-` subset of receivers is:

F
(`)
key := γ(`)ε αF, ` ∈ {0, 1, . . . ,Kw}. (31)

Similarly, the expected number of bits of any file Wd

prefetched at a given size-` subset of receivers is

F(`) := γ(`)F, ` ∈ {0, 1, . . . ,Kw}. (32)

Notice that by the weak law of large numbers, the number
of effectively prefetched (data and key) bits is approximately
equal to its expectation with high probability.

The described prefetching is thus admissible with high
probability, if the cache size

MF ≥ D
Kw∑
`=1

(
Kw − 1

`− 1

)
γ(`)F +

Kw∑
`=1

(
Kw − 1

`− 1

)
γ(`)ε αF + ε

= DF

Kw∑
`=1

(
Kw − 1

`− 1

)
p` (1− p)Kw−`

+αF
Kw∑
`=1

(
Kw − 1

`− 1

)
p`ε (1− pε)Kw−` + ε

= pDF + pεαF + ε. (33)

B. Centralized Delivery Phase

The delivery phase is divided into Kw + 1 subphases.
Subphase `, for ` ∈ {1, . . . ,Kw}, consists of

n` :=

(
Kw

`

)
F(`−1)

1− δw
+ ε′F, (34)

channel uses and is further divided into
(
Kw

`

)
equally-long

periods. Communication in each of these periods is intended
to a different subset of ` weak receivers and to all the Ks
strong receivers. The last Subphase Kw + 1 is of length

nKw+1 :=

Ks
(
F(0) +

Kw∑̀
=1

(
Kw

`

)
F(`,2)

)
δz − δs

+ ε′F, (35)

where for each ` ∈ {1, . . . ,Kw}, we define

F(`,2) := F` − F(`,1), (36)

F(`,1) := min

{
F(`),F(`−1) δw − δs

Ks(1− δw)

}
− ε′F. (37)

This last subphase is intended only to the strong receivers.
Before transmission starts, the transmitter divides each of

the strong receivers’ submessages in (29) into 2 more parts:

Wdj ,G =
(
W

(1)
dj ,G ,W

(2)
dj ,G

)
, ∀j ∈ Ks, ∀G ⊆ Kw, (38)

of lengths F(|G|,1) and F(|G|,2).
The transmitter further extracts from the key stream S the

2Kw independent keys {SG : ∀G ⊆ Kw}, in a way that for each
G the key SG is of length

nkey,|G| :=
n|G|(
Kw

|G|
) · (1− δz), (39)

and receivers in G can construct it from their cache contents.
The described preparations are feasible for sufficiently small ε′

by the weak law of large numbers, because for ε = ε′ = 0 we
have nkey,|G| = F

(|G|)
key and because the number of commonly



(not necessarily exclusively) stored key bits at any set of G
receivers is an increasing function of ε.

Consider now transmission in Subphase ` ∈ Kw and let
G(`)1 , . . . ,G(`)

(Kw
` )

denote the
(
Kw

`

)
subsets of Kw of size `. For

each period t ∈ {1, . . . ,
(
Kw

`

)
} of Subphase `, the transmitter

creates a piggyback codebook [11]

Ct :=
{
xt(wr, wc) : wr ∈

{
1, . . . , 2F

(`−1)}
,

wc ∈
{

1, . . . , 2F
(`,1)}}

, (40)

with entries drawn i.i.d. according to a Bernoulli-1/2 distri-
bution. The codewords of such a codebook are arranged in
an array with rows encoding the message wr and columns
encoding the message wc, see Figure 4.

W
w,G(`)

t

W
(1)

s,G(`)
t

Codeword
corresponding
to W

w,G(`)
t

and W
(1)

s,G(`)
t

Fig. 4. Structure of piggyback codebook with codewords arranged in an array.
Here the rows encode W

w,G(`)
t

and the columns W
(1)

s,G(`)
t

.

In period t of subphase `, the transmitter conveys1

W
w,G(`)

t
:=
(( ⊕

i∈G(`)
t

W
di,G(`)

t \{i}

)
+ SG(`)

t

)
mod 2F

(`−1)

(41)
to all weak receivers in G(`)t , and the message

W
(1)

s,G(`)
t

:=
(
W

(1)

dKw+1,G(`)
t

, . . . ,W
(1)

dK,G(`)
t

)
(42)

to all Ks strong receivers. To this end, it uses the pig-
gyback codebook in Figure 4 and sends the codeword
xt
(
W
w,G(`)

t
,W

(1)

s,G(`)
t

)
in row W

w,G(`)
t

and column W
(1)

s,G(`)
t

.

Each weak receiver i ∈ G(`)t has stored W
(1)

s,G(`)
t

in its cache
memory and can decode based on the restricted codebook
C
t,G(`)

t

(
W

(1)

s,G(`)
t

)
consisting only of the codewords in the

column indicated by W
(1)

s,G(`)
t

:

C
t,G(`)

t

(
W

(1)

s,G(`)
t

)
:=
{
x1

(
wr,W

(1)

s,G(`)
t

)
:

wr ∈
{

1, . . . , 2F
(`−1)

}}
.

Its decoding performance is thus the same as if this message
W

(1)

s,G(`)
t

had not been sent at all, and it decodes correctly with

1Here,
⊕

denotes a bitwise XOR operation and mod the modulo
operator.

probability tending to 1 as F→∞, because

F(`−1)

n`/
(
Kw

`

) < 1− δw. (43)

Strong receivers have no cache memories and decode both
messages W

w,G(`)
t

and W
(1)

s,G(`)
t

based on the entire codebook
Ct. This decoding is correct with probability tending to 1 as
F→∞, because

F(`−1) + KsF
(`,1)

n`/
(
Kw

`

) ≤ F(`−1)

n`/
(
Kw

`

) · 1− δs
1− δw

< 1− δs, (44)

where the inequalities hold by (37) and (43). Communication
in this subphase is secure because the modulo-operation in
(41) acts as a random binning for both messages.

In subphase Kw + 1, the transmitter uses a wiretap BC
code to send the missing parts of their messages to the strong
receivers. The analysis for this phase is standard and omitted.

Combining all these considerations and letting ε, ε′ → 0,
establishes achievability of the tradeoff in (12).

VI. SUMMARY

We have derived an upper bound on the decentralized
secrecy rate-memory tradeoff of a K-receiver wiretap BC
under a joint secrecy constraint. In this setup, Kw receivers are
weak and have cache memories and Ks receivers are strong
and have no cache memories. We propose a coding scheme
where prefetching of key bits and data bits is decentralized. For
small cache sizes, the performance of our scheme improves
with increasing length of the random key sequence stored at
the transmitter. For moderate and large cache sizes, it performs
close to the fundamental limit, regardless of the size of this
key sequence.
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