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Noisy Broadcast Networks with Receiver Caching
Shirin Saeedi Bidokhti, Michèle Wigger and Roy Timo

Abstract—An erasure broadcast network is considered with
two disjoint sets of receivers: a set of weak receivers with all-
equal erasure probabilities and equal cache sizes, and a set
of strong receivers with all-equal erasure probabilities and no
cache memories. Lower and upper bounds are presented on
the capacity-memory tradeoff of this network (the largest rate
at which messages can be reliably communicated for given cache
sizes). The lower bound is achieved by means of a joint cache-
channel coding scheme and significantly improves over traditional
schemes based on separate cache-channel coding. In particular,
it is shown that joint cache-channel coding offers new global
caching gains that scale with the number of strong receivers
in the network. The upper bound uses bounding techniques
from degraded broadcast channels and introduces an averaging
argument to capture the fact that the contents of the cache
memories are designed before knowing users’ demands. The
derived upper bound is valid for all stochastically degraded
broadcast channels. The lower and upper bounds match for a
single weak receiver (and any number of strong receivers) when
the cache size does not exceed a certain threshold. Improved
bounds are presented for the special case of a single weak and
a single strong receiver with two files and the bounds are shown
to match over a large range of cache sizes.

I. INTRODUCTION

We address a one-to-many broadcast communication prob-
lem where many users demand files from a single server
during peak-traffic times (periods of high network congestion).
To improve network performance, the server can pre-place
information in local cache memories near users during off-
peak times when the communication rate is not a limiting
network resource. The server typically does not know in
advance which files the users will demand, so it will try to
place information that is likely to be useful for many users
during periods of peak-traffic. Machine-learning techniques
can be used to predict user behavior and identify files that
are more likely to be selected in peak-traffic [1].

The above caching problem is particularly relevant to video-
and music-streaming services in mobile networks: Content
providers pre-place information in clients’ caches (or, on
servers close to the clients) to improve latency and throughput
during peak-traffic times. The content provider however does
not know in advance which movies or songs the clients will
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request, and thus the cached information cannot depend on the
clients’ specific demands. It somehow needs to be generic and
fit the demands of a large group of users. For example, music-
providers automatically cache popular songs on the region’s
”top 50” chart.

The information-theoretic aspects of cache-aided commu-
nications have received significant attention in recent years.
Maddah-Ali and Niesen [2] considered a one-to-many com-
munications problem where the receivers have independent
caches of equal sizes and the delivery phase (the peak-traffic
communication) takes place over a noiseless bit-pipe that is
connected to all receivers. They showed that a smart design of
the cache contents enables the server to send coded (XOR-ed)
data during the delivery phase and simultaneously meet the
demands of multiple receivers. This coded caching scheme
allows the server to reduce the delivery rate beyond the
obvious local caching gain, i.e., the data rate that each receiver
can locally retrieve from its cache. Intuitively, the performance
improvement occurs because the receivers can profit from
other receivers’ caches and the gain scales with the number
of receivers in the networks. It was thus termed [2] a global
caching gain. Several works [2]–[15] have presented upper
and lower bounds on the minimum delivery rate as a function
of the cache sizes. The problem has also been studied in the
framework of lossless and lossy source coding in [16]–[19].

More realistically, the channel for the delivery phase can
be modeled as a noisy broadcast channel (BC). This modeling
approach was followed for example in [20]–[35] and is also
the basis of this current paper. While the works in [21]–
[23], [25]–[33], [35] focus on the interplays of caching with
feedback, channel state information and massive MIMO, in
this paper, we consider a simple erasure BC and show that
further global caching gains can be achieved by joint cache-
channel coding. In joint cache-channel coding, cache contents
not only determine what to transmit but also how to transmit it.
Previous works have adopted separate cache-channel coding
architectures with encoder/decoders consisting of a cache
encoder/decoder and a channel encoder/decoder specifically
designed for the cache contents and the BC statistics, respec-
tively. Notice that by recasting the cache-contents as sources
available at the receiver, joint cache-channel coding becomes
an instance of joint source-channel coding. Joint source-
channel coding schemes for BCs without cache memories but
with receiver side-information have previously been presented
in [36]–[38], [40]–[47]. Tuncel [36], for example, provided
sufficient and necessary conditions when a memoryless source
can be transmitted losslessly over a BC with receiver side-
information. Particularly related to the caching model here
is the scenario where the receivers’ side-information is also
available at the transmitter [46], [47], a scenario that also
relates to the BC with feedback because the fed back chan-
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nel outputs can be viewed as such a side-information. The
feedback schemes in [44], [48]–[57] exactly exploit this side-
information to improve over the no-feedback capacity region
of the considered BCs. Joint source-channel coding is however
only used in [44], [48].

The main interest of this paper is on the fundamental
capacity-memory tradeoff (i.e., the largest rate at which mes-
sages can be reliably communicated for given cache sizes) of
the K-receiver erasure BC illustrated in Figure 1. In this BC
the receivers are partitioned into two sets:
• A set of Kw weak receivers with equal “large” BC erasure

probabilities δw ≥ 0. These receivers are each equipped
with an individual cache of size nM bits.

• A set of Ks := K − Kw strong receivers with equal
“small” BC erasure probabilities δs ≥ 0 with δs ≤ δw.
These receivers are not provided with caches.

Tx

Erasure Broadcast Channel

Xn

Library: W1, W2, . . . , WD

Rx Kw+1Rx Kw

Y n
Kw+1Y n

Kw

Rx K

Y n
K

Rx 1

Y n
1

Cache1

Rx 2

Y n
2

Cache2

nM bitsnM bits nM bits

. . .

erasure probability �w

erasure probability �s  �w
. . . CacheKw

Fig. 1: K user erasure BC with Kw weak and Ks strong
receivers and where the weak receivers have cache memories.

This scenario is motivated by previous studies [20], [21]
that showed the benefit of prioritizing cache placements
near weaker receivers. In practical systems, this means that
telecommunications operators with a limited number of caches
might first place caches at houses that are further away from
an optical fiber access point. Or, they might place caches at
pico or femto base stations in heterogenous networks that
are located in areas with notoriously bad throughput. Another
motivation for this work is the idea of using caching techniques
to extend the coverage of cellular networks in remote rural
areas. For example, the 3GPP technical report [58, page 16]
outlines a single-cell extreme long distance coverage in low
density areas deployment scenario in which network providers
aim to provide opportunistic coverage to relatively few users
located up to 100km from the basestation. The performance of
these extreme cell-edge users could be improved, for example,
by using customer-premise equipment (CPE) with caching.
Specifically, the network provider could use caching to enable
the weak extreme cell-edge users to be co-scheduled with
strong users on the same time-frequency resources, and, thus,
allocate a greater portion of the time-frequency resources to
the few extreme cell-edge users.

In this work, we find lower and upper bounds on the
capacity-memory tradeoff C(M) of the broadcast network
shown in Figure 1. The proposed lower bounds are achieved by
a joint cache-channel code design that builds on the piggyback
coding idea in [20], [48]. The basic idea of piggyback coding
is to carry messages to strong receivers on the back of
messages to the weak receivers. These messages can be carried
for “free” if the server pre-places appropriate message side-
information in the weak receivers’ caches. A secrecy-version
of the piggyback coding idea has previously been adopted
in [39]. We remark that by recasting the cached contents as
message side-information, one could also use Tuncel coding
[36] (instead of piggyback coding)1. Our joint cache-channel
coding exploits the heterogeneity of the users in their cache
sizes. A similar technique has concurrently been developed
to exploit heterogeneity in rate [24]. In a dual manner, more
recently, joint source-channel coding is beneficial for lossy
transmission over cache-aided networks when there is hetero-
geneity in the distortion criteria [19].

The new lower bounds substantially improve over standard
separate cache-channel coding schemes that combine stand-
alone codes for coded caching [2] and for reliable transmission
over the erasure BC. For example, when M is sufficiently
small (depending on certain problem parameters), the joint
cache-channel coding scheme achieves the following lower
bound on the capacity-memory tradeoff:

C(M) ≥ R0 +
Kw(1− δs)

Kw(1− δs) +Ks(1− δw)
· 1 +Kw

2
·γjoint ·

M

D
.

(1)
Here, R0 represents the largest symmetric rate that is achiev-
able over the erasure BC in Figure 1 when neither strong nor
weak receivers have cache memories; and the constant

γjoint := 1 +
2Kw

1 +Kw
· Ks(1− δw)

Kw(1− δs)
≥ 1 (2)

describes this scheme’s gain over separate cache-channel cod-
ing. This means that separate cache-channel coding can only
achieve the lower bound in (1) when γjoint is replaced by 1.
Inequalities (1) and (2) show that the improvement of our joint
cache-channel coding scheme (over separate cache-channel
coding schemes) is not bounded for small cache sizes. In
particular, it is strictly increasing in the number of strong
receivers Ks when the other problem parameters δw, δs and
Kw are fixed.

We also present a general upper bound (converse) on the
capacity-memory tradeoff of cache-aided broadcast networks,
when the broadcast channel is stochastically degraded. Note
that although the underlying broadcast channel is assumed to
be stochastically degraded, the overall cache-aided network

1There is a subtle difference between piggyback coding and Tuncel coding
in this special case. In both coding schemes the receivers decode the
transmitted sources (messages) by means of a joint typicality test involving
their observed channel outputs and a subset (called bin) of the channel
codewords. Piggyback coding uses a standard binning structure where the
channel codebook is explicitly partitioned into such bins. In Tuncel coding,
the bins are not explicit, do not necessarily form a partition, and can be
different over the various receivers. The bin of interest is therefore created
on-the-fly (through another joint typicality test between source sequences and
side-information) by each receiver just before the actual decoding operation.
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is not stochastically degraded because the caches can be
used to improve the decoding capabilities of the weaker
receivers. Consequently, one cannot directly apply known
converse bounds for degraded broadcast channels (e.g. [60]).
The derived upper bound holds for any cache sizes.

The lower and upper bounds match for the network in
Figure 1 when there is only a single weak receiver with a
small cache memory:

Kw = 1

and

M ≤ D (1− δs)(δw − δs)

Ks(1− δw) + (1− δs)
, (3)

where D denotes the number of files in the system.
For the special case Kw = Ks = 1 and D = 2, a

second, improved, set of lower and upper bounds on C(M)
is presented. They coincide when the cache memory is either
small as in (3) or large:

M ≥ ((1− δs) + (δw − δs)),

and also for general cache memories M ≥ 0 when both
receivers are equally strong:

δw = δs.

To facilitate comparison with previous works, the lower and
upper bounds on the capacity-memory tradeoff C(M) are also
translated into equivalent bounds on the minimum delivery
rate-memory tradeoff, as considered in [2].

As already mentioned, the present paper shows the ben-
efits of joint cache-channel coding over schemes that apply
cache-channel separation. A different kind of separation was
addressed in [63]: Cache-placement and creation of coded
(XOR) messages are separated from the delivery of these
coded messages over the network using a stand-alone code
that ignores the caches. It is proved that this separation-based
architecture is near-optimal for any network (i.e., achieves the
optimal delivery rate-memory tradeoff up to a constant factor)
when restricting to separate cache-channel codes.

A. Paper Organization

The paper is organized as follows. In Section II, we
state the problem setup. Section III presents a separate-cache
channel coding scheme and Section IV describes our joint
cache-channel coding scheme. Section V gives a fundamental
converse result (upper bound) for the capacity-memory trade-
off of general degraded BCs with receiver cache-memories.
Section VI states lower and upper bounds on the capacity
memory tradeoff of the erasure BC in Figure 1. Section VII
restates the obtained general upper and lower bounds on the
capacity-memory tradeoff as lower and upper bounds on the
delivery rate-memory tradeoff. Finally, Section VIII concludes
the paper.

II. PROBLEM DEFINITION

A. Notation

Random variables are denoted by uppercase letters, e.g. A,
their alphabets by matching calligraphic font, e.g. A, and their
realizations by lowercase letters, e.g. a. We also use uppercase
letters for deterministic quantities like rate R, capacity C,
number of users K, cache size M , and the number of files in
the library D. The Cartesian product of A and A′ is A×A′,
and the n-fold Cartesian product of A is An. The shorthand
notation An is used for the tuple (A1, . . . , An).

LHS and RHS stand for left-hand side and right-hand side,
and IID stands for independentely and identically distributed.

Finally, the notation W1 ⊕ W2 denotes the bitwise XOR
of the binary strings that correspond to the messages W1 and
W2, where these strings are assumed to be of equal length.

B. Message and Channel Models

Consider the one-to-K BC in Figure 1. We have two sets
of receivers: Kw weak receivers with bad channels and Ks =
K −Kw strong receivers with good channels. (The meaning
of good and bad channels will be explained shortly.) For
convenience of notation, we assume that the first Kw receivers
are weak and the subsequent Ks receivers are strong, and we
define the following sets accordingly:

Kw := {1, . . . ,Kw},
Ks := {Kw + 1, . . . ,K},
K := {1, . . . ,K}.

We model the channel from the transmitter to the receivers
by a memoryless erasure BC2 with input alphabet

X := {0, 1}

and equal output alphabet at all receivers

Y := X ∪ {∆}.

The output erasure symbol ∆ models loss of a bit at a given
receiver. Receiver k ∈ K observes the erasure symbol ∆ with
a given probability δk ≥ 0, and it observes an output yk equal
to the input, yk = x, with probability 1 − δk. The marginal
transition laws3 of the memoryless BC are thus described by

P[Yk = yk|X = x] =

{
1− δk if yk = x
δk if yk = ∆

∀ k ∈ K.
(4)

We will assume throughout that

δi =

{
δw if i ∈ Kw
δs if i ∈ Ks

(5)

2The results in this paper extend readily to packet-erasure BCs. It suffices
to scale the message rate R and the cache size M defined in the following
by the packet size.

3We need only specify the individual marginal probability channel laws
P[Yk = yk|X = x] for k ∈ K (and not the entire joint channel law P[Y1 =
y1, Y2 = y2, ..., YK = yK |X = x]) for the optimal cache-memory trade-
off problem defined shortly. That is, it will become clear in the following
discussion that any two channels with the same marginal channel laws, but
different joint laws, exhibit the same fundamental cache-memory tradeoffs.
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for fixed erasure probabilities4

0 ≤ δs ≤ δw < 1. (6)

Since δs ≤ δw, the weak receivers have statistically worse
channels than the strong receivers, hence the distinction be-
tween good and bad channels. In the sequel, we will assume
that each weak receiver is provided with a cache memory of
size nM bits. The strong receivers are not provided with cache
memories.

C. Message Library and Receiver Demands

The transmitter has access to a library with D ≥ K
independent messages

W1, . . . ,WD. (7)

Each message is uniformly distributed over the message set
{1, . . . , b2nRc}, where R ≥ 0 is the rate of the message and
n is the blocklength of transmission.

Each receiver demands (i.e., requests and downloads) ex-
actly one of the messages. Let

D := {1, . . . , D}.
We denote the demand of receiver 1 by d1 ∈ D, the demand
of receiver 2 by d2 ∈ D, etc., to indicate that receiver 1 desires
message Wd1 , receiver 2 desires message Wd2 , and so on. We
assume throughout that the resulting demand vector

d := (d1, . . . , dK) (8)

can take on any value in

DK = D × · · · × D (K-fold Cartesian product). (9)

Communication takes place in two phases: A first placement
phase where information is stored in the weak receivers’
cache memories and a subsequent delivery phase where the
demanded messages are delivered to all the receivers. The next
two subsections detail these two communication phases.

D. Placement Phase

During the placement phase, the transmitter sends caching
information Vi to each weak receiver i ∈ Kw. This information
is stored in the local cache memory of the user. The strong
receivers do not take part in the placement phase. Note that
the users’ demand vector d is unknown to the transmitter
and receivers during the placement phase, and, therefore, the
cached information Vi cannot depend on d. Instead, Vi is a
function of the entire library only:

Vi := gi(W1, . . . ,WD), i ∈ Kw,

for some function

gi :
{

1, . . . , b2nRc
}D → V, i ∈ Kw, (10)

where
V := {1, . . . , b2nMc}.

4Although we are technically allowing δs = δw , our main interest will be
δs < δw.

The placement phase occurs during a low-congestion period.
We therefore assume that any transmission errors are corrected
using, for example, retransmissions. Each weak receiver i ∈
Kw can thus store Vi in its cache memory.

E. Delivery Phase

In the delivery phase, users’ demands are announced. The
transmitter is provided with the demand vector d, and it com-
municates the corresponding messages Wd1 , . . . ,WdK over
the erasure BC. The entire demand vector d is assumed to
be known to the transmitter and all receivers5.

The transmitter chooses an encoding function that corre-
sponds to the specific demand vector d:

fd : {1, . . . , b2nRc}D → Xn, (11)

and it sends
Xn = fd(W1, . . . ,WD) (12)

over the erasure BC.
Each receiver k ∈ K observes Y nk according to the mem-

oryless transition law in (4). The weak receivers attempt to
reconstruct their desired messages from their channel outputs,
local cache contents, and the demand vector d. Similarly, the
strong receivers attempt to reconstruct their desired messages
from their channel outputs and the demand vector d. More
formally,

Ŵi :=

{
ϕi,d(Y ni , Vi) if i ∈ Kw

ϕi,d(Y ni ) if i ∈ Ks,
(13a)

where

ϕi,d : Yn × V → {1, . . . , b2nRc}, i ∈ Kw, (13b)

and

ϕi,d : Yn → {1, . . . , b2nRc}, i ∈ Ks. (13c)

F. Capacity-Memory Tradeoff

An error occurs whenever

Ŵk 6= Wdk for some k ∈ K. (14)

For a given demand vector d, the probability of error is

Pe(d) := P
[ K⋃

k=1

Ŵk 6= Wdk

]
. (15)

We consider a worst-case probability of error over all feasible
demand vectors:

Pe
worst := max

d∈DK
Pe(d). (16)

In Definitions (10)–(16), we sometimes add a superscript (n)
to emphasise the dependency on the blocklength n.

5It takes only dlog(D)e bits to describe the demand vector d. The demand
vector can thus be revealed to all terminals using zero-transmission rate (in
the usual Shannon sense).
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We say that a rate-memory pair (R,M) is achievable if, for
every ε > 0, there exists a sufficiently large blocklength n and
placement, encoding and decoding functions as in (10), (11)
and (13) such that Pe

worst < ε. The main problem of interest
in this paper is to determine the following capacity versus
cache-memory tradeoff.

Definition 1: Given the cache memory size M , we define
the capacity-memory tradeoff C(M) as the supremum of all
rates R such that the rate-memory pair (R,M) is achievable.

G. Trivial and Non-Trivial Cache Sizes

When the cache size M = 0, the capacity-memory tradeoff
equals the symmetric capacity R0 of a standard erasure
BC [59]:

C(M = 0) = R0, (17)

where

R0 :=

(
Kw

1− δw
+

Ks

1− δs

)−1

. (18)

Since the strong receivers do not have cache memories, the
capacity-memory tradeoff cannot exceed the capacity to the
strong receivers, irrespective of the cache size at the weak
receivers. Thus,

C(M) ≤ 1− δs

Ks
, ∀ M ≥ 0. (19)

When M ≥ D(1−δs)/Ks, the weak receivers can store the
entire library in their caches and the transmitter thus needs
to only serve the strong receivers during the delivery phase.
Therefore,

C(M) =
1− δs

Ks
, ∀ M ≥ D · 1− δs

Ks
. (20)

We henceforth restrict attention to nontrivial cache memo-
ries

M ∈
(

0, D · 1− δs

Ks

)
.

III. A SEPARATE CACHE-CHANNEL CODING SCHEME

As first step, consider the following separate cache-channel
coding scheme that is built on stand-alone capacity-achieving
codes for the erasure BC and the coded caching scheme of
Maddah-Ali and Niesen [2]. The scheme is described in detail
using the following coded-caching methods, which will serve
also in later sections:

• Method Ca describes the placement operations.
• Method En describes the delivery-phase encoding.
• Methods {Dei; i = 1, 2, . . . ,Kw} describe the delivery-

phase decodings.

1) Preliminaries: The scheme has parameter

t̃ ∈ {0, . . . ,Kw}.

If t̃ 6= 0, let
G1, . . . ,G(Kw

t̃ )

denote the
(Kw
t̃

)
subsets of Kw that have size t̃. Split each

message Wd, d = 1, . . . , D, into
(Kw
t̃

)
independent submes-

sages

Wd =

{
Wd,G` : ` = 1, . . . ,

(
Kw

t̃

)}
,

each with equal rate

Rsub := R

(
Kw

t̃

)−1

. (21)

2) Placement: For t̃ = 0, no content is stored in the
caches. For t̃ 6= 0, cache placement is performed using
Method Ca as follows:

Method Ca takes as input the entire library W1, . . . ,WD and
outputs for each i ∈ Kw the cache content

Vi =

{
Wd,G` : d ∈ D and ` ∈

{
1, . . . ,

(
Kw

t̃

)}
, i ∈ G`

}
.

(22)

In other words, when t̃ 6= 0, then at any given weak
Receiver i ∈ Kw, the procedure stores all the tuples

(
W1,G` , W2,G` , . . . , WD,G`

)

for which i ∈ G`.
3) Delivery-Encoding: If t̃ = 0, no contents have been

stored in the cache memories, and the transmitter simply sends
messages

Wd1 ,Wd2 , . . . ,WdK

to the intended receivers using a capacity-achieving scheme
for the erasure BC.

If t̃ = Kw, the weak receivers can directly retrieve their
desired messages from their cache memories. The transmitter
thus only needs to send Messages

WdKw+1
, WdKw+2

, . . . , WdK (23)

to the strong receivers using a capacity-achieving code.
If 0 < t̃ < Kw, the transmitter first applies the following

Method En:

Method En takes as inputs the weak receivers’ demand vector
dw := (d1, . . . , dKw) and the messages W1, . . . ,WD. It
produces the outputs

{
WXOR,S : S ⊆ Kw and |S| = t̃+ 1

}
, (24)

where
WXOR,S :=

⊕

k∈S
Wdk,S\{k}. (25)

The transmitter then uses a capacity-achieving scheme for
erasure BCs to send the messages in (25) to all6 weak receivers
in Kw and the messages in (23) to all strong receivers Ks.

6Since they have equal channel statistics, all weak receivers can decode the
same messages. A similar observation applies for the strong receivers.
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4) Delivery-Decoding: The strong receivers decode their
intended messages in (23) using a capacity-achieving decoder
for the erasure BC.

If t̃ = 0, the weak receivers decode in the same way as the
strong receivers.

If t̃ = Kw, the weak receivers can directly retrieve their
desired messages from their cache memories.

If 1 ≤ t̃ ≤ Kw − 1, the weak receivers first decode the
XOR-messages

{
ŴXOR,S : S ⊆ Kw, |S| = t̃ + 1

}
in (24),

using a capacity-achieving decoder for the erasure BC. Each
receiver i ∈ Kw then applies the following Method Dei:

Method Dei takes as inputs the demand vector dw, the
decoded messages {ŴXOR,S : i ∈ S}, see (24), and the cache
content Vi. It outputs the reconstruction

Ŵi :=
(
Ŵdi,G1 , . . . , Ŵdi,G(Kw

t̃ )

)
, (26)

where

Ŵdi,G` =





(⊕
s∈G` Wds,G`∪{i}\{s}

)

⊕ŴXOR,G`∪{i} if i /∈ G`,
Wdi,G` if i ∈ G`.

(27)

5) Analysis: By standard arguments, for a given parameter
t̃ ∈ Kw, the described separate cache-channel coding scheme
allows for vanishing probability of error whenever the rate
does not exceed

Rt̃,sep :=

(
Kw − t̃

(t̃+ 1)(1− δw)
+

Ks

(1− δs)

)−1

. (28a)

Moreover, the scheme requires the weak receivers to have
cache memories of size

Mt̃,sep := D
t̃

Kw
Rt̃,sep. (28b)

By time- and memory-sharing arguments, the following
proposition holds.

Proposition 1: The upper convex hull of the rate-memory
pairs in (28) is achievable:

C(M) ≥ upp hull
({

(Rt̃,sep,Mt̃,sep); t̃ ∈ {0, . . . ,Kw}
})
.

(29)

IV. A JOINT CACHE-CHANNEL CODING SCHEME

This section describes a joint cache-channel coding scheme
for the broadcast network in Figure 1. The general scheme is
parameterized by a positive integer t ∈ Kw where t + 1 will
be the number of weak receivers that can be simultaneously
served by each transmission.

A. A Simple Example

To better illustrate the ideas, we start with an example.
Consider the scenario in Figure 2 with Kw = 3 weak receivers
and Ks = 1 strong receivers. We describe the scheme that
corresponds to t = 2.

Tx

Erasure Broadcast Channel
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Library: W1, W2, . . . , WD

Rx 3

Y n
3

Rx 4

Y n
4

Rx 1

Y n
1

Rx 2

Y n
2

�
W

(1)
d,{1}

 D

d=1

�
W

(1)
d,{2}

 D

d=1

�
W

(1)
d,{3}

 D

d=1�
W

(2)
d,{1,2}

 D

d=1�
W

(2)
d,{1,3}

 D

d=1

�
W

(2)
d,{2,3}

 D

d=1

�
W

(2)
d,{1,2}

 D

d=1 �
W

(2)
d,{1,3}

 D

d=1

�
W

(2)
d,{2,3}

 D

d=1

Fig. 2: An example network with 3 weak and a single strong
receiver. The figure illustrates the contents cached in the
proposed joint cache-channel coding scheme when t = 2.

1) Scheme: Define

R(1) :=
1− δw

1− δs
R, (30a)

R(2) :=
δw − δs

1− δs
R, (30b)

where, as before, R denotes the common rate of the messages.
Note that the ratio of R(1) to R(2) simplifies to

R(1)

R(2)
=

1− δw

δw − δs
. (31)

Split each message Wd into two submessages

Wd =
(
W

(1)
d , W

(2)
d

)

of rates R(1) and R(2). Further split each submessage W (1)
d

into 3 parts:

W
(1)
d =

(
W

(1)
d,{1},W

(1)
d,{2},W

(1)
d,{3}

)

of equal rates R(1)/3, and each submessage W (2)
d into 3 parts

W
(2)
d =

(
W

(2)
d,{1,2},W

(2)
d,{1,3},W

(2)
d,{2,3}

)

of equal rates R(2)/3.

Placement Phase: Cache all messages
{
W

(1)
d,{i}

}D
d=1

at re-

ceiver i, for i ∈ {1, 2, 3}, and all messages
{
W

(2)
d,{i,j}

}D
d=1

at receivers i and j, for i, j ∈ {1, 2, 3} with i 6= j. The cache
contents are shown in Figure 2.

The placement phase is a two-fold application of the
coded-caching method Ca given in the previous Section III:
First apply method Ca with parameter t̃ = 1 to messages
W

(1)
1 , . . . ,W

(1)
D , and then apply the same method with

parameter t̃ = 2 to messages W (2)
1 , . . . ,W

(2)
D .
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Delivery Phase: Delivery transmission takes place in Sub-
phases 1–3 of lengths n1, n2, n3 ≥ 0 that sum up to the
entire blocklength n.7 Table I shows the messages that are
transmitted in the various subphases. Notice that given the
cache contents in Figure 2, each receiver can recover its
desired message without error, if the submessages in Table I
are correctly decoded by the appropriate receivers.

We now explain the transmissions in the three subphases in
detail.

Subphase 1 is dedicated solely to the weak receivers. The
transmitter sends the XOR-message

WXOR,{1,2,3} := W
(2)
d3,{1,2} ⊕W

(2)
d2,{1,3} ⊕W

(2)
d1,{2,3}

to receivers 1–3 using a capacity-achieving scheme for the
erasure BC to these three receivers. At the end of this first
subphase, receiver 1 decodes an estimate for the XOR-message
WXOR,{1,2,3}, denoted by ŴXOR,{1,2,3}. It then retrieves mes-
sages W (2)

d3,{1,2} and W
(2)
d2,{1,3} from its cache memory and

produces:

Ŵ
(2)
d1,{2,3} := W

(2)
d3,{1,2} ⊕W

(2)
d2,{1,3} ⊕ ŴXOR,{1,2,3}. (32)

Receivers 2 and 3 produce Ŵ
(2)
d2,{1,3} and Ŵ

(2)
d3,{1,2},

following similar steps.

Subphase 2: The second subphase is the most interesting
one, and is where we utilize joint cache-channel coding
(namely in the decoding at the weak receivers). It is di-
vided into three length-bn2/3c periods, which we index by
{1, 2}, {1, 3}, {2, 3} (i.e. by the subsets of {1, 2, 3} of size 2).

In period {i, j}, the XOR-message

WXOR,{i,j} := W
(1)
dj ,{i} ⊕W

(1)
di,{j} (33a)

is sent as a common message to the weak receivers i and j,
and at the same time Message

W
(2)
d4,{i,j} (33b)

is sent to the only strong receiver 4. Notice that this latter
message W

(2)
d4,{i,j} is stored in the cache memories of both

weak receivers i and j.
For the transmission of the messages in (33), a codebook
Ci,j with b2nR(2)/3c×b2nR(1)/3c codewords of length n2,per :=
bn2/3c is generated by randomly and independently drawing
each entry according to a Bernoulli-1/2 distribution.

The codewords of Ci,j are arranged in an array with
b2nR(2)/3c rows and b2nR(1)/3c columns, as depicted in
Figure 3, where each dot illustrates a codeword. We re-
fer to the codeword in row wrow and column wcolumn as
x
n2,per
i,j (wrow, wcolumn). The codebook Ci,j is revealed to all

parties.
The transmitter sends the codeword

x
n2,per
i,j

(
W

(2)
d4,{i,j}, WXOR,{i,j}

)

over the channel.

7Specifically, throughout the following we take n1, n2, and n3 to be
functions of n such that n1(n) + n2(n) + n3(n) = n. To simplify notation
we will not explicitly write the dependence of n1, n2, and n3 on n.

W
(2)
d4,{i,j}

W
(2)
d4,{i,j} = 4

WXOR,{i,j}

Fig. 3: Codebook used for piggyback coding in period {i, j}
of Subphase 2.

The strong receiver 4 decodes both messages WXOR,{i,j}
and W

(2)
d4,{i,j} using a standard decoder and in particular

produces the estimate Ŵ (2)
d4,{i,j}.

The weak receiver i, however, decodes in three steps. It
first retrieves W (2)

d4,{i,j} from its cache memory and extracts

the row-codebook Ci,j,row
(
W

(2)
d4,{i,j}

)
from Ci,j :

Ci,j,row

(
W

(2)
d4,{i,j}

)
:=
{
x
n2,per
i,j

(
W

(2)
d4,{i,j}, w

)}⌊2nR(1)/3
⌋

w=1
.

(34)
(For example, the blue row in Figure 3 indicates the row-
codebook Ci,j,row

(
W

(2)
d4,{i,j}

)
to consider when W

(2)
d4,{i,j} =

4.) Receiver i then decodes the XOR-message WXOR,{i,j} by
restricting attention to the codewords in Ci,j,row

(
W

(2)
d4,{i,j}

)
,

and uses its estimate ŴXOR,{i,j} to form

Ŵ
(1)
di,{j} := W

(1)
dj ,{i} ⊕ ŴXOR,{i,j}.

Receiver j produces Ŵ (1)
dj ,{i} following similar steps.

Subphase 3: Message W
(1)
d4

is sent to receiver 4 using
a capacity-achieving scheme for this receiver. At the end
of Subphase 3, receiver 4 applies a standard decoder and
produces the estimate Ŵ (1)

d4
.

Final decoding: Receivers 1–4 finally declare, respectively:

Ŵ1 :=
(
W

(1)
d1,{1}, Ŵ

(1)
d1,{2}, Ŵ

(1)
d1,{3},

W
(2)
d1,{1,2},W

(2)
d1,{1,3}, Ŵ

(2)
d1,{2,3}

)
; (35)

Ŵ2 :=
(
Ŵ

(1)
d2,{1},W

(1)
d2,{2}, Ŵ

(1)
d2,{3},

W
(2)
d2,{1,2}, Ŵ

(2)
d2,{1,3},W

(2)
d2,{2,3}

)
; (36)

Ŵ3 :=
(
Ŵ

(1)
d3,{1}, Ŵ

(1)
d3,{2},W

(1)
d3,{3},

Ŵ
(2)
d3,{1,2},W

(2)
d3,{1,3},W

(2)
d3,{2,3}

)
; (37)

Ŵ4 :=
(
Ŵ

(1)
d4
, Ŵ

(2)
d4,{1,2}, Ŵ

(2)
d4,{1,3}, Ŵ

(2)
d4,{2,3}

)
. (38)
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Subphase 1 Subphase 2 Subphase 3

Messages sent W
(2)
d3,{1,2} ⊕W

(2)
d2,{1,3} ⊕W

(2)
d1,{2,3} W

(1)
d1,{2} ⊕W

(1)
d2,{1}

to Rxs 1, 2, 3 W
(1)
d1,{3} ⊕W

(1)
d3,{1}

W
(1)
d2,{3} ⊕W

(1)
d3,{2}

Messages sent to Rx 4 W
(2)
d4

W
(1)
d4

TABLE I: Table indicating the messages sent in the three subphases of the delivery phase.

2) Analysis: The cache memory required for this scheme
is:

M = D

(
1

3
R(1) +

2

3
R(2)

)
= D · 1− δs + δw − δs

3(1− δs)
R (39)

The probability of error in Subphase 1can be made arbitrar-
ily small by choosing n sufficiently large, because

n

n1
· 1

3
R(2) < 1− δw. (40)

The probability of error of each period in Subphase 2 can
be made arbitrarily small by choosing n sufficiently large,
because

n

n2/3
· 1

3
R(1) < 1− δw, (41)

and
n

n2/3
· 1

3

(
R(1) +R(2)

)
< 1− δs. (42)

Here, because weak receivers decode their desired messages
based on a row-codebook containing only b2nR(1)/3c code-
words, Inequality (41) ensures that the probability of decoding
error at the weak receivers can be made arbitrarily small.
Inequality (42) ensures that the probability of decoding error
at the strong receiver can be made arbitrarily small. By (31),
Inequalites (41) and (42) are equivalent, and we drop (42) in
the following.

The probability of error in Subphase 3 can be made arbi-
trarily small by choosing n sufficiently large, because

n

n3
R(1) < 1− δs. (43)

Recall that n1 + n2 + n3 = n. Therefore, when

R(2)

3(1− δw)
+

R(1)

1− δw
+

R(1)

1− δs
< 1, (44)

there exist appropriate choices of the lengths n1, n2, n3 (as a
function of the total blocklength n) so that (39)–(43) are sat-
isfied, and as a consequence the probability of decoding error
can be made arbitrarily small by choosing the blocklength n
sufficiently large.

Finally, notice that by (30), Inequality (44) is equivalent to

R ≤ (1− δs)

(
δw − δs

3(1− δw)
+ 1 +

1− δw

1− δs

)−1

, (45)

and the described scheme achieves any rate R > 0 satisfying
(45).

3) Discussion: Thanks to the weak receivers’ cache infor-
mation, in Subphase 2, messages

W
(2)
d4,{1,2},W

(2)
d4,{1,3},W

(2)
d4,{2,3} (46)

can be piggybacked on the communications of the XOR
messages

W
(2)
XOR,{1,2},W

(2)
XOR,{1,3},W

(2)
XOR,{2,3} (47)

without harming the performance of the latter. In fact, by our
choice in (31), the probability of error in Subphase 2 can be
arbitrarily small whenever Inequality (41) holds, which coin-
cides with the required condition when solely the messages in
(47) are transmitted but not the messages in (46).

We remark that if in Subphase 2, the weak receivers
apply separate cache-channel decoding, the performance of
the scheme would be degraded. Specifically, the additional
summand

R(2)

1− δs

would appear on the LHS of (44) (because we would have to
communicate the messages in (46) separately), or equivalently,
the additional summand

δw − δs

1− δs

would appear on the RHS of (45). This additional summand
comes from the communication to receiver 4. In this sense,
joint cache-channel coding is beneficial also for the strong
receivers (without cache memories). This explains why we
term the new caching gain that is offered by our joint cache
channel coding scheme as “global”.

B. General Scheme

The general scheme is parameterized by a positive integer

t ∈ Kw (48)

and is described in the following. We show in Appendix A that,
for every parameter t, this scheme achieves the rate-memory
pair

Rt :=

(1− δw)

(
1 +

Kw − t+ 1

tKs

δw − δs

1− δw

)

Kw − t+ 1

t

(
1 +

Kw − t
(t+ 1)Ks

δw − δs

1− δw

)
+Ks

1− δw
1− δs

,

(49a)
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Mt := Rt
D

Kw

(
t−
(

1+
Kw−t+1

tKs

δw−δs

1− δw

)−1
)
. (49b)

1) Preliminaries: For each d ∈ D, split message Wd into
two parts:

Wd =
(
W

(t−1)
d , W

(t)
d

)
(50)

of rates

R(t−1) = R · tKs(1− δw)

(Kw − t+ 1)(δw − δs) + tKs(1− δw)
, (51a)

R(t) = R · (Kw − t+ 1)(δw − δs)

(Kw − t+ 1)(δw − δs) + tKs(1− δw)
. (51b)

Notice that R(t−1)+R(t) = R. We refer to W (t−1)
d as the “t−1

part” of message Wd and to W (t)
d as its “t part”. We will see

that each submessage W (t)
d is stored in the cache memories

of t receivers and each submessage W (t−1)
d is stored in the

cache memories of t− 1 receivers.
2) Placement phase: First, apply the coded-caching

Method Ca (described in Section III-2) with parameter t̃ = t

to messages W (t)
1 , . . . ,W

(t)
D to produce for each i ∈ Kw the

cache content

V
(t)
i =

{
W

(t)

d,G(t)
`

: d ∈ D and ` ∈
{

1, . . . ,

(
Kw

t

)}
,

i ∈ G(t−1)
`

}
.

Here, G(t)
1 , . . . ,G(t)

(Kw
t )

denote the
(
Kw

t

)
subsets of Kw that have

size t, and each message W (t)

d,G(t)
1

, . . . ,W
(t)

d,G(t)

(Kw
t )

are of equal

rate

R
(t)
sub = R(t) ·

(
Kw

t

)−1

. (52a)

Then, apply Method Ca with parameter t̃ = t − 1 to
messages W (t−1)

1 , . . . ,W
(t−1)
D to produce for each i ∈ Kw

the cache content

V
(t−1)
i =

{
W

(t−1)

d,G(t−1)
`

: d ∈ D and ` ∈
{

1, . . . ,

(
Kw

t− 1

)}
,

i ∈ G(t−1)
`

}
.

Here, G(t−1)
1 , . . . ,G(t−1)

(Kw
t−1)

denote the
(
Kw
t−1

)
subsets of Kw that

have size t− 1, and messages W (t−1)

d,G(t−1)
`

are of rate

R
(t−1)
sub = R(t−1) ·

(
Kw

t− 1

)−1

. (52b)

For each i ∈ Kw, the transmitter stores the content

Vi = V
(t)
i ∪ V (t−1)

i (53)

in the cache memory of receiver i.
3) Delivery Phase: The delivery phase takes place in three

subphases of lengths n1, n2, n3 ≥ 0 that sum up to the entire
blocklength n.

Delivery Subphase 1: This subphase exists only if t < Kw.
In the first subphase, the “t parts”

W
(t)
d1
, W

(t)
d2
, . . . ,W

(t)
dKw

, (54)

are communicated using a separate cache-channel coding
scheme (as described in Section III), but assuming that there
are no strong receivers. In fact, the strong receivers are
completely ignored in this subphase. Let Ŵ (t)

i denote the
guess produced by the weak receiver i ∈ Kw at the end of
Subphase 1.

Delivery Subphase 2: In Subphase 2, the “t parts”

W
(t)
dKw+1

, W
(t)
dKw+2

, . . . ,W
(t)
dK
, (55)

are sent to the strong receivers, and the “t− 1 parts”

W
(t−1)
d1

, W
(t−1)
d2

, . . . ,W
(t−1)
dKw

, (56)

to the weak receivers. Both communications will be done
simultaneously by means of piggyback-coding. Details are
as follows. The transmitter first applies the coded-caching
Method En (see Section III-3) with parameter t̃ = t−1 to the
(weak receivers’) demand vector dw = (d1, . . . , dKw) and to
the messages {

W
(t−1)
di

: i ∈ Kw

}
.

This produces the XOR-messages
{
W

(t−1)

XOR,G(t)
`

: ` = 1, . . . ,

(
Kw

t

)}
, (57)

which are of rate R(t−1)
sub (see (52b)).

Transmission takes place over
(
Kw
t

)
equally-long periods.

Consider period ` ∈
{

1, . . . ,
(
Kw
t

)}
; the other periods are

similar. In period `, the XOR message

W
(t−1)

XOR,G(t)
`

(58a)

is conveyed to all the weak receivers in G(t)
` and the message

tuple

W
(t)
`,strong :=

(
W

(t)

dKw+1,G(t)
`

, . . . , W
(t)

dK ,G(t)
`

)
(58b)

is conveyed to all strong receivers Ks. Note that the entire
message tuple W

(t)
`,strong is known at all the weak receivers

i ∈ G(t)
` by the way caching was done in the placement phase.

For the communication of these messages, we generate a
codebook C` with b2nKsR

(t)
sub c×b2nR(t−1)

sub c codewords of length
n2,per := bn2/

(
Kw
t

)
c by randomly and independently drawing

each entry according to a Bernoulli-1/2 distribution. Arrange
the codewords in an array with b2nKsR

(t)
sub c rows and b2nR(t−1)

sub c
columns, and denote the codeword in row wrow and column
wcolumn by

x
n2,per

` (wrow, wcolumn). (59)

Reveal the codebook C` to all parties.
The transmitter sends the codeword

x
n2,per

`

(
W

(t)
`,strong,W

(t−1)

XOR,G(t)
`

)

over the channel.
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Each strong receiver j ∈ Ks decodes the message tuple
W

(t)
`,strong as well as the message W (t−1)

XOR,G(t)
`

, but it will further

only use the estimate Ŵ (t)

dj ,G(t)
`

(its intended message), i.e., the

j − Kw-th component of its message estimate Ŵ
(t)
`,strong. At

the end of the last period
(
Kw
t

)
, the strong receiver j ∈ Ks

produces

Ŵ
(t)
j :=

(
Ŵ

(t)

dj ,G(t)
1

, . . . , Ŵ
(t)

dj ,G(t)

(Kw
t )

)
. (60)

Each weak receiver i ∈ G(t)
` retrieves the message tuple

W
(t)
`,strong from its cache memory and constructs the corre-

sponding row-codebook C`,row
(
W

(t)
`,strong

)
from C`:

C`,row

(
W

(t)
`,strong

)

:=

{
x
n2,per

`

(
W

(t)
`,strong,W

(t−1)

XOR,G(t)
`

)}
⌊

2nR
(t−1)
sub

⌋

w=1

. (61)

It then decodes the XOR-message W (t−1)

XOR,G(t)
`

from its period-`

outputs using an optimal decoder for C`,row
(
W

(t)
`,strong

)
.

After the last period
(
Kw
t

)
, each receiver i ∈ Kw applies the

coded-caching method Dei (see Section III-4) to the demand
vector dw, the decoded messages

{
W

(t−1)

XOR,G(t)
`

: i ∈ G(t)
` , ` = 1, . . . ,

(
Kw

t

)}
,

and the cache content V (t−1)
i . This method outputs the desired

estimates Ŵ (t−1)
i .

Delivery Subphase 3: The transmitter sends the “(t − 1)
parts”

W
(t−1)
dKw+1

, W
(t−1)
dKw+2

, . . . ,W
(t−1)
dK

, (62)

to the strong receivers using a capacity-achieving code for the
erasure BC. The receivers produce the estimates

Ŵ
(t−1)
j , j ∈ Ks. (63)

Final Decoding: At the end of the entire transmission, each
receiver k ∈ K declares the following message:

Ŵk =
(
Ŵ

(t−1)
k , Ŵ

(t)
k

)
. (64)

V. A CONVERSE FOR GENERAL DEGRADED BCS

In this section, we present an upper bound on the capacity-
memory tradeoff of a more general class of cache-aided
broadcast networks. Specifically, we assume that each receiver
k ∈ K has a cache of size nMk bits, the BC is discrete
and memoryless with input alphabet X , output alphabets
Y1, . . . ,YK , and an arbitrary (stochastically) degraded channel
transition law PY1Y2···YK |X(y1, . . . , yK |x). For simplicity of
exposition, we assume that the BC is physically degraded,
i.e., the transition law satisfies the Markov chain

X → YK → YK−1 → · · · → Y1. (65)

The extension to stochastically degraded BCs follows trivially,
because the capacity-memory tradeoff only depends on the
marginal BC transition laws, see footnote 3.

Tx

Xn

Library: W1, W2, . . . , WD

Rx 1

Y n
1

Cache1

nM1 bits

. . .
Rx K�1 Rx K

Y n
K

CacheK

nMK bits

Rx 2

Y n
2

. . .

Cache2

nM2 bits

Y n
K�1

Degraded DMBC PY1Y2...YK |X

Fig. 4: Degraded K-user BC PY1Y2···YK |X where each re-
ceiver k ∈ K has cache memory of size nMk bits.

The library and the probability of worst-case error Pe
worst are

defined as before. A rate-memory tuple (R, M1, . . . ,MK) is
said achievable if for every ε > 0 there exists a sufficiently
large blocklength n and placement, encoding and decoding
functions as in (10)–(13) such that Pe

worst < ε. The capacity-
memory tradeoff C(M1, . . . ,MK) is defined as the supremum
over all rates R > 0 such that (R,M1, . . . ,MK) are achiev-
able.

For each ordered subset S = {j1, . . . , j|S|} ⊆ K, where

j1 ≤ j2 ≤ . . . ≤ j|S|, (66)

define

Rsym,S
:= max min

{
I(U1;Yj1), I(U2;Yj2 |U1), . . . ,

I
(
U|S|;Yj|S|−1

∣∣U|S|−2

)
, I
(
X;Yj|S|

∣∣U|S|−1

)}
,

(67)

where the maximization is over all choices of the auxiliary ran-
dom variables U1, . . . , U|S|−1, X forming the Markov chain

U1 → U2 → · · · → U|S|−1 → X →
(
Yj1 , . . . , Yj|S|

)
. (68)

Notice that Rsym,S is the largest symmetric rate that is achiev-
able over the BC to receivers in S when there are no cache
memories [60].

Theorem 2: The capacity-memory tradeoff C(M1, . . . ,MK)
of a degraded BC is upper bounded as:

C(M1, . . . ,MK) ≤ min
S⊆K

(
Rsym,S +

MS
D

)
, (69)

where MS is the total cache size at receivers in S:

MS =
∑

k∈S
Mk. (70)

Proof: See Appendix B.
Remark 1: Theorem 2 also holds for stochastically degraded

BCs because the capacity-memory tradeoff only depends on
the marginal channel laws. Note that the erasure BC is
stochastically degraded.
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VI. MAIN RESULTS FOR THE ERASURE NETWORK IN
FIGURE 1

A. General Lower Bound on C(M)

Let

R0 =

(
Kw

1− δw
+

Ks

1− δs

)−1

, M0 := 0; (71)

and

RKw+1 :=
1− δs

Ks
, MKw+1 := D

1− δs

Ks
; (72)

and recall for each t ∈ Kw the rate-memory pair
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)
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Theorem 3: The upper convex hull of the Kw + 2 rate-
memory pairs in (71)–(73) forms a lower bound on the
capacity-memory tradeoff:

C(M) ≥ upper hull
{

(Rt,Mt) : t = 0, . . . ,Kw + 1
}
. (74)

Proof outline: The pair (R0, M0 = 0) corresponds
to the case without caches, and the achievability follows
from (17). The achievability of the pair (RKw+1, MKw+1)
follows from (20). The pairs (R1,M1), . . . , (RKw ,MKw) are
achieved by the joint cache-channel coding scheme in Sec-
tion IV. Finally, the upper convex hull of {(Rt,Mt); t =
0, 1, . . . ,Kw + 1} is achieved by time- and memory-sharing.

The lower bound is piece-wise linear, where the slope of
the lower bound decreases from one interval to the other.
The caching gain achieved by our joint cache-channel coding
scheme is thus largest in the regime of small cache memories
M ∈ [0,M1], where M1 is defined through (73b) and equals

M1 = D · (δw − δs)K
−1
s

Kw + Kw−1
2 · Kw(δw−δs)

Ks(1−δw) +Ks
1−δw
1−δs

. (75)

In this regime M ≤M1, Theorem 3 specializes to:

C(M) ≥ R0 +
M

D
· Kw(1− δs)

Kw(1− δs) +Ks(1− δw)
· 1 +Kw

2
·γjoint,

(76)
where

γjoint := 1 +
2Kw

1 +Kw
· Ks(1− δw)

Kw(1− δs)
. (77)

Note that if we replace γjoint by 1 in the lower bound of
(76), we recover the lower bound of Proposition 1. The factor
γjoint thus represents the gain of our joint cache-channel coding
scheme compared to the simple separate cache-channel coding
scheme of Section III. Note that γjoint is unbounded in the
number of strong receivers Ks (when Kw and the erasure
probabilities δs and δw are constant). More generally, γjoint

is increasing in the ratio Ks(1−δw)
Kw(1−δs)

when Kw ≥ 1.

B. A general Upper Bound on C(M)

Define for each kw ∈ {0, . . . ,Kw}:

Rkw(M) :=

(
kw

1− δw
+

Ks

1− δs

)−1

+
kwM

D
·

Theorem 4: The capacity-memory tradeoff C(M) is upper
bounded as

C(M) ≤ min
kw∈{0,...,Kw}

Rkw(M). (78)

Proof: We specialize the upper bound in Theorem 2 to
erasure BCs. Note that the strong receivers do not have cache
memories and the symmetric capacity Rsym,S decreases as the
receiver set S increases. So to compute (69), it suffices to only
consider the bounds that correspond to subsets S ⊆ K con-
taining all the strong receivers (i.e., receivers Kw +1, . . . ,K).

The choice of kw in (78) that leads to the tightest upper
bound depends on the cache size M . For small values of M ,
the tightest bound is attained for kw = Kw and for larger cache
sizes, smaller values of kw lead to tighter bounds.

The upper and lower bounds on C(M) in Theorems 3 and
4 are illustrated in Figure 5.
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Fig. 5: Bounds on the capacity-memory tradeoff C(M) for
Kw = Ks = 10, D = 50, δw = 0.8, δs = 0.2.

C. Special Case of Kw = 1

We evaluate our bounds for a setup with a single weak
receiver and any number of strong receivers. Let

Γ1 :=
(1− δs)

Ks
· (δw − δs)

(Ks(1− δw) + (1− δs))
, (79)

Γ2 :=
(1− δs)

Ks
· (1− δs)

(Ks(1− δw) + (1− δs))
, (80)
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Fig. 6: Bounds on the capacity-memory tradeoff for Kw = 1,
Ks = 10, D = 22, δw = 0.8, δs = 0.2.

Γ3 :=
(1− δs)

Ks
. (81)

Notice that 0 ≤ Γ1 ≤ Γ2 ≤ Γ3. From Theorems 3 and 4, we
obtain the following corollary.

Corollary 4.1: If Kw = 1 the capacity-memory tradeoff is
lower bounded by

C(M) ≥
{

(1−δw)(1−δs)
Ks(1−δw)+(1−δs)

+ M
D , if M

D ∈ [0,Γ1]
(1−δs)
1+Ks

+ M
(1+Ks)D

, if M
D ∈ (Γ1,Γ3],

(82)

and upper bounded by

C(M) ≤
{

(1−δw)(1−δs)
Ks(1−δw)+(1−δs)

+ M
D , if M

D ∈ [0,Γ2]
(1−δs)
Ks

if M
D ∈ (Γ2,Γ3].

(83)

Figure 6 shows these two bounds and the bound in Proposi-
tion 1 for Kw = 1, Ks = 10, D = 22, D = 10, δw = 0.8,
δs = 0.2.

We identify two regimes of interest. First, in the regime
0 ≤ M

D ≤ Γ1, our lower and upper bounds match and show
that the rate R scales with M

D by the slope 1. This is achievable
by our joint cache-channel coding scheme and corresponds
to the performance when all the Ks strong receivers directly
access receiver 1’s cache contents. In the second regime, Γ1 <
M
D ≤ Γ3, the joint cache-channel coding scheme still profits
from an increasing cache size, but the gain is less significant:
the rate only increases as 1−δs

Ks
· MD .

We specialize this setup further to Ks = 1 and D = 2. So,
assume for the rest of this section that

Kw = Ks = 1 and D = 2. (84)

For this special case, we present tighter upper and lower
bounds on C(M). These new bounds meet for a larger range
of cache sizes M . Let

Γ̃1 :=
(1− δs)

2 − (1− δw)(δw − δs)

(1− δw) + (1− δs)
, (85)
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Fig. 7: Bounds on the capacity-memory tradeoff for Kw = 1,
Ks = 1, D = 2, δw = 0.8, δs = 0.2.

Γ̃2 :=
1

2
((1− δs) + (δw − δs)) . (86)

Notice that 0 ≤ Γ̃1 ≤ Γ̃2 < Γ3.
Theorem 5: If Kw = Ks = 1 and D = 2, the capacity-

memory tradeoff is upper bounded as:

C(M) ≤




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2 , if M
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1
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3 , if M
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1− δs if M
2 ∈ (Γ̃2,Γ3].

(87)

and lower bounded as:

C(M) ≥





(1−δw)(1−δs)
(1−δw)+(1−δs)

+ M
2 ,

M
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(1−δs)((1−δs)+M)
3(1−δs)−(1−δw) , M
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1− δs
M
2 ∈ (Γ̃2,Γ3].

(88)

Proof: The lower bound in (88) coincides with the upper
convex hull of the three rate-memory pairs: (R0, M0) in (71);
(R1, M1) in (49); and ((1 − δs), 2Γ3). Achievability of the
former two pairs follows from Theorem 3. Achievability of
the last pair follows from a joint cache-channel coding scheme
that caches coded content and is described in Appendix F. The
upper bound is proved in Appendix G.

Figure 7 shows the bounds of Theorem 5 for δw = 0.8 and
δs = 0.2. The upper and lower bounds of Theorem 5 coincide
for 0 ≤M ≤ Γ1 and for M ≥ Γ̃2.

Using Theorem 5, we conclude that the minimum cache size
M for which communication is possible at the maximum rate
(1−δs) is M = 2Γ̃2. Notice also that upper and lower bounds
in Theorem 5 coincide for all values of M when δw = δs.

VII. EQUIVALENT RESULTS ON MINIMUM DELIVERY
RATE

The capacity-memory tradeoff considered thus far was for-
mulated and presented using the typical nomenclature of multi-
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user information theory. This presentation, however, differs
slightly to many previous works on caching (e.g., [2]). In this
section, we will connect the two setups. Let us temporarily
suppose that Messages W1, . . . ,WD are F -bit packets and
the weak receivers have mF -bit cache memories, for some
positive integer F and some positive real number m ∈ [0, D).
Additionally, suppose that the delivery-phase communication
takes place over ρF uses of the BC, where ρ > 0 is called the
delivery rate.

A delivery rate-memory pair (ρ,m) is achievable in this
new setup if there exist placement, encoding, and decoding
functions such that the probability of decoding error vanishes
as the packet size F → ∞. Given a cache size m, the
minimum delivery rate ρ for which (ρ,m) is achievable is
called the delivery rate-memory tradeoff and is denoted by
ρ?(m).

There is a simple relation between the delivery rate-memory
pairs (ρ,m) that are achievable in this new setup and the (mes-
sage) rate-memory pairs (R,M) achievable in our original
setup:

(R, M) achievable in original setup

⇐⇒
(
ρ =

1

R
, m =

M

R

)
achievable in new setup.

Using this relation, we can now restate the rate-memory
pairs achieved by the separate and the joint cache-channel
coding schemes in terms of the delivery rate ρ and the cache
size m. For each t̃ ∈ Kw, the separate cache-channel coding
scheme in Section III achieves the delivery rate-memory pair

ρt̃,sep :=
Kw − t̃

(t̃+ 1)(1− δw)
+

Ks

(1− δs)
, (89a)

mt̃,sep := D
t̃

Kw
. (89b)

For each t ∈ Kw, the joint cache-channel coding scheme in
Section IV-B achieves the delivery rate-memory pair:

ρt := νt
Kw − t

(t+ 1)(1− δw)
+ (1− νt)

Kw − t+ 1

t(1− δw)

+(1− νt)
Ks

1− δs
, (90a)

mt := νtD
t

Kw
+ (1− νt)D

t− 1

Kw
, (90b)

where

νt :=
(Kw − t+ 1)(δw − δs))

(Kw − t+ 1)(δw − δs) + tKs(1− δw)
. (91)

The lower convex hull of the delivery rate-memory pairs in
(89) and (90) upper bounds the delivery rate-memory tradeoff
ρ?(m).

The upper bound on C(M) in Theorem 4 leads to the
following lower bound on ρ?(m):

ρ?(m) ≥ max
kw∈{0,1,...,Kw}

[(
kw

1− δw
+

Ks

1− δs

)(
1− kwm

D

)]
.

(92)

Figures 8 and 9 present upper and lower bounds on
ρ?(m) when Kw = Ks = 10, D = 50, δw = 0.8,
δs = 0.2 and when Kw = 10, Ks = 1000, D =
5000, δw = 0.8, δs = 0.2. The lower bound is given
by (92) and the upper bounds depict the convex hulls of
rate-memory pairs {(ρt̃,sep,mt̃,sep)}Kw

t̃=0
and rate-memory pairs{

(ρ0,sep,m0,sep), {(ρt,mt)}Kw
t=1, (ρKw,sep,mKw,sep)

}
.
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Fig. 8: Bounds on ρ?(m) for Kw = Ks = 10, D = 50,
δw = 0.8, δs = 0.2.
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Fig. 9: Bounds on ρ?(m) for Kw = 10 and Ks = 1000,
D = 5000, δw = 0.8, δs = 0.2.

VIII. SUMMARY AND CONCLUDING REMARKS

In this paper, we considered an erasure broadcast network
with a set of weak receivers with equal cache sizes M and a
set of strong receivers with no cache memories. We derived
upper and lower bounds on the capacity-memory tradeoff and
discussed scenarios where the bounds match. In particular,
the bounds match when there is a single weak receiver with
a small cache size (and any number of strong receivers). A
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small cache size corresponds to a receiving device with limited
storage space.

The derived upper bound holds more generally for any
stochastically degraded BC. (An improved upper bound has
more recently been proposed in [65].) The lower bound is
obtained by means of joint cache-channel coding and signifi-
cantly improves over a separate cache-channel coding scheme
that combines coded caching with a capacity-achieving scheme
for erasure BCs. In the regime of small cache memories,
the improvement is even unbounded in the number of strong
receivers. (An further improved upper bound that refines our
coding scheme has recently been proposed in [64].)

To facilitate comparison with previous works that mostly
focused on the delivery rate-memory tradeoff, we expressed
our main results also in terms of the delivery rate-memory
tradeoff. When specialized to the network with no strong re-
ceivers and with zero erasure probability at the weak receivers,
the bounds presented in this paper coincide with the results
by Maddah-Ali and Niesen [2].

For the setup with only one weak receiver and one strong
receiver, we proposed improved upper and lower bounds that
match over a wide regime of channel parameters and memory
sizes. The lower bound is achieved by pre-placing coded
content and using joint cache-channel coding for the delivery
phase.

In the considered cache-aided BC model where weak and
strong receivers are served at the same rate, performance
is improved when larger cache memories are assigned to
weak receivers as opposed to the traditional uniform cache
assignment. In this work, we illustrated that applying joint
cache-channel coding in such asymmetric cache configurations
leads to further caching gains that cannot be attained with
standard separate cache-channel coding schemes.
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APPENDIX A
ANALYSIS OF JOINT CACHE-CHANNEL CODING SCHEME

IN SECTION IV

Fix t ∈ Kw, and

βı :=
nı

n
, ı ∈ {1, 2, 3}.

1) Placement Phase: By Proposition 1, the applied place-
ment strategy requires a cache size of

M = R(t) ·D t

Kw
+R(t−1) ·Dt− 1

Kw

= R · D
Kw

(
t−
(

1 +
Kw − t+ 1

tKs
· δw − δs

1− δw

)−1
)
. (93)

2) Delivery Subphase 1: Notice that in Subphase 1 the
separate cache-channel coding scheme of Section III is ap-
plied without strong receivers. Thus, by Proposition 1, the
probability of decoding error can be made arbitrarily small by
choosing n sufficiently large, because

R(t) · Kw−t
t+1

1− δw
< β1. (94)

3) Delivery Subphase 2: Consider period ` with the trans-
mission of messages in (58). The probability that the strong
receivers make a decoding error can be made arbitrarily small
by choosing n sufficiently large, because

R
(t−1)
sub +KsR

(t)
sub

1− δs
<

β2(
Kw
t

) . (95)

Weak receivers restrict their decoding to a row-codebook
containing only b2nR(t−1)

sub c codewords. The probability that the
weak receivers produce a wrong XOR message can be made
arbitrarily small by choosing n sufficiently large, because

R
(t−1)
sub

(1− δw)
<

β2(
Kw
t

) . (96)

Notice that when the weak receivers decode their desired XOR
messages correctly, then they also produce correct estimates
for messages W (t−1)

d1
, . . . ,W

(t−1)
dKw

.
By our choice of the rates R(t−1) and R(t) in (51), the

two constraints (95) and (96) coincide. We ignore (95) in the
following.

4) Delivery Subphase 3: The probability that the strong
receivers err in their decoding can be made arbitrarily small
by choosing n sufficiently large, because

KsR
(t−1)

(1− δs)
< β3. (97)

5) Overall Scheme: Combining (94), (96), and (97) and
using the definitions of R(t−1)

sub and R(t−1)
sub in (52), we conclude

that the probability of decoding can be made arbitrarily small
by choosing n sufficiently large, because

R(t)Kw−t
t+1

1− δw
+
R(t−1) · Kw−t+1

t

1− δw
+
KsR

(t−1)

1− δs
< 1. (98)

Using the definitions of R(t−1) and R(t) in (51), one obtains
that the probability of decoding error can be made arbitrarily
small, if the total rate R satisfies

R < (1− δw) ·
1 + Kw−t+1

tKs
· δw−δs

1−δw

Kw−t+1
t

(
1 + Kw−t

(t+1)Ks
· δw−δs

1−δw

)
+Ks

1−δw
1−δs

.

Together with (93), this proves achievability of the rate-
memory pair (Rt, Mt) in (49).

APPENDIX B
PROOF OF THEOREM 2

For ease of exposition, we only prove the bound correspond-
ing to S = K:

C(M1, . . . ,MK) ≤ Rsym,K +
1

D

K∑

k=1

Mk. (99)
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The bounds corresponding to other subsets S can be proved
in a similar way. It suffices to ignore a subset of the receivers
and their cache memories.

Fix the rate of communication

R < C(M1, . . . ,MK).

Since R is achievable, for each sufficiently large blocklength
n and for each demand vector d, there exist K placement
functions

{
g

(n)
i

}
, an encoding function f (n)

d , and K decoding
functions

{
ϕ

(n)
i,d

}
so that the probability of worst-case error

Pe
(n)(d) tends to 0 as n→∞. For each n, let

V
(n)
k = g

(n)
k (W1, . . . ,WD), k ∈ K,

denote the cache content for the chosen placement function.
Lemma 6: For any ε > 0, any demand vector d =

(d1, . . . , dK) with all different entries,8 and any blocklength n
that is sufficiently large (depending on ε), there exist random
variables (U1,d, . . . , UK−1,d, Xd, Y1,d, . . . , YK,d) such that

U1,d−U2,d−· · ·−UK−1,d−Xd−YK,d−YK−1,d · · ·−Y1,d

(100a)
forms a Markov chain, such that given Xd = x ∈ X :

(Y1,d, Y2,d, . . . , YK,d) ∼ PY1···YK |X(· · · |x), (100b)

and such that the following K inequalities hold:

R− ε ≤ 1

n
I
(
Wd1 ;V

(n)
1 , . . . , V

(n)
K

)
+ I
(
U1,d;Y1,d

)
, (101a)

R− ε ≤ 1

n
I
(
Wdk ;V

(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,Wdk−1

)

+ I
(
Uk,d;Yk,d|Uk−1,d), ∀k ∈ {2, . . . ,K − 1},

R− ε ≤ 1

n
I
(
WdK ;V

(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,WdK−1

)

+ I
(
Xd;YK,d|UK−1,d). (101b)

Proof: The proof is similar to the converse proof of the
capacity of degraded BCs without caching [61, Theorem 5.2].
It is deferred to Appendix C.

Fix ε > 0 and a blocklength n (depending on this ε) so
that Lemma 6 holds for all demand vectors d that have all
different entries. We average the bound obtained in (101) over
different demand vectors. Let Q be the set of all

(
D
K

)
K!

demand vectors whose K entries are all different. Also, let
Q be a uniform random variable over the elements of Q
that is independent of all previously defined random variables.
Define: U1 := (U1,Q, Q); Uk := Uk,Q, for k ∈ {2, . . . ,K−1};
X := XQ; and Yk := Yk,Q for k ∈ K. Notice that they form
the Markov chain

U1 → U2 → · · · → UK−1 → X → (Y1, . . . , YK), (102)

and given X = x ∈ X satisfy

(Y1, Y2, . . . , YK) ∼ PY1···YK |X(· · · |x). (103)

8Here we use the assumption that there are more messages than users,
D ≥ K, and therefore such a demand vector exists. A similar lemma can be
obtained in the case where D < K.

Averaging each inequality in (101) over the demand vectors
in Q, and by using standard arguments to take care of the
time-sharing random variable Q, we obtain:

R− ε ≤ α1 + I
(
U1;Y1

)
, (104a)

R− ε ≤ αk + I
(
Uk;Yk|Uk−1), ∀k ∈ {2, . . . ,K − 1},

(104b)
R− ε ≤ αk + I

(
X;YK |UK−1), (104c)

where α1, . . . , αK are defined as

α1 :=
1(

D
K

)
K!

∑

d∈Q

1

n
I(Wd1 ;V

(n)
1 , . . . , V

(n)
K ), (105a)

αk :=
1(

D
K

)
K!

∑

d∈Q

1

n
I(Wdk ;V

(n)
1 , . . . , V

(n)
K |

Wd1 , . . . ,Wdk−1
),

k ∈ {2, . . . ,K}.(105b)

Lemma 7: Parameters α1, . . . , αK , defined in (105), satisfy
the following constraints:

αk ≥ 0, k ∈ K, (106a)
αk′ ≤ αk, k, k′ ∈ K, k′ ≤ k, (106b)

∑

k∈K
αk ≤

K

D

∑

k∈K
Mk. (106c)

Proof: See Appendix D.
We now take ε→ 0 and use Lemma 7 to conclude that the

capacity-memory tradeoff C(M1, . . . ,MK) is upper bounded
by the following K inequalities:

C(M1, . . . ,MK) ≤ α1 + I
(
U1;Y1

)
, (107a)

C(M1, . . . ,MK) ≤ αk + I
(
Uk;Yk

∣∣Uk−1

)
,

∀k ∈ {2, . . . ,K − 1}, (107b)
C(M1, . . . ,MK) ≤ αK + I

(
X;YK

∣∣UK−1

)
, (107c)

for some α1, . . . , αK that satisfy (106) and some
U1, . . . , UK−1, X, Y1, . . . , YK that satisfy (102) and (103).

Lemma 8: Replacing each and every real number
α1, . . . , αK in (107) by 1

D

∑
k∈KMk does not change the

upper bound on C(M1, . . . ,MK).
Proof: See Appendix E.

Thus,

C(M1, . . . ,MK)−
∑
k∈KMk

D
≤ I
(
U1;Y1

)
, (108a)

for all k ∈ {2, . . . ,K − 1}:

C(M1, . . . ,MK)−
∑
k∈KMk

D
≤ I
(
Uk;Yk

∣∣Uk−1

)
, (108b)

and

C(M1, . . . ,MK)−
∑
k∈KMk

D
≤ I
(
X;YK

∣∣UK−1), (108c)

for some U1, . . . , UK , X, Y1, . . . , YK satisfying (102) and
(103).

All K constraints in (108) have the same LHS, and their
RHSs coincide with the rate-constraints that determine the
capacity region of a degraded BC without caches. Therefore,
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the choice of the random variables (U1, . . . , UK−1, X) that
leads to the most relaxed constraint on C(M1, . . . ,MK) coin-
cides with the choice of auxiliaries that determines the largest
symmetric rate-point in the capacity region of a degraded BC
without caches. This establishes the equivalence of (108) with
the desired bound in (99), and thus concludes the proof.

APPENDIX C
PROOF OF LEMMA 6

Fix a small ε > 0 and a demand vector d with all different
entries. Then, let the blocklength n be sufficiently large as will
become clear in the following. Also, let

V
(n)
k = g

(n)
k (W1, . . . ,WD), k ∈ K, (109)

Xn
d = f

(n)
d (W1, . . . ,WD) (110)

denote cache contents and the input of the degraded BC for
demand vector d ∈ DK and for the above chosen placement
and encoding functions. We denote by Y nk,d the corresponding
channel outputs at receiver k ∈ K.

By Fano’s inequality, the independence of the messages
W1, . . . ,WD, and because the placement, encoding, and de-
coding functions have been chosen so that the worst case
probability of error tends to 0 as n → ∞, we obtain that
for any ε > 0 there exists a sufficiently large n′ ≥ 0 such that
the following K inequalities hold for all n ≥ n′:

R−ε ≤ 1

n
I
(
Wd1 ;Y n1,d, V

(n)
1 , . . . , V

(n)
K

)

=
1

n
I
(
Wd1 ;V

(n)
1 , . . . , V

(n)
K

)

+
1

n
I
(
Wd1 ;Y n1,d

∣∣V (n)
1 , . . . , V

(n)
K

)
, (111a)

and for k ∈ {2, . . . ,K}:

R−εn ≤
1

n
I
(
Wdk ;Y nk,d, V

(n)
1 , . . . , V

(n)
K

∣∣Wd1 , . . . ,Wdk−1

)

=
1

n
I
(
Wdk ;V

(n)
1 , . . . , V

(n)
K

∣∣Wd1 , . . . ,Wdk−1

)

+
1

n
I
(
Wdk ;Y nk,d

∣∣V (n)
1 , . . . , V

(n)
K ,Wd1 , . . . ,Wdk−1

)
.

(111b)

We further develop the second summands in (111a) and
(111b). For the second summand in (111a) we obtain

1

n
I
(
Wd1 ;Y n1,d

∣∣V (n)
1 , . . . , V

(n)
K

)

=
1

n

n∑

t=1

I
(
Wd1 ;Y1,d,t

∣∣V (n)
1 , . . . , V

(n)
K , Y t−1

1,d

)

≤ 1

n

n∑

t=1

I
(
Wd1 , V

(n)
1 , . . . , V

(n)
K , Y t−1

1,d ;Y1,d,t

)

= I
(
U1,d,T ;Y1,d,T

∣∣T
)

≤ I(U1,d;Y1,d), (112)

where T denotes a random variable that is uniformly dis-
tributed over {1, . . . , n} and is independent of all previously
defined random variables, and

U1,d,T :=
(
Wd1 , V

(n)
1 . . . , V

(n)
K , Y T−1

1,d

)
,

U1,d := (U1,d,T , T ),

Y1,d := Y1,d,T .

We also define for k ∈ {2, . . . ,K − 1}:
Uk,d,T := (V

(n)
1 . . . , V

(n)
K ,Wd1 ,Wd2 , . . . ,Wdk ,

Y T−1
1,d , . . . , Y T−1

k,d ),

Uk,d := (Uk,d,T , T ),

Yk,d := Yk,d,T ,

in order to expand the second summand in (111b) as:
1

n
I
(
Wdk ;Y nk,d

∣∣V (n)
1 , . . . , V

(n)
K ,Wd1 , . . . ,Wdk−1

)

=
1

n

n∑

t=1

I
(
Wdk ;Yk,d,t

∣∣V (n)
1 , . . . , V

(n)
K ,

Wd1 , . . . ,Wdk−1
, Y t−1
k,d

)

=
1

n

n∑

t=1

I
(
Wdk ;Yk,d,t

∣∣V (n)
1 , . . . , V

(n)
K ,

Wd1 , . . . ,Wdk−1
, Y t−1

1,d , . . . , Y t−1
k−1,d, Y

t−1
k,d

)

≤ 1

n

n∑

t=1

I
(
Wdk , Y

t−1
k,d ; Yk,d,t

∣∣V (n)
1 , . . . , V

(n)
K ,

Wd1 , . . . ,Wdk−1
, Y t−1

1,d , . . . , Y t−1
k−1,d

)

= I
(
Uk,d,T ;Yk,d,T

∣∣Uk−1,d,T , T )

= I
(
Uk,d;Yk,d

∣∣Uk−1,d) (113)

where the second equality follows from the degradedness of
the outputs, see (65).

Similarly, for k = K:
1

n
I
(
WdK ;Y nK,d

∣∣V (n)
1 , . . . , V

(n)
K ,Wd1 , . . . ,WdK−1

)

≤ I(Xd;Yk,d|UK−1,d), (114)

where
Xd := Xd,T .

Since the defined random variables satisfy (100), Inequali-
ties (111)–(114) conclude the proof.

APPENDIX D
PROOF OF LEMMA 7

Constraint (106a) follows by the nonnegativity of mutual
information. To prove Constraint (106b), we fix a demand
vector d ∈ Q, and consider the cyclic shifts of this vector.
For ` ∈ {0, . . . ,K − 1}, let

−→
d (`) be the vector obtained from−→

d when the elements are cyclically shifted ` positions to the
right. E.g., if d = (1, 2, 3) then

−→
d (2) = (2, 3, 1). For each

` ∈ {0, . . . ,K−1} and k ∈ K, let
−→
d

(`)
k denote the k-th index

of demand vector
−→
d (`). Thus,
−→
d

(`)
k = d(k−`) mod K (115)

where for each positive integer ξ the term (ξ mod K) takes
value in K so that

ξ mod K = ξ − bK for some positive integer b. (116)
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For each ` ∈ {1, . . . ,K−1} and k, k′ ∈ {2, . . . ,K} with
k′ < k:

I(Wd1 ;V
(n)
1 , . . . , V

(n)
K )

(a)
= I(W−→

d
(k′−1)

k′
;V

(n)
1 , . . . , V

(n)
K )

(b)

≤I(W−→
d

(k′−1)

k′
;V

(n)
1 , . . . , V

(n)
K |W−→

d
(k′−1)
1

, . . . ,W−→
d

(k′−1)

k′−1

)

(a)
= I(W−→

d
(k−1)
k

;V
(n)
1 , . . . , V

(n)
K |W−→

d
(k−1)

k−k′+1

, . . . ,W−→
d

(k−1)
k−1

)

(b)

≤I(W−→
d

(k−1)
k

;V
(n)
1 , . . . , V

(n)
K |W−→

d
(k−1)
1

, . . . ,W−→
d

(k−1)
k−1

),

(117)

where (a) follows by (115), and (b) follows by the indepen-
dence of the messages, the fact that conditioning does not
increase entropy, and because k − k′ + 1 ≥ 2.

Fix a demand vector d ∈ Q and sum the above inequal-
ity (117) over all K cyclic shifts d(0),d(1), . . . , d(K−1) of d
to obtain:

K−1∑

`=0

I(W−→
d

(`)
1

;V
(n)
1 , . . . , V

(n)
K )

≤
K−1∑

`=0

I(W−→
d

(`)

k′
;V

(n)
1 , . . . , V

(n)
K |W−→

d
(`)
1

, . . . ,W−→
d

(`)

k′−1

)

≤
K−1∑

`=0

I(W−→
d

(`)
k

;V
(n)
1 , . . . , V

(n)
K |W−→

d
(`)
1

, . . . ,W−→
d

(`)
k−1

).

(118)

Since the set Q can be partitioned into subsets of demand
vectors that are cyclic shifts of each other and all cyclic
shifts of a demand vector in Q are also in Q, we conclude
from (118):
∑

d∈Q
I(Wd1 ;V

(n)
1 , . . . , V

(n)
K )

≤
∑

d∈Q
I(Wdk′ ;V

(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,Wdk′−1

)

≤
∑

d∈Q
I(Wdk ;V

(n)
1 , . . . , V

(n)
K |Wd1 , . . . ,Wdk−1

). (119)

This proves (106b) by showing that α1 ≤ αk′ ≤ αk.
We proceed to prove Constraint (106c). For each d ∈ Q:

I(Wd1 ;V
(n)
1 , . . . , V

(n)
K )

+

K∑

k=2

I(Wdk ;V
(n)
1 , . . . , V

(n)
K |Wd1 ,Wd2 , . . . ,Wdk−1

)

= I(Wd1 ,Wd2 , . . . ,WdK ;V
(n)
1 , . . . , V

(n)
K ). (120)

Thus,
∑

d∈Q

[
I(Wd1 ;V

(n)
1 , . . . , V

(n)
K )

+

K∑

k=2

I(Wdk ;V
(n)
1 , . . . , V

(n)
K |Wd1 ,Wd2 , . . . ,Wdk−1

)

]

=
∑

d∈Q
I(Wd1 ,Wd2 , . . . ,WdK ;V

(n)
1 , . . . , V

(n)
K )

(a)
=
∑

d∈Q

[
H(Wd1) +H(Wd2) + . . .+H(WdK )

−H(Wd1 , . . . ,WdK |V (n)
1 , . . . , V

(n)
K )

]

(b)
=
K

D
|Q|H(W1, . . . ,WD)

−
∑

d∈Q
H(Wd1 , . . . ,WdK |V (n)

1 , . . . , V
(n)
K )

(c)

≤K
D
K!

(
D

K

)
H(W1, . . . ,WD)

− K

D
K!

(
D

K

)
H(W1, . . . ,WD|V (n)

1 , . . . , V
(n)
K )

=
K

D
K!

(
D

K

)
I(W1, . . . ,WD;V

(n)
1 , . . . , V

(n)
K )

≤K
D
K!

(
D

K

)
n

K∑

k=1

Mk,

where (a) holds by the chain rule of mutual information, (b) by
the independence and uniform rate of messages W1, . . . ,WD

and the definition of the set Q, which is of size
(
D
K

)
K!,

and (c) by the generalized Han-Inequality (the following
Proposition 9).

Proposition 9: Let L be a positive integer and A1, . . . , AL
be a finite random L-tuple. Denote by AS the subset {A`, ` ∈
S}. For every ` ∈ {1, . . . , L}:

1(
L
`

)
∑

S⊆{1,...,L}:|S|=`

H(AS)

`
≥ 1

L
H(A1, . . . , AL). (121)

Proof: See [62, Theorem 17.6.1].

APPENDIX E
PROOF OF LEMMA 8

Fix random variables U1, U2, . . . , UK−1, X satisfying the
Markov chain (102) and real numbers α1, . . . , αK satisfying
(106). We will show that if αk̃ 6= αk̃+1 for some k̃ ∈
{1, . . . ,K − 1}, then we can find new random variables
Ū1, Ū2, . . . , ŪK−1 satisfying the Markov chain

Ū1 → Ū2 → . . .→ ŪK−1 → X → (Y1, . . . , YK), (122)

and real numbers ᾱ1, . . . , ᾱK satisfying (106) so that the upper
bound on C(M1, . . . ,MK) in (107) is relaxed if we replace

(U1, U2, . . . , UK−1) and (α1, . . . , αK)

by

(Ū1, Ū2, . . . , ŪK−1) and (ᾱ1, . . . , ᾱK).

This proves that the upper bound on C(M1, . . . ,MK) in (107)
remains unchanged if we replace all numbers α1, . . . , αK by
the same number α. By (106c) this number α ≤ 1

D

∑
k∈KMk,

and by the monotonicity of the RHSs of (107) in α1, . . . , αK
the choice α = 1

D

∑
k∈KMk leads to the most relaxed upper

bound. This will conclude the proof.
Assume that αk̃ 6= αk̃+1 for some k̃ ∈ {1, . . . ,K − 1}. By

(106b), the strict inequality

αk̃ < αk̃+1 (123)
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must hold. Choose

ᾱk = αk, k ∈ K, k /∈ {k̃, k̃ + 1}, (124)

ᾱk̃ = ᾱk̃+1 =
1

2
(αk̃ + αk̃+1), (125)

Ūk = Uk, k ∈ {1, . . . ,K − 1}, k 6= k̃. (126)

For convenience, define

ŪK := UK := X. (127)

The choice of Ūk̃ depends on whether.

I(Uk̃;Yk̃|Uk̃−1) ≤ I(Uk̃+1;Yk̃+1|Uk̃), (128a)

or
I(Uk̃;Yk̃|Uk̃−1) > I(Uk̃+1;Yk̃+1|Uk̃), (128b)

where for k̃ = 1 the random variable Uk̃−1 is defined as a
constant.

If (128a) holds, choose

Ūk̃ = Uk̃. (129)

If (128b) holds, let E ∈ {0, 1} be a Bernoulli-β random
variable independent of everything else, where

β :=
1

2
+

1

2

I(Uk̃+1;Yk̃+1|Uk̃)

I(Uk̃;Yk̃|Uk̃−1)
, (130)

and choose

Ūk̃ =

{
(Uk̃, E), if E = 1

(Uk̃−1, E), if E = 0.
(131)

The proposed choice satisfies the Markov chain (122).
Trivially, for k /∈ {k̃, k̃+ 1}, Constraint (107) is unchanged

if we replace (U1, U2, . . . , UK−1) by (Ū1, Ū2, . . . , ŪK−1) and
(α1, . . . , αK) by (ᾱ1, . . . , ᾱK).

If (128a) holds, then the proposed replacement relaxes Con-
straint (107) for k = k̃ and it tightens it for k = k̃ + 1. How-
ever, the new constraint for k = k̃+1 is less stringent than the
original constraint for k = k̃. We conclude that when (128a)
holds, the upper bound on C(M1, . . . ,MK) in (107) remains
unchanged if everywhere one replaces (U1, U2, . . . , UK−1)
and (α1, . . . , αK) by (Ū1, Ū2, . . . , ŪK−1) and (ᾱ1, . . . , ᾱK).

Assume now that (128b) holds. Then, by (130) and (131),
because Ūk̃−1 = Uk̃−1, and because E is independent of the
pair (Yk̃, Ūk̃−1):

I(Ūk̃;Yk̃|Ūk̃−1)

= I(Ūk̃;Yk̃|Ūk̃−1, E)

= β · I(Uk̃;Yk̃|Uk̃−1, E = 1)

=
1

2

(
I(Uk̃;Yk̃|Uk̃−1) + I(Uk̃+1;Yk̃+1|Uk̃)

)
. (132)

By (125) and (132), the new constraint obtained for k = k̃
coincides with the average of the two original constraints for
k = k̃ and for k = k̃ + 1. This average constraint cannot
be more stringent than the most stringent of the two original
constraints. The new constraint obtained for k = k̃+1 is more
relaxed than the new constraint obtained for k = k̃, because
of (125) and because

I(Ūk̃+1;Yk̃+1|Ūk̃)

(a)
= βI(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃+1;Yk̃+1|Uk̃−1)

(b)
= βI(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃+1, Uk̃;Yk̃+1|Uk̃−1)

(c)
= I(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃;Yk̃+1|Uk̃−1)

(d)

≥ I(Uk̃+1;Yk̃+1|Uk̃) + (1− β)I(Uk̃;Yk̃|Uk̃−1)

(e)
=

1

2
I(Uk̃+1;Yk̃+1|Uk̃) +

1

2
I(Uk̃;Yk̃|Uk̃−1)

(f)
= I(Ūk̃;Yk̃|Uk̃−1), (133)

where (a) follows by the definition of Ūk̃ and Ūk̃+1; (b) by
the Markov chain (102); (c) by the chain rule of mutual infor-
mation and the Markov chain (102); (d) by the degradedness
of the channel (65); (e) by the definition of β in (130); and
(f) by (132).

We can thus conclude that also when (128b) holds, the
upper bound on C(M1, . . . ,MK) in (107) remains unchanged
if one replaces (U1, U2, . . . , UK−1) and (α1, . . . , αK) by
(Ū1, Ū2, . . . , ŪK−1) and (ᾱ1, . . . , ᾱK).

APPENDIX F
ACHIEVABILITY PROOF FOR RATE-MEMORY PAIR

(1− δs, 2Γ̃2)

Assume Kw = Ks = 1. The following scheme achieves the
rate-memory pair

R = (1− δs) and M = 2Γ̃2. (134)

Split messages W1 and W2 into two independent submes-
sages

Wd = (W
(1)
d ,W

(2)
d ), d ∈ {1, 2},

of rates

R(1) := δw − δs, (135a)
R(2) := 1− δw − ε, (135b)

for an arbitrarily small ε > 0.
Placement Phase: Cache the triple

V1 :=
(
W

(1)
1 ,W

(1)
2 ,W

(2)
1 ⊕W (2)

2

)
(136)

in the weak receiver’s cache.
Delivery Phase: The strong receiver, receiver 2, has to learn
W

(1)
d2

and W (2)
d2

. The weak receiver, receiver 1, only needs to
learn W

(2)
d1

, because it has already stored W
(1)
d1

in its cache
memory. Since receiver 1 has also stored W

(2)
1 ⊕ W

(2)
2 in

its cache memory, in our scheme, we convey W
(2)
d2

to it.
From this message part and the content in its cache memory,
receiver 1 can then find W (2)

d1
. We use the piggyback coding

idea from Section IV to send W
(1)
d2

—which is cached at the
weak receiver—to the strong receiver and to send W

(2)
d2

to
both receivers. For this purpose, construct a random codebook
with b2nR(1)c×b2nR(2)c length-n codewords by randomly and
independently drawing each entry according to a Bernoulli-
1/2 distribution. Arrange the codewords in an array with
b2nR(1)c rows and b2nR(2)c columns. The transmitter sends
the codeword that lies in the row corresponding to Message
W

(1)
d2

and the column corresponding to Message W (2)
d2

.
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Receiver 2 decodes both messages W (2)
d1

and W (2)
d2

. Receiver
1 retrieves Message W (1)

d2
from its cache memory and decodes

W
(2)
d2

using an optimal decoding rule for the row-codebook
corresponding to W

(1)
d2

. If d1 6= d2, it XORs the decoded
W

(2)
d2

with the XOR W
(2)
1 ⊕W (2)

2 stored in its cache memory.

Analysis: Due to the choice of rates R(1) and R(2) in (135), the
probability of decoding error tends to 0 as the blocklength n
tends to infinity. Since ε > 0 can be chosen arbitrarily close
to 0, we have proved achievability of the rate-memory pair in
(134).

APPENDIX G
PROOF OF UPPER BOUND IN THEOREM 5

The first and last terms in (87) are special cases of Theo-
rem 4 for kw = 1 and kw = 0, respectively. Here, we prove the
second term by showing that for every achievable rate-memory
pair (R, M),

3R ≤M + (1− δw) + (1− δs). (137)

Since the capacity-memory tradeoff only depends on the
conditional marginal distributions of the channel law (4), we
will assume that the erasure BC is physically degraded. So,
for each t ∈ {1, . . . , n},

Xt → Y2,t → Y1,t. (138)

For all sufficiently large blocklengths n, choose placement
functions {g(n)

i } as in (10), encoding functions f (n)
d as in (11),

and decoding functions {ϕ(n)
i,d} as in (13) so that the proba-

bility of worst-case error Pworst
e tends to 0 as the blocklength

n→∞. Consider now a fixed blocklength n that is sufficiently
large for the purposes that we describe in the following. Let

V
(n)
1 = g

(n)
1 (W1,W2), (139)

Xn
d = f

(n)
d (W1,W2), (140)

denote cache contents and the input of the erasure BC for
a given demand vector d ∈ D2 and for above chosen
placement and encoding functions. Also, let Y n1,d and Y n2,d
denote the corresponding channel outputs at the weak and
strong receivers.

We focus on the two demand vectors

d1 := (1, 2) and d2 := (2, 1).

So, W1 should be decodable from (Y n1,d1
, V

(n)
1 ) and from

Y n2,d2
, and W2 should be decodable from (Y n1,d2

, V
(n)
1 ). Thus,

by Fano’s inequality, for all ε1, ε2, ε3 > 0 and sufficiently large
blocklength n, we have

nR ≤ I(W1;V
(n)
1 , Y n1,d1

) + nε1, (141a)
nR ≤ I(W1;Y n2,d2

) + nε2, (141b)

nR ≤ I(W2;V
(n)
1 , Y n1,d1

, Y n1,d2
|W1) + nε3, (141c)

where for the last inequality we also used the independence
of messages W1 and W2.

We first develop the second constraint using the chain rule
of mutual information:

nR ≤
n∑

t=1

I(W1;Yd2,t|Y t−1
2,d2

) + nε2

≤ (1− δs)

n∑

t=1

I(W1;Xd2,t|Y t−1
2,d2

) + nε2. (142)

We then jointly develop the first and the third constraints,
where we also define ε′ := ε1 + ε3:

2nR

≤ I(W1,W2;V
(n)
1 , Y n1,d1

) + I(W2;Y n1,d2
|W1, V

(n)
1 , Y n1,d1

)

+nε′

(a)

≤ I(W1,W2;V
(n)
1 ) + I(W1,W2;Y n1,d1

|V (n)
1 )

+I(W2;Y n2,d2
|W1, V

(n)
1 , Y n1,d1

) + nε′

= I(W1,W2;V
(n)
1 ) +

n∑

t=1

I(W1,W2;Y1,d1,t|V (n)
1 , Y t−1

1,d1
)

+

n∑

t=1

I(W2;Y2,d2,t|W1, V
(n)
1 , Y n1,d1

, Y t−1
2,d2

) + nε′

= I(W1,W2;V
(n)
1 )

+(1− δw)

n∑

t=1

I(W1,W2;Xd1,t|V (n)
1 , Y t−1

1,d1
)

+(1− δs)

n∑

t=1

I(W2;Xd2,t|W1, V
(n)
1 , Y n1,d1

, Y t−1
2,d2

) + nε′

≤ I(W1,W2;V
(n)
1 )

+(1− δw)

n∑

t=1

I(W1,W2;Xd1,i|V (n)
1 , Y t−1

1,d1
)

+(1− δs)

n∑

t=1

I(W2, V
(n)
1 , Y n1,d1

;Xd2,t|W1, Y
t−1
2,d2

) + nε′

≤ nM + n(1− δw)

+(1− δs)

n∑

t=1

I(W2, V
(n)
1 , Y n1,d1

;Xd2,t|W1, Y
t−1
2,d2

) + nε′.

(143)

In (a), we used that the physically degradedness of the channel
in (138) implies the Markov chain

(W1,W2, V
(n)
1 , Y n1,d1

)→ Y n2,d2
→ Y n1,d2

.

Adding up (142) and (143) and letting ε1, ε2, ε3 tend to 0,
we obtain the missing converse bound in (137), because

I(W2, V
(n)
1 , Y n1,d1

;Xd2,t|W1, Y
t−1
2,d2

) + I(W1;Xd2,t|Y t−1
2,d2

)

= I(W1,W2, V
(n)
1 , Y n1,d1

;Xd2,t|Y t−1
2,d2

)

≤ H(Xd2,t)

≤ 1. (144)
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