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Abstract

One of the challenges of cloud computing is to optimally and efficiently assign virtual ma-
chines to physical machines. The aim of telecommunication operators is to minimize the map-
ping cost while respecting constraints regarding location, assignment and capacity. In this paper
we first propose an exact formulation leading to a 0-1 bilinear constrained problem. Then we
introduce a variety of linear cuts by exploiting the problem structure and present a Lagrange
decomposition based B&B algorithm to obtain optimal solutions efficiently. Numerically, we
show that our valid inequalities close over 80% of the optimality gap incurred by the well-known
McCormick relaxation, and demonstrate the computational advantage of the proposed B&B
algorithm with extensive numerical experiments.

1 Introduction

Virtualization technology enables the emergence of cloud computing as a flexible and on-demand
service. In a virtualization-based network the placement of Virtual Machines (VM) exerts significant
influence on the computation and communication performance of cloud services [23]. A considerable
amount of investigations have been devoted to the optimal assignment of VMs to servers accounting
for certain objectives and constraints.

Google in 2012 proposed a challenge organized by the French Operational Research and Decision
Aid Society (ROADEF) and the European Operational Research society (EURO), where a set of
VMs needs to be assigned to a set of servers to minimize the assignment cost while balancing
the usage of servers under several resource constraints. As reported in [21], the proposal takes
into account capacity constraints of servers regarding CPU, memory, storage. However, it does
not include bandwidth constraints respecting certain throughput requirements among VMs. Exact
formulations of this problem are Mixed Integer Linear Programs (MILP). To deal with large scale
problems, different heuristics are proposed. On the other hand, the authors in [19] introduce a
traffic-aware virtual machine placement model taking into account bandwidth constraints, which
leads to a Quadratic Assignment Problem (QAP) for the solution of which a two-tier heuristic
algorithm is proposed.

This research topic is also discussed in the context of Virtual Network Embedding (VNE), where
virtual networks are required to be mapped to a physical network [7] while respecting different
constraints and objectives. For instance, Houidi et al. [12] propose a MILP model to solve the VM
assignment problem and later this work is extended in [13] to jointly take into account energy-
saving, load balancing and survivability objectives. The authors in [23] present a MILP model
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and consider a two-phase heuristic: a node mapping phase and link mapping phase. In the node
mapping phase, random rounding techniques [24] are used to correlate flow variables and binary
variables. In the link mapping phase, decisions on the mapping of virtual links are made by solving
a Multi-Commodity Network Flow (MCNF) problem. Later the authors in [6] propose a chance
constrained MILP formulation to handle the uncertain demand of different virtual networks and
they propose a couple of heuristics based on MILPs for its solution. For more details about the VNE
technology and related investigations, we redirect interested readers to [7, 20] for comprehensive
surveys.

A recent thesis [18] studies the virtual network infrastructure provision in a distributed cloud
environment, where a 0-1 bilinear constrained model taking into account bandwidth constraints is
proposed. Heuristic methods exploiting graph partition and bipartite graph matching techniques
are proposed for the solution procedure.

More recently, Fukunaga et al. [9] consider the assignment of VMs under capacity constraints
aiming at minimizing certain connection cost. A centralized model and a distributed model are
proposed for modeling the connection cost. In the former case, a root node is introduced and the
connection cost is defined as the length of network links connecting all host servers and the root
node. A couple of approximation algorithms are presented for cases of uniform and nonuniform
requests respectively. However all VMs are assumed to be the same and bandwidth constraints are
not considered.

In spite of these efforts, few focus on mathematical programming methods in the presence
of bandwidth constraints. In contrast to heuristic approaches (e.g., Genetic Programming, Tabu
Search) whose performance is usually evaluated by simulations, a mathematical programming ap-
proach offers performance guarantees with proved lower and upper bounds. Furthermore, it benefits
from off-the-shelf solvers that are being continually improved. Thus mathematical programming
based methods deserve in-depth investigations.

In our previous paper [27], we formulate the bandwidth constrained mapping problem as a
0-1 bilinear constrained problem and our numerical results demonstrate that the problem is com-
putationally challenging even for a small number of VMs. This article aims at improving the
computational performance by orders of magnitude. It extends the previous work by introducing
some effective valid inequalities and proposes a Lagrange decomposition based Branch and Bound
(B&B) algorithm to accelerate the solution procedure. Contributions are summarized as follows.

1. We propose a compact model with a number of novel valid inequalities for the mapping
problem.

2. We propose a Lagrange decomposition procedure for generating strong valid inequalities thus
improving the continuous relaxation lower bound.

3. We develop a B&B algorithm to solve the mapping problem to global optimality. Various
valid inequalities are used to strengthen the relaxation at each node dynamically.

4. We conduct extensive numerical experiments showing the effectiveness of the proposed algo-
rithm by orders of computational improvement.

The rest of this paper is organized as follows. In Section 2, we state the background of the mapping
problem. In Section 3, the mathematical formulation of the mapping problem is presented and a
couple of reformulations involving strong valid inequalities are proposed. Section 4 is dedicated to a
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B&B algorithm where lower and upper bounding procedures are elaborated in detail. In Section 5,
we evaluate the effectiveness of valid inequalities and the proposed B&B algorithm. Finally, con-
cluding remarks follow in Section 6.

2 Problem background

VMs play an important role in a cloud computing environment. A customer’s request consists of
a number of VMs, which are allocated on servers to execute a specific program.Without special
restrictions, a server can usually run multiple VMs simultaneously.

In order to improve the utility of data center resources, VMs should be dynamically started or
stopped and sometimes live migration should be conducted, i.e., move a VM from one server to
another. Thus virtual communications should also be mapped to the physical network.

The focus of this paper is on the assignment of virtual resources to a given physical network.
The solution to this problem is how to map the cloud resources and which servers and links should
be used subject to certain hard constraints, e.g. resource capacity constraints, traffic routing con-
straints.

Figure 1: An illustration of the mapping procedure

Figure 1 illustrates the mapping problem involving two virtual requests. One has three VMs and
the other has two. In addition, VMs within the same request communicate with each other. Dotted
lines show a feasible mapping solution that VMs of each request are mapped to different severs
and the communication throughput between each pair of VMs is routed between the corresponding
servers that VMs are mapped to.

Furthermore, one may need to be aware that the communication throughput between two servers
(which host VMs) should route on a single path, as multi-path routing may cause discrepancies
among the arrivals of data at the destination. So we assume that for each origin-destination (O-
D) pair the corresponding traffic is routed on a shortest path. Since VMs within a request often
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communicate, we also assume that the request graph induced by VMs and virtual links is connected.

3 Formulations

Recall that a virtual request consists of a set of virtual machines and their mutual virtual commu-
nications. Therefore, we may represent each virtual request as a directed graph. Our goal is to
map such graphs to a physical network. Henceforth, we will use the following notation to construct
mathematical expressions.

Sets

R set of virtual request

H = (S,E) the connected graph of a physical network

S set of servers in the physical network

E set of undirected edges in the physical network

Gr = (V r, Lr) a graph of virtual network for request r ∈ R
V r set of VMs of request r

Lr set of undirected virtual links of request r

Parameters

cri required CPU of VM i ∈ V r

mri required memory of VM i ∈ V r

Ck CPU cores of server k

Mk memory capacity of server k

Fk fixed cost of server k ∈ S
Ak additional cost of server k imposed from CPU loads

f rij required throughput associated with logical link (i, j) ∈ Lr

Be bandwidth of edge e ∈ E
We fixed cost of edge e ∈ E
Pkp shortest k-p path, (k, p) ∈ S × S : k 6= p

Variables

xrik ∈ {0, 1} 1 if VM i of request r is mapped to server k

θk ∈ {0, 1} 1 if server k is used (switched on)

φe ∈ {0, 1} 1 if edge e is used (switched on)

Notice that for a parameter or a variable, its subscripts (if it has) are associated with physical
resources while its superscripts (if it has) are associated with virtual resources. For sake of conve-
nience sometimes variables and parameters are presented in vector form where they are marked in
bold. For instance xr represents

{
xrik : i ∈ S, i ∈ V r

}
.
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We construct the exact mathematical model of the mapping problem as follows

min
∑
k∈S

Fkθk +
∑
k∈S

Ak
∑
r∈R

∑
i∈V r

crixrik +
∑
e∈E

Weφe (P)

s.t.
∑
k∈S

xrik = 1 ∀r ∈ R, i ∈ V r (AC)∑
i∈V r

xrik ≤ θk ∀r ∈ R,∀k ∈ S (LC)∑
r∈R

∑
i∈V r

crixrik ≤ Ckθk, ∀k ∈ S (KP)∑
r∈R

∑
i∈V r

mrixrik ≤Mkθk ∀k ∈ S (KP’)∑
r∈R

∑
k,p∈S:

k 6=p,e∈Pkp

∑
{i,j}∈Lr

f rijxrik x
rj
p ≤ Beφe ∀e ∈ E (QC)

θk, φe, x
ri
k ∈ {0, 1} ∀r ∈ R, i ∈ V r, k ∈ S, e ∈ E. (BC)

Henceforth we will use (P) to represent this model and we interpret it as follows

• The objective is to minimize the total cost, which is additively composed of three terms: the
fixed cost incurred by switching on servers, the additional cost coming from the CPU load,
and the fixed cost from the usage of links. We model the additional cost induced by CPU load
as a linear function to represent the fact that CPU is usually categorized as load dependent
resource while memory is load independent [14].

• Constraints (AC) mean that each virtual machine must be mapped to a single server. Con-
straints (LC) model the fact that virtual machines are usually mapped separately in a cloud
environment due to some practical issues, e.g., security, reliability.

• Constraints (KP, KP’) are knapsack constraints. They ensure that for each server, the aggre-
gated required CPU, memory resource cannot exceed its limits. Constraints (QC) emphasis
the fact that for each edge, the aggregated throughputs on the edge cannot exceed the band-
width.

Before the solution procedure, we briefly analyze problem structure. First, the combination of inte-
grality constraints and bilinear constraints (nonconvex) makes the problem rather difficult. Second,
the bilinear products appearing in the formulation are dense. Third, the problem aggregates features
of the knapsack problem with multiple constraints and the QAP problem. In fact the authors [1]
show that the mapping problem of the form (P) is strongly NP-hard even if |R| = 1 as there is a
polynomial time reduction from the maximum stable set problem. In what follows, we will focus
on the solution procedure of (P).

3.1 Reformulations

Model (P) is a 0-1 bilinear constrained problem. A fundamental idea to deal with such problems
is lifting it to a higher dimensional space [4, 5]. Introducing new variables yrijkp and enforcing

yrijkp = xrik x
rj
p for each (r, i, j, k, p) : i 6= j, k 6= p, we lift the problem to a higher dimensional space
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and lead to a MIP, at the expense of introducing non-convex equations. Simple convex relaxations
can be achieved by linearization techniques. In this paper, we adopt the well-known McCormick
inequalities [17]. Specifically, for each (r, i, j, k, p) : i 6= j, k 6= p, we approximate the equation
yrijkp = xrikx

r
jp using the following four inequalities

xrik + xrjp − 1 ≤ yrijkp (1a)

yrijkp ≤ x
ri
k (1b)

yrijkp ≤ x
rj
p (1c)

yrijkp ≥ 0. (1d)

And (QC) is linearized as ∑
r∈R

∑
k,p∈S:

k 6=p,e∈Pkp

∑
{i,j}∈Lr

f rijyrijkp ≤ Beφe, ∀e ∈ E (QCL)

With this relaxation, we can convert the 0-1 bilinear model (P) to a MIP

PMC : {(AC), (LC), (KP), (KP’), (QCL), (BC)} ∩ {(1a− 1d)} . (PMC)

The numerical results in [27] show that the bound provided by the continuous relaxation of (PMC)
is weak. To strengthen the formulation, we need stronger valid inequalities. An important subset of
those can be derived by the Reformulation-Linearization-Technique (RLT) [25], which is a general
framework for generating valid inequalities in higher dimensional space for non-convex discrete
and continuous formulations. We employ the RLT for the assignment constraints (AC) producing∑
r∈R
|V r|(|V r| − 1)|S| linear equations:

∑
k∈S:k 6=p

yrjipk = xrjp ∀(r, i, j, p) : i 6= j. (ACRLT)

Proposition 1. Constraints (1a-1c) are implied by (ACRLT).

Proof. It is obvious to see that (ACRLT) imply (1b),(1c). Regarding (1a), for each (r, i, j, k, p) :
k < p, i 6= j, we have

xrik + xrjp − 1 = yrijkp +
∑

p′>k:p′ 6=p
yrijkp′ +

∑
p′<k

yrjip′k + xrjp − 1

= yrijkp +
∑

p′>k:p′ 6=p
yrijkp′ +

∑
p′<k

yrjip′k −
∑
s:s 6=p

xrjs

= yrijkp − x
rj
k +

∑
p′>k:p′ 6=p

(yrijkp′ − x
rj
p′ ) +

∑
p′<k

(yrjip′k − x
rj
p′ )

≤ yrijkp − x
rj
k

≤ yrijkp .

The first equality and the first inequality follow from (ACRLT). The second equality comes from
(AC).
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We also employ the RLT for (LC) by multiplying it by itself, leading to∑
(i,j)∈V r×V r:i 6=j

yrijkp ≤ θk, ∀r ∈ R,∀k 6= p ∈ S2. (2)

Remark 1. In [26], we generate RLT inequalities for the location constraints (LC) by multiplying
both sides xrjp leading to a new bilinear term xrjp θk. Then we introduce new variables zrjpk and

inequalities to relax zrjpk = xrjp θk. This leads to a significant number of constraints and new variables
but numerically limited improvement. In contrast, constraints (2) are compact and effective.

The RLT based formulation can be presented as follows:

min
∑
k∈S

Fkθk +
∑
k∈S

Ak
∑
r∈R

∑
i∈V r

crixrik +
∑
e∈E

Weφe

(AC), (ACRLT), (KP), (KP’), (QCL),

(LC), (2), (1d),

θk, φe, x
ri
k ∈ {0, 1}, r ∈ R, i ∈ V r, k ∈ S, e ∈ E.

(PRLT)

We now present three families of strong linear inequalities exploiting the problem structure. For
each r ∈ R, (i, j) ∈ Lr, if there is a required throughput between i and j (i.e., f rij > 0), then for
each link e ∈ E, we have ∑

(k,p)∈S2:k 6=p,e∈Pkp

yrijkp ≤ φe. (3)

Similarly, for each r ∈ R, (k, p) ∈ S2 : e ∈ Pkp, if there exists some throughput mapped along path
Pkp, then for each link e ∈ Pkp we have ∑

{i,j}∈Lr

yrijkp ≤ φe. (4)

Another set of valid inequalities can be generated by exploiting some topological property of the
substrate graph. Recall that a pair of nodes in a graph is connected if there is path between them.
For each virtual request r, we have |V |r connected VMs mapped to servers. Thus at least |V |r
servers are connected and the number of links connecting these servers should be at least |V |r − 1.
This can be represented as ∑

e∈E
φe ≥ max

r∈R
{|V r|} − 1. (5)

Numerical results in Section 5 show that (3)-(5) strengthen the formulation evidently. We
now present the compact MIP model for the exact solution procedure of problem (P) as the first
contribution of this paper:

min
∑
k∈S

Fkθk +
∑
k∈S

Ak
∑
r∈R

∑
i∈V r

crixrik +
∑
e∈E

Weφe

(AC), (ACRLT), (KP), (KP’), (QCL),

(LC), (2), (3)− (5), (1d),

θk, φe, x
ri
k ∈ {0, 1}, r ∈ R, i ∈ V r, k ∈ S, e ∈ E.

(P1)
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4 The B&B algorithm

As indicated in Section 5, the computational performance of (P1) is over 10 times more efficient
than that of (PMC) showing the effectiveness of valid inequalities. However it can be still challenging
when the number of VMs is over 30.

To further improve the scalability we describe a B&B algorithm to solve the mapping problem to
global optimality. We first introduce the Lagrange decomposition based lower bounding procedure,
then propose an upper bounding heuristic algorithm. Finally we describe details of the overall
algorithm.

4.1 The lower bounds

The convergence of a B&B algorithm largely depends on the strength of lower bounds. This
section aims at generating novel valid inequalities leading to lower bounds that are strong than
those provided by the continuous relaxation of (P1). This is achieved by a Lagrange decomposition
scheme which involves evaluating a number of subproblems. And for this reason we call these
inequalities Lagrange cuts. We then generalize the single request decomposition to a decomposition
hierarchy.

4.1.1 Request based decomposition

We first present a decomposition leading to a number of subproblems associated with each re-
quest, each sever and each link. To this end, we disaggregate constraints (KP), (KP’), (QCL) by
reformulating them with a handful of auxiliary variables with corresponding interpretations below

• wrk ∈ [0, Ck] reserved CPU for request r on server k,

• zrk ∈ [0,Mk] reserved Memory for request r on server k,

• κre ∈ [0, Be] reserved bandwidth for request r on link e.

The equivalent counterparts of (KP), (KP’) and (QCL) are then∑
i∈Vr

crixrik ≤ wrk, r ∈ R, k ∈ S, (6)

∑
i∈Vr

mrixrik ≤ zrk, r ∈ R, k ∈ S, (7)

∑
i,j∈Vr:
i 6=j

∑
k,p∈S:

k 6=p,e∈Pkp

f rijyrijkp ≤ κ
r
e, r ∈ R, e ∈ E, (8)

∑
r∈R

wrk ≤ Ckθk, k ∈ S, λ ∈ R|S|+ (9)∑
r∈R

zrk ≤Mkθk, k ∈ S, µ ∈ R|S|+ (10)∑
r∈R

κre ≤ Beφe, e ∈ E. σ ∈ R|E|+ (11)
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To make the problem separable by request while ensuring strong lower bounds, we copy variables
θ and φ by introducing the following constraints:

θrk ≤ θk, r ∈ R, k ∈ S, η ∈ R|R|×|S|+ , (12)

φre ≤ φe, e ∈ E, ζ ∈ R|R|×|E|+ . (13)

(12)-(13) imply the fact that if a server/link is used by one request then it must be on and conversely
if a sever/link is on then it is not necessarily used by all the requests. As a result, the upper bounds
of wrk, z

r
k, κ

r
e can be strengthened to Ckθ

r,Mkθ
r
k and Beφ

r
k respectively. In addition we relax the

connectivity constraint (5) with ρ ∈ R+.
We replace θk with θrk in constraints (LC) and φe with φre in constraints (QCL). Let us denote

the resulting formulation as a lifted version of (P1):

P2 : {(P1)} ∩ {(9), (10), (11), (12), (13)} . (14)

Proposition 2. The projection of the feasible region of (14) in variables (x,y,θ,φ) is exactly the
feasible region of (P1).

Proof. For any feasible point v = (w, z,κ,θr,φr,x,y,θ,φ) in (14), one can get a feasible point
in (P1) by truncating the components of variables (x,y,θ,φ) from v.

Relaxing the five sets of constraints with associated Lagrange multipliers λ,µ,σ,η, ζ, ρ leads
to the Lagrange function over variables (λ,µ,σ,η, ζ, ρ;w, z,κ,x,θ,φ). For ease of notation, let
v = (w, z,κ,x,θ,φ) ∈ Rp+,v∗ = (λ,µ,σ,η, ζ, ρ) ∈ Rd+, where p and d represent the respective
number of variables in primal and dual space. The Lagrange is then

L (v∗,v) =
∑
r∈R

(∑
k∈S

(
Ak
∑
i∈Vr

crixrik + wrkλk + µkz
r
k + θrkη

r
k

)
+
∑
e∈E

(σeκ
r
e + ζreφ

r
e)

)

+
∑
k

(
Fk − Ckλk −Mkµk −

∑
r∈R

ηrk

)
θk

+
∑
e

(
We −Beσe −

∑
r∈R

ζre − ρ

)
φe

+ (max
r∈R
|V r| − 1)ρ.

(15)

For the sake of clarity let τ = (max
r∈R
|V r| − 1)ρ. For any v∗ ∈ Rd+, it holds that the infimum

Ψ(v∗) = inf
v∈X
L(v∗,v) (16)

provides a lower bound of the optimal value of the mapping problem, where X represents the
remaining constraint set. Since X is compact, the supreme is attainable. Given v∗, the Lagrange
function is separable w.r.t. each request, server and edge. Thus evaluating min

v
L(v∗,v) reduces to

evaluating |R|+ |S|+ |E| subproblems.
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For each r ∈ R, we evaluate Ψr(v∗) by solving

min
∑
k∈S

(
Ak
∑
i∈Vr

xrik c
ri + λkw

r
k + µkz

r
k + θrkη

r
k

)
+
∑
e∈E

(σeκ
r
e + ζreφ

r
e) (Subr)

s.t. (AC), (ACRLT), (QCL), (LC), (2), (3)− (5), (1d), (6), (7), (8),

wrk ≤ Ckθrk, ∀k ∈ S (17)

zrk ≤Mkθ
r
k, ∀k ∈ S (18)

κre ≤ Beφre, ∀e ∈ E, (19)

xrik , θ
r
k, φ

r
e,∈ {0, 1} ∀i, k, e.

As server k is used by request r if and only if there is a VM mapped to server k, We can
strengthen (LC) in (Subr) as follows ∑

i∈V r

xrik = θrk. (20)

Moreover, given that each request graph Gr is connected, constraints (5) in (Subr) can be replaced
with ∑

e∈E
φre ≥

∑
k∈S

θrk − 1, (21a)

θrk ≤
∑

e∈E:k∈e
φre, k ∈ S, (21b)

as the graph induced by servers that are used by request r is also connected.
In what follows, let Xr be the feasible region of (Subr) in primal variables (wr, zr,κr,xr,θr,φr),

i.e.,

Xr = {(wr, zr,κr,xr,θr,φr) : (AC), (ACRLT), (QCL), (2), (3)− (4), (1d),

(6), (7), (8), (20), (21), (17)− (19), xrik, θ
r
k, φ

r
e ∈ {0, 1}}.

Similarly, for each k ∈ S, and e ∈ E, we evaluate Ψk(v∗) and Ψe(v∗) via

Ψk(λ,µ,η) = min
θk∈{0,1}

(
Fk − Ckλk −Mkµk −

∑
r∈R

ηrk

)
θk, (22)

Ψe(σ, ζ) = min
φe∈{0,1}

(
We −Beσe −

∑
r∈R

ζre − ρ

)
φe. (23)

It is straightforward to see that the optimal solution of the above problem is 1 if the coefficient
is negative and 0 if nonnegative. Consequently, the dual objective denoted by Ψ(v∗) is additively
composed of functions {Ψr}r∈R, {Ψk}k∈S and {Ψe}e∈E as follows

Ψ(v∗) =
∑
r∈R

Ψr(v∗) +
∑
k∈S

Ψk(v∗) +
∑
e∈E

Ψe(v∗) + τ (24)
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Let us assume that primal problem (14) is strictly feasible. Then the Slater’s condition holds and
the dual problem has a nonempty compact set of maximum points [16]. Thus the dual problem
can be defined below

max
v∗∈Rd

+

Ψ(v∗). (25)

By weak duality, it holds that

max
v∗∈Rd

+

Ψ(v∗) ≤ z∗

where z∗ is the optimum of (P1).

4.1.2 On the strength of lower bounds

It is known that the strong duality generally does not hold between (P1) and (25). In other words,
the duality gap exists. Naturally we may ask:

Could we get a priori knowledge or intuition on the quality of the lower bound without
actual numerical experiments?

Much effort has been devoted to relevant investigations in different contexts (see e.g. [10, 11, 16, 15]).
Among them, we recall the following theorem.

Theorem 1. [10] Consider a mixed integer linear problem expressed as

min
x
{cx : Ax ≤ b, x ∈ X} .

where X is bounded and compact. Relaxing constraints Ax ≤ b with Lagrange multipliers λ ≥ 0
leads to

g(λ) = min
x∈X

cx+ λT (Ax− b).

Then it holds that

max
λ≥0

g(λ) = min {cx : Ax ≤ b, x ∈ conv(X)}

where conv(X) represents the convex hull of X.

Later Lemaréchal generalized the above result for general Mixed Integer Nonlinear Problems (MINLPs). We
refer interested readers to [16, 15] for details.

Corollary 1. The optimum of (25) dominates (greater than or equal to) that of continuous relax-
ation of (14) and it amounts to outer-approximating the convex hull of the primal feasible region
with the following set

S = conv{×
r∈R

Xr}
⋂
{v : (5), (9), (10), (11), (12), (13)} , (26)

where Xr denote the feasible region of subproblem (Subr) and× denotes the Cartesian product
operation:×r∈RX

r =
{

(x1, . . . , x|R|) : xi ∈ Xr, r ∈ R
}

.

Proof. It follows directly from Theorem 1 that the Lagrange decomposition amounts to constructing
S. Since convXr is the tightest convex relaxation of Xr, the optimum of (25) is greater than or
equal to the linear relaxation objective value.
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4.1.3 The choice of Lagrange multipliers

Even though each subproblem (Subr) is easier than problem (P1), they are still computationally
costly; subgradient algorithms [3] often take hundreds of iterations to converge. To reduce the
number of iterations evidently, we propose to first solve the continuous relaxation of the extended
formulation (14) to optimality and take the dual multipliers of constraints (9)- (13) as the initial
values the Lagrange multipliers. With these initial values, we evaluate (24) and obtain l1 as the
optimal value. Let lcts be optimal value of the continuous relaxation of (14).

Proposition 3. It holds that l1 ≥ lcts.

Proof. Let v̄∗ be the corresponding dual values w.r.t to constraints (9)- (13) and Ψ
r
,Ψ

k
,Ψ

e
be the

respective optimal value of the continuous relaxation of subproblem (Subr), (22), (23) associated
with request r ∈ R with the Lagrange multipliers v̄∗.

1. Due to integrality constraints in (Subr), it holds that Ψ
r ≤ Ψr for each r ∈ R; thus l1 ≥∑

r∈R
Ψ
r
(v̄∗) +

∑
k∈S

Ψ
k
(v̄∗) +

∑
e∈E

Ψ
e
(v̄∗) + τ .

2. Let v̄ be the optimal solution of the continuous relaxation of (14), then
∑
r∈R

Ψ
r
(v̄∗)+

∑
k∈S

Ψ
k
(v̄∗)+∑

e∈E
Ψ
e
(v̄∗) is the dual optimal value of the continuous relaxation of (14). By strong duality

we have lcst =
∑
r∈R

Ψ
r
(v̄∗) +

∑
k∈S

Ψ
k
(v̄∗) +

∑
e∈E

Ψ
e
(v̄∗) + τ .

Combining the above arguments leads to l1 ≥ lcst.

4.1.4 Lagrange cuts

In this section we show that we can generate some valid inequalities to capture the strength of the
Lagrange decomposition characterized by (26). Thus we call these inequalities Lagrange cuts. As
a result we can strengthen the linear relaxation of (14) upon each resolution of (Subr).

Proposition 4. For each r ∈ R, (Subr) amounts to finding a supporting hyperplane of conv(Xr)
with outer normal vector (−λ,−µ,−σ,−{Akcri}i,k,−η,−ζ) defined by equation

Hr(v) = Ψr(v∗)−
∑
k∈S

(Ak
∑
i∈Vr

xrik c
ri + λkw

r
k + µkz

r
k + θrkη

r
k)−

∑
e∈E

(σeκ
r
e + ζreφ

r
e) = 0

where v = (wr, zr,κr,xr,θr,φr) and Ψr(v∗) is the optimal value of (Subr).

Proof. By the definition of (Subr), it holds that

Hr(v) ≤ 0 (27)

for any point v ∈ Xr and it exists at least one point v′ ∈ Xr such that Hr(v′) = 0, ending the
proof.

The proposition above provides a non-trivial valid inequality Hr(v) ≤ 0 for each v ∈ convXr

and therefore it is also valid for the convex set defined in (26). Thus we can append these inequalities
to strengthen the linear relaxation of (14). Moreover we show that the resulting linear relaxation
value of (14) will be greater than or equal to the current Lagrange lower bound.
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Proposition 5. The optimal value of the continuous relaxation of (14) augmented by Hr(v) ≤
0 (r ∈ R) is greater than or equal to l1.

Proof. Let πr =
∑
k∈S

(Ak
∑
i∈Vr

xrik c
ri + λkw

r
k + µkz

r
k + θrkη

r
k) +

∑
e∈E

(σeκ
r
e + ζreφ

r
e). Then aggregating

Lagrange cuts (27) over r ∈ R leads to ∑
r∈R

πr ≥
∑
r∈R

Ψr(v∗)

which is equivalent to ∑
r∈R

πr + b ≥
∑
r∈R

Ψr(v∗) + b, (28)

where b =
∑
k∈S

(Fk − Ckλk −Mkµk −
∑
r∈R

ηrk)θk +
∑
e∈E

(We − Beσe −
∑
r∈R

ζre − ρ)φe + τ . On the one

hand, (22) and (23) imply that∑
r∈R

Ψr(v∗) + b ≥
∑
r∈R

Ψr(v∗) +
∑
k∈S

Ψk(v∗) +
∑
e∈E

Ψe(v∗) + τ = l1. (29)

On the other hand, we note that
∑
r∈R

πr + b ≤ f(v) is exactly the Lagrange function (15). Thus by

weak duality it holds that
∑
r∈R

πr + b ≤ f(v) for any solution satisfying (KP)–(QCL). The proof is

then complete.

Remark 2. The above discussion reveals the fact that Lagrange decomposition procedure can be
regarded as a (Lagrange) cut generation procedure which can be called as needed in our B&B algo-
rithm.

4.1.5 A generalized decomposition hierarchy

Corollary 1 also indicates a hierarchy of request based Lagrange relaxations. Specifically, we may
consider any possible partition of the request set R and apply the aforementioned decomposition
strategy to the partition.

For ease of presentation, let us assume that we partition set R into m ∈ {1, . . . , |R|} disjoint
subsets and denote this partition Pm = {I1, I2, . . . , Im}, where Ii ⊂ R, ∀i = 1, . . . ,m. If m = |R|,
then we get the single request based decomposition and if m = 1, we end up with the lifted formu-
lation (14). Accordingly each subproblem (Subr) is defined on subset Ii. For instance constraint
(6) becomes ∑

r∈Ij

∑
i∈Vr

crixrik ≤ w
j
k, j ∈ {1, . . . ,m}, k ∈ S.

This leads to a hierarchy of decompositions and we denote by lm the resulting lower bound
associated with parameter m.

Corollary 2. Let m1,m2 be any integer in {1, . . . , |R|}. If m1 ≤ m2 and for any subset I ∈ Pm2

there exists a subset I ′ ∈ Pm1 such that I ⊂ I ′, then lm1 ≥ lm2.
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Proof. By Corollary 1, the Lagrange decomposition amounts to the following outer-approximation

Sm = conv{ ×
i∈{1,...,m}

Xi}
⋂
{v : (5), (9), (10), (11), (12), (13)} ,

where Xi represents the feasible region of constraints associated with requests in set Ii. The
condition that for any subset I ∈ Pm2 there exists a subset I ′ ∈ Pm1 such that I ⊂ I ′ implies that
Sm1 ⊆ Sm2 ending the proof.

As an illustration, we can partition 6 virtual requests (30 VMs) with R = {1, . . . , 6} to 6 sub-
sets, each has a single request; 3 subsets with I1 = {1, 2}, I2 = {3, 4}, I3 = {5, 6}. Let l6, l3 be their
respective Lagrange lower bounds associated with the partition-based Lagrange relaxation. Then
it follows from Corollary 2 that l6 ≤ l3. To accelerate the solution procedure of subproblems in-
volving multiple requests, one can apply the aforementioned request-based decomposition approach
recursively.

4.2 The upper bounds

It is known that solving the dual problem (25) (or evaluating (24)) does not produce any primal
feasible solution. Recovering a high quality one often calls for appropriate heuristics. In this paper
we exploit the information of subproblems (Subr) and construct a feasible solution and an upper
bound. If the resulting upper bound is weak we improve the solution using the local branching
technique introduced in [8].

The overall algorithm is presented in Alg. 1. Given an optimal solution to the Lagrange prob-
lem (15), we partition the index set S into two disjoint subsets by inspecting values of

∑
r∈R

θ
r
k. On

the one hand, if
∑
r∈R

θrk = 0, we guess that server k is unlikely used in a good feasible solution and

thus set θk = 0. This eliminates binary xrik (r ∈ R i ∈ Vr) by location constraint (LC). Moreover
we restrict this unused server k isolated from used ones by imposing φe = 0 ∀e ∈ E : k ∈ e.
On the other hand, if

∑
r∈R

θrk ≥ n (n ∈ {1, . . . , |R|}) we set θk = 1; to further reduce the number

of binary variables, we fix binary variables {xrik : r ∈ R, i ∈ V r} if they do not violate coupling
constraints (9)–(10).

As a result we end up with a small MIP which may return a feasible solution. If the MIP is
infeasible we switch on the cheapest server among the unused servers and repeat the procedure.

Let LB be the lower bound obtained by solving (15) and UB, ṽ = (x̃, θ̃, φ̃) the resulting upper
bound and feasible solution using Alg. 1. If gap = UB−LB

UB is large we mploy the local branching
technique [8] to improve it by appending the distance constraint (30) to (P1)

d(v, ṽ) ≤ π. (30)

where d(v, ṽ) represents the distance between the optimal solution v and the current feasible
solution ṽ and π is an integer parameter. Following [8], we set d(v, ṽ) =

∑
k∈S:θ̃k=1

(1 − θk) +∑
e∈E:φ̃e=1

(1 − φe) +
∑
r∈R

∑
i∈V r

∑
k∈S:x̃rik =1

(1 − xrik ) and choose π ∈ {10, . . . , 20}. We then solve the

resulting augmented problem and try to get a better solution.
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Algorithm 1: Repairing heuristic

Input : Solution v̄ to problem (15); an integer n ∈ {1, |R|}
Output: An feasible solution to problem (P1) and upper bound UB.
Let Θ1 = {k ∈ S :

∑
r∈R θ

r
k ≥ n} and Θ0 = {k ∈ S :

∑
r∈R θ

r
k = 0}.

while |Θ0| ≥ 0 do
Let θk = 0 ∀k ∈ Θ0.
For each k ∈ Θ0, impose φe = 0, ∀e ∈ E : k ∈ e.
foreach k ∈ Θ1 do

if Ck −
∑
r∈R

wrk ≥ 0 and Mk −
∑
r∈R

zrk ≥ 0 then

Let θk = 1, xrik = xrik (∀r ∈ R i ∈ V r).
end

end
Solve model (P1) with partially fixed θ,x and constraints (33a).
if infeasible then

Find k = argmin{Fk : k ∈ Θ0}.
Let Θ0 = Θ0 \ {k}.

else
break the loop.

end

end
if UB-LB ≥ εUB then

Append (30) to (P1), which is solved to update the feasible solution.
end

Remark 3. To accelerate the procedure of Alg. 1 we restrict the MIP solution procedure within
3×|R| seconds. Of-course we do not pretend that it guarantees a high quality feasible solution. For
this reason, Alg. 1 is called several times in our B&B algorithm.

4.3 The algorithm

In this section, we elaborate details of the overall branch-and-bound algorithm. As highlighted
before, the algorithm uses Lagrange decomposition stated in Sec. 4.1 and Alg. 1 to generate strong
lower and upper bounds. In addition it distinguishes from the standard B&B algorithm in terms
of branching rules and dynamic cut generation.

4.3.1 Branching

The B&B bound algorithm focus on branching over θ and φ variables. If a node is not fathomed
when all θ,φ are integral we export the arising subproblem to standard MIP solvers. This is due
to the following reasons. First, cost coefficients of θ and φ are usually much larger than those of
x. And as will be explained in Section 4.4 a number of strong valid inequalities can be generated
on the fly by fixing values of θ or φ. Thus one can usually fathom a node by just branching over
θ and φ. Second, there might be many symmetries among variables x, where symmetry breaking
techniques should be investigated. This however is out of the scope of this paper. Instead we
exploit relevant features of existing MIP solvers.
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For θ,φ, we select variables that are most inconsistent with respect to linking constraints (12)
and (13) as it is more likely to fathom a node. Let us illustrate this point for variables θ and denote
by θ̄rk, θ̄k the respective optimal values of (Subr) and (22) for each k ∈ S. If

∑
r∈R

θ̄rk = 0, we will not

branch it as the constraint θrk ≤ θk always holds. Otherwise if
∑
r∈R

θ̄rk ≥ 1 and θ̄k = 0, we branch on

variable θk and create two nodes with θk = 0 or θk = 1. Then one can try to improve lower bounds
of both nodes by solving a continuous relaxation or a Lagrange decomposition procedure. Note
that the Lagrange bounds of these two child nodes can be improved even without updating the
Lagrange multipliers. For the child node with θk = 0, we can improve the Lagrange lower bound by
simply evaluating (22) indexed by k and (Subr) where θrk was determined as 1 at its parent node;
while for the child node with θk = 1, we can improve the lower bound by evaluating (22) indexed
by k. When all θ are consistent with θr, we branch over the most fractional component.

Remark 4. Our numerical experiments show that without updating the Lagrange multipliers, the
improvement of lower bound is significant for the child node with θk = 0 but quite small for the
node with θk = 1. Thus for the latter case, we may still update Lagrange multipliers (by solving the
continuous relaxation problem (14)).

4.3.2 Bounding

As highlighted, variables θ and φ have dominating coefficients in the objective function. Thus
bounding these variables might be beneficial in the procedure of B&B algorithm.

Let F(14) be the continuous relaxation of the feasible region of (14). We evaluate bounds of∑
k∈S

θk,
∑
e∈E

φe by solving linear programs over F(14) augmented by Lagrange cuts and the upper

bounding constraint f(v) ≤ UB. For instance the upper bound of
∑
k∈S

θk is obtained by solving the

following linear problem

p = max

{∑
k∈S

θk : s.t. v ∈ F(14), f(v) ≤ UB, (27)

}
(31)

and then taking uθ = bpc. Similarly we can get the upper bound of
∑
e∈E

φe which we denote by uφ.

Moreover one can check the connectivity of used servers using the following proposition.

Proposition 6. Given that all request graphs Gr (r ∈ R) are connected, all used servers are
connected if either of the following inequality holds

uθ ≤ min
r1,r2∈R

{|V |r1 + |V |r2} − 1, (32a)

uφ ≤ min
r1,r2∈R

{|V |r1 + |V |r2} − 3. (32b)

Proof. The first inequality implies that any pair of two virtual requests share at least one server.
The second one indicates that that at least one link is shared by any pair of two requests. Indeed
suppose that there exist a pair of two requests r1, r2 ∈ R using two disjoint sets of links. Then we
have that

uφ ≥
∑
e∈E

φr1e + φr2e
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On the other hand (21) implies that∑
e∈E

(φr1e + φr2e ) ≥
∑
k∈S

(θr1k + θr2k )− 2

And constraints (20) and (AC) imply that∑
k∈S

(θr1k + θr2k ) =
∑
k∈S

( ∑
i∈V r1

xr1ik +
∑
i∈V r2

xr2ik

)
= |V |r1 + |V |r2

These lead to that

uφ ≥ {|V |r1 + |V |r2} − 2

which contradicts the inequality uφ ≤ min
r1,r2∈R

{|V |r1 + |V |r2} − 3.

Note that the fact that the graph induced by used servers is connected will be exploited in the
next section to derive some strong cuts.

4.4 Cuts

In our B&B algorithm, two sets of cuts are added to the continuous relaxation of (14) at each
child node dynamically, namely, the Lagrange cuts (27) and connectivity cuts. The former has been
elaborated in Subsection 4.1.4 and we now introduce the latter.

For ease of presentation, we denote by H ′ the subgraph of H induced by all used servers and
used links. If H ′ is connected, then the following inequalities are valid∑

e∈E
φe ≥

∑
k∈S

θk − 1, (33a)

θk ≤
∑

e∈E:k∈e
φe, k ∈ S, (33b)

where the first one stipulates that at least
∑
k∈S

θk − 1 links are used and the second one comes

from the definition of connectivity. It is straightforward to see that (33a) dominates (5). Let us
call (33a) and (33b) connectivity cuts.

The overall B&B procedure is presented in Algorithm 2.

5 Numerical experiments

In this section, we assess the computational performance of the proposed formulation (P1), Lagrange
decomposition procedure and Algorithm 2. Results in this section illustrate the following key points.

1. The proposed reformulation (P1) is effective. Numerically it outperforms the McCormick
formulation (PMC) by orders of magnitudes.

2. The proposed Lagrange decomposition provides stronger lower bounds than the continuous
relaxation bound of (P1).

3. Algorithm 2 outperforms the standard B&B algorithm of CPLEX 12.7 solver with formula-
tion (P1) by orders of magnitudes.
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Algorithm 2: The B&B algorithm

input : an instance data, the optimality tolerance ε, upper bound tolerance δ
output: An optimal solution and the optimal objective value
Step 1: Initialization
At root node solve the continuous relaxation of the reformulation (14).
Extract the dual multipliers with respect to constraints (9)-(13).
For each r ∈ R evaluate (Subr); evaluate(22), (23).
Initialize lower bound LB with (24) and store |R| Lagrange cuts (27).
Initialize UB using Alg. 1 and go to step 4.
Step 2: Evaluation
if the branched variable (e.g. θk) is fixed to be 0 and

∑
r∈R

θ̄rk > 0 then

For each r ∈ R such that θrk = 1 evaluate (Subr); evaluate (22) and (23).
else

Solve the continuous relaxation of the reformulationcenhanced by (27)
Extract the dual multipliers with respect to constraints (9)-(13).
For each r ∈ R evaluate (Subr); evaluate(22), (23).
Update lower bound LB with (24) and store |R| Lagrange cuts (27).

end
If UB − LB ≥ δUB, then update UB using Alg. 1. Go to Step 3.
Step 3: Termination
A node is fathomed if one of the following conditions is met:

1. UB − LB ≤ εUB.

2. A feasible solution is found.

3. Any subproblem (Subr) is infeasible.

Otherwise, go to Step 4.
Step 4: Bounding
Update the upper bounds of

∑
k∈K

θk,
∑
e∈E

φe with (31). if (32) holds then

Replace (5) with (33a)-(33b)
end
Go to step 5.
Step 5: Branching
if there exists a fractional component in (θ,φ) then

Select one variable from θ,φ to according to rules in Sec. 4.3.1
Create two child nodes by fixed the selected variable to 1 and 0 respectively. Go to step
2.

else
Export the problem to a MIP solver.
If the objective value is less than UB, update UB and go to Step 3.

end
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5.1 Test instances

To the best of our knowledge, there is no public data sets for the virtual machine mapping problem.
Following [18], we randomly generate virtual request instances following rules below.

1. As presented in Section 2, each virtual request typically involves a small number of VMs, so
the size of each virtual request is fixed to 5. The number of virtual requests ranges from 1 to
10. In other words, we deal with problem instances up to 50 VMs.

2. For each virtual request, the communication traffic between each two VMs is uniformly gen-
erated as an integer in {0, 100}. For each virtual machine, the required number of CPU cores
is randomly generated from 1 to 10 and the size of memory is generated from 2GB to 8GB.

Physical graph instances are from SND library [22]. Each node of a graph represents a server,
whose number of CPU cores and memory size are randomly chosen as an ordered pair from set
{(8, 128), (16, 256), (32, 512), (64, 1024)}. Parameters of link capacity and fixed cost are consistent
with the data in SND library. The additional cost regarding CPU resource Ak is set as 10 for all
k ∈ S. For each O-D pair of servers, the shortest path is computed using Dijkstra’s algorithm
before the solution procedure.

To measure the computational difficulty of each problem instance, we report the topology of
the physical graph, the number of VMs and the number of binary variables.

5.2 Implementation and experiments setup

All computations are implemented with C++ and all problem instances are solved by the state-
of-the-art solver CPLEX 12.7 with default settings on a Dell Latitude E7470 laptop with Intel
Core(TM) i5-6300U CPU clocked at 2.40 GHz and with 8 GB of RAM. The B&B tree is imple-
mented using a priority queue. To have a fair and unbiased comparison, CPU time is used as
computational measurement. For all the tests, the computational time is limited to 10 hours and
the feasibility tolerance is set as 10−4. The optimality tolerance for Algorithm 2 is set to 0.5%. To
improve the stability of computation, Lagrange multipliers are preserved to 4 decimal places. If
no solution is available at solver termination or the solution process is killed by the solver, (−) is
reported.

5.3 The evaluation of formulation (P1)

We evaluate the strength of formulations (PRLT), (P1) with respect to the McCormick based for-
mulation (PMC). For each problem instance let vMC denote the optimal value of the continuous
relaxation of (PMC) and v∗ the global optimal value. Thus the optimality gap induced by Mc-
Cormick formulation is v∗−vMC

v∗ . Formulations (PRLT), (P1) are expected to close this optimality as
more valid inequalities are added. We measure the closed gap via

Closed gap =
v − vMC

v∗ − vMC
× 100 (34)

where v represents the continuous relaxation value of (PRLT) or (P1). Results are summarized in
Table 1 which imply the following.

(i) The RLT inequalities close 2%−15% of the optimality gap while the combination of the RLT
and (3)-(5) closes 48%− 100% gap.
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(ii) As might be expected the continuous relaxations of RLT formulation and the compact for-
mulation (P1) are computationally expensive due to the addition of valid inequalities. In
particular the solution time for the continuous relaxation of (P1) is becoming evidently more
expensive than that of (PRLT) as the size of the physical network increases.

Table 1: Numerical evaluation for (PRLT), (P1)

Continuous relaxation statistics

(|S|, |E|) #VMs. (PMC) (PRLT) (P1)

#Cpu(Sec.) #CPU(Sec.) closed gap(%) #CPU(Sec.) closed gap(%)

(8, 10) 5 0.00 0.01 15.2 0.12 84.80
(8, 10) 10 0.02 0.01 11.8 0.18 89.21

(12, 15) 5 0.02 0.01 7.29 0.22 92.28

(12, 15) 10 0.07 0.02 2.37 0.43 82.51

(12, 15) 15 0.13 0.22 3.34 1.02 95.12

(12, 15) 20 0.27 0.72 3.33 1.49 100.00

(12, 15) 25 0.33 0.92 6.53 2.69 88.11

(12, 15) 30 0.34 1.2 4.89 3.18 80.30

(12, 15) 35 0.49 1.33 8.32 3.64 94.30

(12, 15) 40 0.67 1.42 7.31 3.75 86.83

(12, 15) 50 0.92 1.43 9.98 4.23 89.83

(15, 22) 10 0.07 0.27 2.33 0.22 89.78

(15, 22) 15 0.13 0.48 7.03 2.34 72.56

(15, 22) 20 0.26 3.77 4.09 4.22 86.04

(15, 22) 25 0.85 2.75 4.89 5.09 87.77

(15, 22) 30 1.04 1.98 5.98 4.96 90.14

(15, 22) 35 0.63 0.72 14.53 4.57 76.51

(15, 22) 40 1.25 3.44 12.42 5.83 79.43

(22, 36) 10 0.92 1.46 5.92 4.59 100.00

(22, 36) 15 3.01 3.04 2.51 16.20 69.80

(22, 36) 20 3.39 3.55 3.58 26.87 67.75

(22, 36) 25 6.22 4.12 2.90 28.10 63.64

(22, 36) 30 8.83 3.23 3.91 29.91 69.12

(22, 36) 35 8.91 3.34 3.34 33.81 53.73
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5.4 The Lagrange lower bounds

Section 4.1.2 shows that the proposed Lagrange decomposition scheme (25) and its generalized
hierarchy can close further the McCormick relaxation gap. We illustrate this point numerically
with following settings.

1. For a given problem instance, we first partition the virtual request set R to a number of
subsets. Each subset has at most δ requests. For instance if |R| = 7 and δ = 2, set R is
partition to 4 subsets {{1, 2}, {3, 4}, {5, 6}, {7}}.

2. We perform numerical experiments with δ ∈ {1, 2, 3} and solve each subproblem with CPLEX
12.7.

3. For instances with network (22, 36) it is time consuming for solving problems associated with
δ = 3. For this reason, we skip them.

The corresponding results are summarized in Table 2 and they may indicate the following.

1. The Lagrange lower bound is generally stronger than the continuous relaxation bound of (P1);
in particular, it can close the optimality gap completely for certain instances in a reasonable
time. For most problem instances, the proposed Lagrange lower bounding procedure closes
80% McCormick optimality gap.

2. For a given instance, its Lagrange lower bound generally increases as δ increases. Correspond-
ingly the computational time increases.

3. There exist a couple of instances where the Lagrange lower bound with δ = 1 is equal to
the continuous relaxations bound (e.g. network (15, 22) with 30VMs). For such instances,
the computational cost of Lagrange lower bounding procedure is usually quit small. This is
probably due to the fact that the formulation of each subproblem (Subr) is strong.

5.5 The evaluation of Algorithm 2

In this section, we evaluate the performance of Algorithm 2 in comparison with model (PMC)
and model (P1) in terms of solution time and B&B nodes. For this purpose we setup numerical
experiments as follows.

1. For each problem instance we try to solve it to global optimality within a time limit of 10
hours with formulation (PMC) and (P1). Both CPU time and the number of B&B nodes of
CPLEX 12.7 are recorded. We also implement branching priority strategy over θ,φ using a
BranchCallback for (P1).

2. For each problem instance we solve it to global optimality with Algorithm 2. Lagrange cuts
are generated using the single request based decomposition (25). The upper bound tolerance
parameter δ is set as 5% and the optimality tolerance is 0.5%.

3. The heuristic algorithm 1 is used in Algorithm 2 for the generation of upper bounds. Its
input parameter n is set to bR/2c.
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Table 2: Numerical evaluation of the Lagrange lower bounds

(|S|, |E|) #VMs. δ = 1 δ = 2 δ = 3

#CPU(s) Closed gap(%) #CPU(s) Closed gap(%) #CPU(s) Closed gap(%)

(8, 10) 10 0.91 100.00 - - - -

(12,15) 10 8.34 100.00 - - - -

(12,15) 15 5.23 100.00 - - - -

(12,15) 20 6.87 100.00 - - - -

(12,15) 25 15.78 89.68 16.31 91.98 50.23 92.12

(12,15) 30 12.31 88.78 25.20 88.87 68.38 89.34

(12,15) 35 12.56 94.67 28.93 95.03 35.45 95.03

(12,15) 40 27.56 82.34 38.03 83.56 63.34 83.98

(12,15) 50 37.22 90.12 43.92 90.12 93.40 90.24

(15, 22) 10 7.64 93.55 30.10 100.00 - -

(15, 22) 15 6.21 76.37 13.34 76.67 - -

(15, 22) 20 13.22 89.56 28.90 90.43 90.31 92.77

(15, 22) 25 17.88 91.40 33.04 91.81 50.23 96.36

(15, 22) 30 4.11 90.14 4.18 90.14 33.21 93.13

(15, 22) 35 6.09 79.01 23.94 80.32 24.82 80.33

(15, 22) 40 23.34 81.34 24.43 81.34 50.32 82.10

(22, 36) 10 4.31 100.00 - - - -

(22, 36) 15 62.31 75.12 72.12 81.60 - -

(22, 36) 20 90.31 74.40 139.76 75.45 - -

(22, 36) 25 95 81.36 139.12 83.74 - -

(22, 36) 30 150 70.12 223 73.20 - -

(22, 36) 35 158.18 60.56 413.93 64.32 - -

4. As highlighted before our B&B algorithm uses a heuristic for generating upper bounds whose
quality might influence the overall computational time. In order to facilitate a fair comparison
we solve each problem instance 10 times and take the respective averages of CPU time and
B&B nodes as measurement.

Numerical results are summarized in Table 3 and we make some comments below.

1. For problem instances with 10 VMs, all three approaches can solve the problem to global
optimality. The compact formulation (P1) performs the best in terms of computational effi-
ciency.

2. For problem instances with more than 30 requests, the McCormick formulation (PMC) is
the most time-consuming approach while Algorithm 2 is computationally most efficient. For
some small instances (e.g. (12, 15) 20 VMs), formulation (P1) performs better than Algo-
rithm 2. This is probably due to the fact that CPLEX sometimes finds better upper bound
than Algorithm 1.
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3. For problem instances having more than 40 VMs, CPLEX cannot solve the problem to opti-
mality within the 10-hour time limit even using the compact model (P1). In contrast Algo-
rithm 2 provides optimal solutions much faster. For most problem instances, Algorithm 2 is
at least 10 times and sometimes 30 times more efficient than the CPLEX default branch and
bound algorithm with Model (P1).

4. Given a set of VMs, formulation (P1) and Algorithm 2 become less advantageous in terms
of computational efficiency as the size of the physical network increases. This is largely due
to two reasons. First our subproblem (Subr) is not separable in terms of physical network
components thus making the lower bounding procedure computationally more expensive.
Second Algorithm 1 becomes less effective in finding good upper bounds leading to more
branch nodes.

5. The current implementation of Algorithm 2 fails to solve problems instances with more than
700 variables due to memory issues. Numerically we observed that the implementation incurs
memory issues when the number of branch nodes is over 1000.

6 Conclusion

This work proposes a couple of mathematical programming based algorithms for the optimal map-
ping of virtual machines while taking into account the bilinear bandwidth constraints and other
knapsack constraints regarding CPU and memory. The first one is a compact model involving RLT
inequalities and some strong valid inequalities exploiting the problem structure. The second one
is a Lagrange decomposition based B&B algorithm for solving larger problem instances. We show
both theoretically and numerically that the proposed valid inequalities and bounding procedures
can improve the continuous relaxation bounds significantly. We also demonstrate that the proposed
B&B algorithm is numerically encouraging.

Based on the results presented in this paper, several research directions can be considered. First,
decomposition strategies exploiting the structure of the physical network should be investigated to
accelerate the solution procedure of problem instances associated with a large physical network.
Second, specialized branch-and-cut algorithm incorporating the Lagrange lower bounding procedure
and some recent findings of the convex and concave estimators in [2] can be devised. Third, some
approximation algorithm might be devised to achieve guaranteed feasible solutions of high quality.
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