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Abstract Seeing a speaker’s face enhances speech intelligibility in adverse environments. We

investigated the underlying network mechanisms by quantifying local speech representations and

directed connectivity in MEG data obtained while human participants listened to speech of varying

acoustic SNR and visual context. During high acoustic SNR speech encoding by temporally

entrained brain activity was strong in temporal and inferior frontal cortex, while during low SNR

strong entrainment emerged in premotor and superior frontal cortex. These changes in local

encoding were accompanied by changes in directed connectivity along the ventral stream and the

auditory-premotor axis. Importantly, the behavioral benefit arising from seeing the speaker’s face

was not predicted by changes in local encoding but rather by enhanced functional connectivity

between temporal and inferior frontal cortex. Our results demonstrate a role of auditory-frontal

interactions in visual speech representations and suggest that functional connectivity along the

ventral pathway facilitates speech comprehension in multisensory environments.

DOI: 10.7554/eLife.24763.001

Introduction
When communicating in challenging acoustic environments we profit tremendously from visual cues

arising from the speakers face. Movements of the lips, tongue or the eyes convey significant informa-

tion that can boost speech intelligibility and facilitate the attentive tracking of individual speakers

(Ross et al., 2007; Sumby and Pollack, 1954). This multisensory benefit is strongest for continuous

speech, where visual signals provide temporal markers to segment words or syllables, or provide lin-

guistic cues (Grant and Seitz, 1998). Previous work has identified the synchronization of brain

rhythms between interlocutors as a potential neural mechanism underlying the visual enhancement

of intelligibility (Hasson et al., 2012; Park et al., 2016; Peelle and Sommers, 2015; Pickering and

Garrod, 2013; Schroeder et al., 2008). Both acoustic and visual speech signals exhibit pseudo-

rhythmic temporal structures at prosodic and syllabic rates (Chandrasekaran et al., 2009;

Schwartz and Savariaux, 2014). These regular features can entrain rhythmic activity in the observ-

er’s brain and facilitate perception by aligning neural excitability with acoustic or visual speech fea-

tures (Giraud and Poeppel, 2012; Mesgarani and Chang, 2012; Park et al., 2016; Peelle and

Davis, 2012; Schroeder and Lakatos, 2009; Schroeder et al., 2008; van Wassenhove, 2013;

Zion Golumbic et al., 2013a). While this model predicts the visual enhancement of speech encoding

in challenging multisensory environments, the network organization of multisensory speech encoding

remains unclear.
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Previous work has implicated many brain regions in the visual enhancement of speech, including

superior temporal (Beauchamp et al., 2004; Nath and Beauchamp, 2011; Riedel et al., 2015;

van Atteveldt et al., 2004), premotor and inferior frontal cortices (Arnal et al., 2009; Evans and

Davis, 2015; Hasson et al., 2007b; Lee and Noppeney, 2011; Meister et al., 2007; Skipper et al.,

2009; Wright et al., 2003). Furthermore, some studies have shown that the visual facilitation of

speech encoding may even commence in early auditory cortices (Besle et al., 2008;

Chandrasekaran et al., 2013; Ghazanfar et al., 2005; Kayser et al., 2010; Lakatos et al., 2009;

Zion Golumbic et al., 2013a). However, it remains to be understood whether visual context shapes

the encoding of speech differentially within distinct regions of the auditory pathways, or whether the

visual facilitation observed within auditory regions is simply fed forward to upstream areas, perhaps

without further modification. Hence, it is still unclear whether the enhancement of speech-to-brain

entrainment is a general mechanism that mediates visual benefits at multiple stages along the audi-

tory pathways.

Many previous studies on this question were limited by conceptual shortcomings: first, many have

focused on generic brain activations rather than directly mapping the task-relevant sensory represen-

tations (activation mapping vs. information mapping [Kriegeskorte et al., 2006]), and hence have

not quantified multisensory influences on those neural representations shaping behavioral perfor-

mance. Those who did focused largely on auditory cortical activity (Zion Golumbic et al., 2013b) or

did not perform source analysis of the underlying brain activity (Crosse et al., 2015). Second, while

many studies have correlated speech-induced local brain activity with behavioral performance, few

studies have quantified directed connectivity along the auditory pathways to ask whether perceptual

benefits are better explained by changes in local encoding or by changes in functional connectivity

(but see [Alho et al., 2014]). And third, many studies have neglected the continuous predictive

structure of speech by focusing on isolated words or syllables (but see [Crosse et al., 2015]). How-

ever, this structure may play a central role for mediating the visual benefits (Bernstein et al., 2004;

Giraud and Poeppel, 2012; Schroeder et al., 2008). Importantly, given that the predictive visual

context interacts with acoustic signal quality to increase perceptual benefits in adverse environments

(Callan et al., 2014; Ross et al., 2007; Schwartz et al., 2004; Sumby and Pollack, 1954), one

eLife digest When listening to someone in a noisy environment, such as a cocktail party, we can

understand the speaker more easily if we can also see his or her face. Movements of the lips and

tongue convey additional information that helps the listener’s brain separate out syllables, words

and sentences. However, exactly where in the brain this effect occurs and how it works remain

unclear.

To find out, Giordano et al. scanned the brains of healthy volunteers as they watched clips of

people speaking. The clarity of the speech varied between clips. Furthermore, in some of the clips

the lip movements of the speaker corresponded to the speech in question, whereas in others the lip

movements were nonsense babble. As expected, the volunteers performed better on a word

recognition task when the speech was clear and when the lips movements agreed with the spoken

dialogue.

Watching the video clips stimulated rhythmic activity in multiple regions of the volunteers’ brains,

including areas that process sound and areas that plan movements. Speech is itself rhythmic, and

the volunteers’ brain activity synchronized with the rhythms of the speech they were listening to.

Seeing the speaker’s face increased this degree of synchrony. However, it also made it easier for

sound-processing regions within the listeners’ brains to transfer information to one other. Notably,

only the latter effect predicted improved performance on the word recognition task. This suggests

that seeing a person’s face makes it easier to understand his or her speech by boosting

communication between brain regions, rather than through effects on individual areas.

Further work is required to determine where and how the brain encodes lip movements and

speech sounds. The next challenge will be to identify where these two sets of information interact,

and how the brain merges them together to generate the impression of specific words.

DOI: 10.7554/eLife.24763.002
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needs to manipulate both factors to fully address this question. Fourth, most studies focused on

either the encoding of acoustic speech signals in a multisensory context, or quantified brain activity

induced by visual speech, but little is known about the dependencies of neural representations of

the acoustic and visual components of realistic speech (but see [Park et al., 2016]). Overcoming

these problems, we here capitalize on the statistical and conceptual power offered by naturalistic

continuous speech to study the network mechanisms that underlie the visual facilitation of speech

perception.

Using source localized MEG activity we systematically investigated how local representations of

acoustic and visual speech signals and task-relevant directed functional connectivity along the audi-

tory pathways change with visual context and acoustic signal quality. Specifically, we extracted neu-

ral signatures of acoustically-driven speech representations by quantifying the mutual information

(MI) between the MEG signal and the acoustic speech envelope. Similarly, we extracted neural signa-

tures of visually-driven speech representations by quantifying the MI between lip movements and

the MEG signal. Furthermore, we quantified directed causal connectivity between nodes in the

speech network using time-lagged mutual information between MEG source signals. Using linear

modelling we then asked how each of these signatures (acoustic and visual speech encoding; con-

nectivity) are affected by contextual information about the speakers face, by the acoustic signal to

noise ratio, and by their interaction. In addition, we used measures of information theoretic redun-

dancy to test whether the local representations of acoustic speech are directly related to the tempo-

ral dynamics of lip movements or rather reflect visual contextual information more indirectly. And

finally, we asked how local speech encoding and network connectivity relate to behavioral

performance.

Our results describe multiple and functionally distinct representations of acoustic and visual

speech in the brain. These are differentially affected by acoustic SNR and visual context, and are not

trivially explained by a simple superposition of representations of the acoustic speech and lip move-

ment information. However, none of these local speech representations was predictive of the degree

of visual enhancement of speech comprehension. Rather, this behavioral benefit was predicted only

by changes in directed functional connectivity.

Results
Participants (n = 19) were presented with continuous speech that varied in acoustic quality (signal to

noise ratio, SNR) and the informativeness of the speaker’s face. The visual context could be either

informative (VI), showing the face producing the acoustic speech, or uninformative (VN), showing the

same face producing nonsense babble (Figure 1A,B). We measured brain-wide activity using MEG

while participants listened to eight six-minute texts and performed a delayed word recognition task.

Behavioral performance was better during high SNR and an informative visual context (Figure 2): a

repeated measures ANOVA revealed a significant effect of SNR (F(3,54) = 36.22, p<0.001, Huynh-

Feldt corrected, h2
p = 0.67), and of visual context (F(1,18) = 18.95, p<0.001, h2

p = 51), as well as a

significant interaction (F(3,54) = 4.34, p=0.008, h2
p = 0.19). This interaction arose from a significant

visual enhancement (VI vs VN) for SNRs of 4 and 8 dB (paired T(18) � 3.00, Bonferroni corrected

p�0.032; p>0.95 for other SNRs).

To study the neural mechanisms underlying this behavioral benefit we analyzed source-projected

MEG data using information theoretic tools to quantify the fidelity of local neural representations of

the acoustic speech envelope (speech MI), local representations of the visual lip movement (lip MI),

as well as the directed causal connectivity between relevant regions (Figure 1C). For both, local

encoding and connectivity, we (1) modelled the extent to which they were modulated by the experi-

mental conditions, and we (2) asked whether they correlated with behavioral performance across

conditions and with the visual benefit across SNRs (Figure 1C).

Widespread speech-to-brain entrainment at multiple time scales
Speech-to-brain entrainment was quantified by the mutual information (speech MI) between the

MEG time course and the acoustic speech envelope (not the speech + noise mixture) in individual

frequency bands (Gross et al., 2013; Kayser et al., 2015). At the group-level we observed wide-

spread significant speech MI in all considered bands from 0.25 to 48 Hz (FWE = 0.05), except

between 18–24 Hz (Figure 3—figure supplement 1A). Consistent with previous results
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(Gross et al., 2013; Ng et al., 2013; Park et al.,

2016) speech MI was higher at low frequencies

and strongest below 4 Hz (Figure 3—figure sup-

plement 1C). This time scale is typically associ-

ated with syllabic boundaries or prosodic stress

(Giraud and Poeppel, 2012; Greenberg et al.,

2003). Indeed, the average syllabic rate was 212

syllables per minute in the present material, cor-

responding to about 3.5 Hz. Across frequencies,

significant speech MI was strongest in bilateral

auditory cortex and was more extended within

the right hemisphere (Figure 3—figure supple-

ment 1A and C). Indeed, peak significant MI val-

ues were significantly higher in the right

compared to the left hemisphere at frequencies

below 12 Hz (paired t-tests; T(18) � 3.1,

p�0.043 Bonferroni corrected), and did not dif-

fer at higher frequencies (T(18) � 2.78, p�0.09).

This lateralization of speech-to-brain entrainment

at frequencies below 12 Hz is consistent with

previous reports (Gross et al., 2013).
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Figure 1. Experimental paradigm and analysis. (A) Stimuli consisted of 8 continuous 6 min long audio-visual speech samples. For each condition we

extracted the acoustic speech envelope as well as the temporal trajectory of the lip contour (video frames, top right: magnification of lip opening and

contour). (B) The experimental design comprised eight conditions, defined by the factorial combination of 4 levels of speech to background signal to

noise ratio (SNR = 2, 4, 6, and 8 dB) and two levels of visual informativeness (VI: Visual context Informative: video showing the narrator in synch with

speech; VN: Visual context Not informative: video showing the narrator producing babble speech). Experimental conditions lasted 1 (SNR) or 3 (VIVN)

minutes, and were presented in pseudo-randomized order. (C) Analyses were carried out on band-pass filtered speech envelope and MEG signals. The

MEG data were source-projected onto a grey-matter grid. One analysis quantified speech entrainment, i.e. the mutual information (MI) between the

MEG data and the acoustic speech envelope (speech MI), as well as between the MEG and the lip contour (lip MI), and the extent to which these were

modulated by the experimental conditions. A second analysis quantified directed functional connectivity (DI) between seeds and the extent to which

this was modulated by the experimental conditions. A final analysis assessed the correlation of either MI or DI with word-recognition performance.

Relevant variables in deposited data (doi:10.5061/dryad.j4567): SE_speech; LE_lip.
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2 4 6 8

SNR (dB)

50

70

90

P
e

rc
e

n
t 
c
o

rr
e

c
t 
(%

)

Visual Informative

Visual Not informative

Figure 2. Behavioral performance. Word recognition

performance for each of the experimental conditions

(mean ± SEM across participants n = 19). Deposited

data: BEHAV_perf.

DOI: 10.7554/eLife.24763.004

Giordano et al. eLife 2017;6:e24763. DOI: 10.7554/eLife.24763 4 of 27

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.24763.003
http://dx.doi.org/10.7554/eLife.24763.004
http://dx.doi.org/10.7554/eLife.24763


Importantly, we observed significant speech-to-brain entrainment not only within temporal cortices

but across multiple regions in the occipital, frontal and parietal lobes, consistent with the notion that

speech information is represented also within motor and frontal regions (Bornkessel-

Schlesewsky et al., 2015; Du et al., 2014; Skipper et al., 2009).

Speech entrainment is modulated by SNR within and beyond auditory
cortex
To determine the regions where acoustic signal quality and visual context affect the encoding of

acoustic speech we modelled the condition-specific speech MI values based on effects of acoustic

signal quality (SNR), visual informativeness (VIVN), and their interaction (SNRxVIVN). Random-effects

significance was tested using a permutation procedure and cluster enhancement, correcting for mul-

tiple comparisons along all relevant dimensions. Effects of experimental factors emerged in multiple

regions at frequencies below 4 Hz (Figure 3). Increasing the acoustic signal quality (SNR; Figure 3A)

resulted in stronger speech MI in the right auditory cortex (1–4 Hz; local peak T statistic = 4.46 in

posterior superior temporal gyrus; pSTG-R; Table 1), right parietal cortex (local peak T = 3.94 in

supramarginal gyrus; SMG-R), and right dorso-ventral frontal cortex (IFGop-R; global peak T = 5.06).

We also observed significant positive SNR effects within the right temporo-parietal and occipital cor-

tex at 12–18 Hz (local peak right lingual gyrus, T = 5.12). However, inspection of the participant-spe-

cific data suggested that this effect was not reliable (for only 58% of participants showed a speech

MI increase with SNR, as opposed to a minimum of 84% for the other SNR effects), possibly because

the comparatively lower power of speech envelope fluctuations at higher frequencies (c.f.

Figure 1A); hence this effect is not discussed further.

Visual context reveals distinct strategies for handling speech in noise in
premotor, superior and inferior frontal cortex
Contrasting informative and not-informative visual contexts revealed stronger speech MI when see-

ing the speakers face (VI) at frequencies below 4 Hz in both hemispheres (Figure 3B): the right tem-

poro-parietal cortex (0.25–1 Hz; HG; T = 4.75; Table 1), bilateral occipital cortex (1–4 Hz; global T

peak in right visual cortex VC-R;=6.01) and left premotor cortex (1–4 Hz; PMC-L; local T

peak = 3.81). Interestingly, the condition-specific pattern of MI for VC-R was characterized by an

increase in speech MI with decreasing SNR during the VI condition, pointing to a stronger visual

enhancement during more adverse listening conditions. The same effect was seen in premotor cor-

tex (PMC-L).

Since visual benefits for perception emerge mostly when acoustic signals are degraded (Figure 2)

(Ross et al., 2007; Sumby and Pollack, 1954), the interaction of acoustic and visual factors provides

a crucial test for detecting non-trivial audio-visual interactions. We found significant interactions in

the 0.25–1 Hz band in the right dorso-ventral frontal lobe, which peaked in the pars triangularis

(IFGt-R; T = 3.62; Figure 3C; Table 1). Importantly, investigating the SNR effect in the frontal cortex

voxels revealed two distinct strategies for handling speech in noise dependent on visual context

(Figure 3D): During VI speech MI increased with SNR in ventral frontal cortex (peak T for SNR in

pars orbitalis; IFGor-R; T = 5.07), while in dorsal frontal cortex speech MI was strongest at low SNRs

during VN (peak T in superior frontal gyrus; SFG-R; T = �3.55). This demonstrates distinct functional

roles of ventral and dorsal prefrontal regions in speech encoding and reveals a unique role of supe-

rior frontal cortex for enhancing speech representations in a poorly informative context, such as the

absence of visual information in conjunction with poor acoustic signals. For further analysis we

focused on these regions and frequency bands revealed by the GLM effects (Figure 3E).

Condition effects are hemisphere-dominant but not strictly lateralized
Our results reveal significantly stronger entrainment at low frequencies (c.f. Figure 3—figure supple-

ment 1) and a prevalence of condition effects on speech MI in the right hemisphere (c.f. Figure 3).

We directly tested whether these condition effects were significantly lateralized by comparing the

respective GLM effects between corresponding ROIs across hemispheres (Table 1). This revealed

that only the 1–4 Hz SNR effect in IFGop-R was significantly lateralized (T(18) = 6.03; FWE = 0.05

corrected across ROIs), while all other GLM effects did not differ significantly between hemispheres.
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Noise invariant dynamic representations of lip movements
To complement the above analysis of speech-to-brain entrainment we also systematically analyzed

the entrainment of brain activity to lip movements (lip MI). This allowed us to address whether the

enhancement of the encoding of acoustic speech during an informative visual context arises from a

co-representation of acoustic and visual speech information in the same regions or not. As expected

based on previous work, the acoustic speech envelope and the trajectory of lip movements for the
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Figure 3. Modulation of speech-to-brain entrainment by acoustic SNR and visual informativeness. Changes in speech MI with the experimental factors

were quantified using a GLM for the condition-specific speech MI based on the effects of SNR (A), visual informativeness VIVN (B), and their interaction

(SNRxVIVN) (C). The figures display the cortical-surface projection onto the Freesurfer template (proximity = 10 mm) of the group-level significant

statistics for each GLM effect (FWE = 0.05). Graphs show the average speech MI values for each condition (mean ± SEM), for local and global (red

asterisk) of the T maps. Lines indicate the across-participant average regression model and numbers indicate the group-average standardized

regression coefficient for SNR in the VI and VN conditions (>/ < 0.0 = positive/negative, rounded to 0). (D) T maps illustrating the opposite SNR effects

within voxels with significant SNRxVIVN effects. MI graphs for the peaks of these maps are shown in (C) (IFGor-R and SFG-R = global T peaks for SNR

effects in VI and VN, respectively). (E) Location of global and local seeds of GLM T maps, used for the analysis of directed connectivity. See also

Tables 1 and 2 and Figure 3—figure supplements 1–2. Deposited data: SE_meg; SE_speech; SE_miS.

DOI: 10.7554/eLife.24763.005

The following figure supplements are available for figure 3:

Figure supplement 1. Entrainment of rhythmic MEG activity to the speech envelope and lip movements.

DOI: 10.7554/eLife.24763.006

Figure supplement 2. Information theoretic decomposition of speech entrainment.

DOI: 10.7554/eLife.24763.007

Figure supplement 3. Condition-changes in the amplitude of oscillatory activity.

DOI: 10.7554/eLife.24763.008
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present material were temporally coherent, in particular in the delta and theta bands (Figure 1A)

(Chandrasekaran et al., 2009; Park et al., 2016; Schwartz and Savariaux, 2014).

Lip-to-brain entrainment was quantified for the visual informative condition only, across the same

frequency bands as considered for the speech MI (Figure 3—figure supplement 1B). This revealed

wide-spread significant lip MI in frequency bands below 8 Hz, with the strongest lip entrainment

occurring in occipital cortex (Figure 3—figure supplement 1B). Peak lip MI values were larger in the

right hemisphere, in particular for the 4–8 Hz band (Figure 3—figure supplement 1C), but this

effect was not significant after correction for multiple comparisons (T(18) � 2.53, p�0.06). We then

asked whether in any regions with significant lip MI the encoding of lip information changed with

SNR. No significant SNR effects were found (FWE = 0.05, corrected across voxels and 0–12 Hz fre-

quency bands), demonstrating that the encoding of lip signals is invariant across acoustic conditions.

We also directly compared speech MI and lip MI within the ROIs highlighted by the condition effects

on speech MI (c.f. Figure 3E). In most ROIs speech MI was significantly stronger than lip MI (Table 2;

T(18) HG-R, pSTG-R, IFGop-R and PMC-L �3.58; FWE = 0.05 corrected across ROIs), while lip MI

was significantly stronger in VC-R (T(18) = �3.35; FWE = 0.05).

Table 1. Condition effects on speech MI. The table lists global and local peaks in the GLM T-maps. Anatomical labels and Brodmann

areas are based on the AAL and Talairach atlases. b = standardized regression coefficient; SEM = standard error of the participant

average. ROI-contralat. = T test for a significant difference of GLM betas between the respective ROI and its contralateral grid voxel.

Anatomical label Brodmann area MNI coordinates GLM effect Frequency Band T(18) b(SEM) T(18) ROI-contralat.

HG-R 42 63 �21 11 VIVN 0.25–1 Hz 4.75* 0.39 (0.06) 2.00

pSTG-R 22 48 �30 8 SNR 1–4 Hz 4.46* 0.48 (0.08) 2.36

SMG-R 40 57 �30 38 SNR 1–4 Hz 3.94* 0.29 (0.09) 0.22

PMC-L 6 �54 0 32 VIVN 1–4 Hz 3.81* 0.27 (0.06) �0.65

IFGt-R 46 42 33 2 SNRxVIVN 0.25–1 Hz 3.62* 0.29 (0.07) 1.48

IFGop-R 47 51 18 2 SNR 1–4 Hz 5.06* 0.36 (0.08) 6.03*

IFGor-R 47 30 26 �16 SNR in VI 0.25–1 Hz 5.07* 0.44 (0.08) 1.92

SFG-R 6 12 30 58 SNR in VN 0.25–1 Hz �3.55* �0.41 (0.09) �2.21

VC-R 17/18 18 �102 -4 VIVN 1–4 Hz 6.01* 0.45 (0.06) 1.84

*denotes significant effects (FWE = 0.05 corrected for multiple comparisons). Relevant variables in deposited data (doi:10.5061/dryad.j4567): SE_meg;

SE_speech; SE_miS.

DOI: 10.7554/eLife.24763.009

Table 2. Analysis of the contribution of audio-visual signals in shaping entrainment. For each region / effect of interest (c.f. Table 1)

the table lists the comparison of condition-averaged speech and lip MI (positive = greater speech MI); the condition effects (GLM) on

the conditional mutual information (CMI) between the MEG signal and the speech envelope, while partialling out effects of lip signals;

and the condition-averaged information theoretic redundancy between speech and lip MI.

Speech vs. lip MI Speech-Lip redundancy Speech CMI

Label T(18) Avg(SEM) T(18) Avg(SEM) Effect T(18) b(SEM)

HG-R 4.27* 28.16 (6.59) 0.73 0.33 (0.44) VIVN 4.37* 0.35 (0.06)

pSTG-R 3.90* 5.42 (1.39) 0.49 0.19 (0.38) SNR 4.66* 0.49 (0.08)

SMG-R 2.95 1.32 (0.45) 1.10 0.51 (0.47) SNR 4.10* 0.29 (0.09)

PMC-L 3.58* 1.06 (0.30) 3.83* 2.42 (0.63) VIVN 3.47* 0.24 (0.06)

IFGt-R 1.21 0.87 (0.72) 2.29 1.75 (0.77) SNRxVIVN 4.07* 0.31 (0.07)

IFGopR 3.68* 1.50 (0.41) 4.69* 1.56 (0.33) SNR 4.70* 0.35 (0.07)

SFG-R 0.88 0.61 (0.70) 4.13* 2.37 (0.57) SNR in VN �3.62* �0.43 (0.09)

VC-R �3.35* �2.19 (0.65) 2.37 0.68 (0.29) VIVN 5.77* 0.45 (0.06)

*denotes significant effects (FWE = 0.05 corrected for multiple comparisons). Deposited data: ID_meg; ID_speech; ID_lip; ID_infoterms.

DOI: 10.7554/eLife.24763.010
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Speech entrainment does not reflect trivial entrainment to lip dynamics
Given that only the speech and not the lip representation were affected by SNR the above results

suggest that both acoustic and visual speech signals are represented independently in rhythmically

entrained brain activity. To address the interrelation between the representations of acoustic and

visual speech signals more directly, we asked whether the condition effects on speech MI result from

genuine changes in the encoding of the acoustic speech envelope, or whether they result from a

superposition of local representations of the acoustic and the visual speech signals. Given that visual

and acoustic speech are temporally coherent and offer temporally redundant information, it could

be that the enhancement of speech MI during the VI condition simply results from a superposition of

local representations of the visual and acoustic signals arising within the same brain region. Alterna-

tively, it could be that the speech-to-brain entrainment reflects a representation of the acoustic

speech signal that is informed by visual contextual information, but which is not a one to one reflec-

tion of the dynamics of lip movements. We performed two analyses to address this.

First, we calculated the conditional mutual information between the MEG signal and the acoustic

speech envelop while partialling out the temporal dynamics common to lip movements and the

speech envelope. If the condition effects on speech MI reflect changes within genuine acoustic rep-

resentations, they should persist when removing direct influences of lip movements. Indeed, we

found that all of the condition effects reported in Figure 3 persisted when computed based on con-

ditional MI (absolute T(18) � 3.47; compare Table 2 for CMI with Table 1 for MI; ROI-specific MI

and CMI values are shown in Figure 3—figure supplement 2A,B).

Second, we computed the information-theoretic redundancy between the local speech and lip

representations. Independent representations of each speech signal would result in small redun-

dancy values, while a common representation of lip and acoustic speech signals would reflect in a

redundant representation. Across SNRs we found that these representations were significantly

redundant in the ventral and dorsal frontal cortex (T(18) � 3.83, for SFG-R, IFGop-R, IFGt-Rand

PMC-L) but not in the temporal lobe or early auditory and visual cortices (FWE = 0.05 corrected

across ROIs; Table 2; Figure 3—figure supplement 2C). However, the actual redundancy values

were rather small (condition-averaged values all below 3%). All in all, this suggests that the local rep-

resentations of the acoustic speech envelope in sensory regions are informed by visual evidence but

in large do not represent the same information that is provided by the dynamics of lip movements.

This in particular also holds for the acoustic speech MI in visual cortex. The stronger redundancy in

association cortex (IFG, SFG, PMC) suggests that these regions feature co-representations of acous-

tic speech and lip movements.

Directed causal connectivity within the speech network
The diversity of the patterns of speech entrainment in temporal, premotor and inferior frontal

regions across conditions shown in Figure 3 could arise from the individual encoding properties of

each region, or from changes in functional connectivity between regions with conditions. To directly

test this, we quantified the directed causal connectivity between these regions of interest. To this

end we used Directed Information (DI), also known as Transfer Entropy, an information theoretic

measure of Wiener-Granger causality (Massey, 1990; Schreiber, 2000). We took advantage of pre-

vious work that made this measure statistically robust when applied to neural data (Besserve et al.,

2015; Ince et al., 2017).

We observed significant condition-averaged DI between multiple nodes of the speech network

(FWE = 0.05; Figure 4A and Figure 4—figure supplement 1A). This included among others the

feed-forward pathways of the ventral and dorsal auditory streams, such as from auditory cortex (HG-

R) and superior temporal regions (pSTG-R) to premotor (PMC-L) and to inferior frontal regions (IFGt-

R, IFGop-R), from right parietal cortex (SMG-R) to premotor cortex (PMC-L), as well as feed-back

connections from premotor and inferior frontal regions to temporal regions. In addition, we also

observed significant connectivity between frontal (SFG-R) and visual cortex (VC).

We then asked whether and where connectivity changed with experimental conditions

(Figure 4B, Table 3 and Figure 4—figure supplement 1B). Within the right ventral stream feed-for-

ward connectivity from the temporal lobe (HG-R, pSTG-R) to frontal cortex (IFGt-R, IFGop-R) was

enhanced during high acoustic SNR (FWE = 0.05; T(18) � 3.1). More interestingly, this connectivity

was further enhanced in the presence of an informative visual context (pSTG-R fi IFGt-R, VIVN
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effect, T = 4.57), demonstrating a direct influence of visual context on the propagation of informa-

tion along the ventral stream. Interactions of acoustic and visual context on connectivity were also

found from auditory (HG-R) to premotor cortex (PMC-L, negative interaction; T = �3.01). Here con-

nectivity increased with increasing SNR in the absence of visual information and increased with

decreasing SNR during an informative context, suggesting that visual information changes the quali-

tative nature of auditory-motor interactions. An opposite interaction was observed between the
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Figure 4. Directed causal connectivity within the speech-entrained network. Directed connectivity between seeds of interest (c.f. Figure 3E) was

quantified using Directed Information (DI). (A) Maximum significant condition-average DI across lags (FWE = 0.05 across lags; white = no significant DI).

(B) Significant condition effects (GLM for SNR, VIVN or their interaction) on DI (FWE = 0.05 across speech/brain lags and seed/target pairs). Bar graphs

display condition-specific DI values for each significant GLM effect along with the across-participants average regression model (lines). Numbers

indicate the group-average standardized betas for SNR in the VI and VN conditions, averaged across lags associated with a significant GLM effect (>/

< 0.0 = positive/negative, rounded to 0). Error-bars = ± SEM. See also Table 3 and Figure 4—figure supplement 1. Deposited data: DI_meg;

DI_speech; DI_di; DI_brainlag; DI_speechlag.

DOI: 10.7554/eLife.24763.011

The following figure supplement is available for figure 4:

Figure supplement 1. Directed functional connectivity within the speech-entrained network.

DOI: 10.7554/eLife.24763.012

Table 3. Analysis of directed connectivity (DI). The table lists connections with significant condition-

averaged DI, and condition effects on DI. SEM = standard error of participant average; b = standard-

ized regression coefficients. T(18) = maximum T statistic within significance mask. All reported effects

are significant (FWE = 0.05 corrected for multiple comparisons). Deposited data: DI_meg; DI_speech;

DI_di; DI_brainlag; DI_speechlag.

DI Condition effects (GLM)

Seed Target T(18) Effect T(18) b(SEM)

HG-R PMC-L 3.38 SNRxVIVN �3.01 �0.24 (0.08)

HG-R IFGt-R 3.03 SNR 3.32 0.31 (0.09)

HG-R IFGopR 4.54 SNR 3.19 0.26 (0.07)

pSTG-R IFGt-R 3.39 SNR 3.91 0.32 (0.09)

VIVN 4.57 0.23 (0.05)

pSTG-R IFGopR 4.12 SNR 3.31 0.28 (0.08)

IFGt-R IFGopR 3.76 VIVN 3.56 0.21 (0.06)

IFGopR pSTG-R 4.16 SNR 4.65 0.31 (0.09)

SFG-R VC-R 4.40 SNRxVIVN 3.69 0.28 (0.08)

DOI: 10.7554/eLife.24763.013
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frontal lobe and visual cortex (SFG-R fi VC-R, T = 3.69). Finally, feed-back connectivity along the

ventral pathway was significantly stronger during high SNRs (IFGt-R fi pSTG-R; T = 4.56).

Does speech entrainment or connectivity shape behavioral
performance?
We performed two analyses to test whether and where changes in the local representation of speech

information or directed connectivity (DI) contribute to explaining the multisensory behavioral bene-

fits (c.f. Figure 2). Given the main focus on the visual enhancement of perception we implemented

this analysis only for speech and not for lip MI. First, we asked where speech-MI and DI relates to

performance changes across all experimental conditions (incl. changes in SNR). This revealed a sig-

nificant correlation between condition-specific word-recognition performance and the strength of

speech MI in pSTG-R and IFGt-R (r � 0.28; FWE = 0.05; Table 4 and Figure 5A), suggesting that

stronger entrainment in the ventral stream facilitates comprehension. This hypothesis was further

corroborated by a significant correlation of connectivity along the ventral stream with behavioral

performance, both in feed-forward (HG-R fi IFGt-R/IFGop-R; pSTG-R fi IFGt-R/IFGop-R; r � 0.24,

Table 4) and feed-back directions (IFGop-R fi pSTG-R; r = 0.37). The enhanced quality of speech

perception during favorable listening conditions hence results from enhanced speech encoding and

the supporting network connections along the temporal-frontal axis.

Table 4. Association of behavioral performance with speech entrainment and connectivity. Perfor-

mance: T statistic and average of participant-specific correlation (SEM) between behavioral perfor-

mance and speech MI / DI. Visual enhancement: correlation between SNR-specific behavioral benefit

(VI-VN) and the respective difference in speech-MI or DI.

Speech MI

Performance Visual enhancement

T(18) r(SEM) T(18) r(SEM)

HG-R 1.27 0.13(0.10) 0.21 0.04(0.15)

pSTG-R 3.43 * 0.30(0.09) 0.53 0.07(0.11)

SMG-R 2.35 0.23(0.09) -0.39 -0.07(0.14)

PMC-L 0.47 0.04(0.08) 0.13 0.03(0.16)

IFGt-R 3.09 * 0.28(0.09) 1.25 0.29(0.18)

IFGopR 2.38 0.24(0.09) -0.25 -0.05(0.17)

SFG-R -0.47 -0.04(0.08) 1.61 0.35(0.17)

VC-R 1.55 0.18(0.10) -0.82 -0.14(0.14)

Directed connectivity

Performance Visual enhancement

Seed Target T(18) r(SEM) T(18) r(SEM)

HG-R PMC-L 0.90 0.06(0.06) -0.07 -0.01(0.14)

HG-R IFGt-R 4.83 * 0.31(0.07) 2.55 * 0.28(0.11)

HG-R IFGopR 3.19 * 0.24(0.07) 1.86 0.31(0.17)

pSTG-R IFGt-R 4.28 * 0.27(0.06) 1.28 0.16(0.12)

pSTG-R IFGopR 3.59 * 0.29(0.08) 1.82 0.32(0.17)

IFGt-R IFGopR 1.11 0.08(0.07) 2.27 0.33(0.14)

IFGopR pSTG-R 4.51 * 0.37(0.08) 2.55 * 0.37(0.15)

SFG-R VC-R -0.04 0.00(0.08) 0.90 0.17(0.18)

*denotes significant effects (FWE = 0.05 corrected for multiple comparisons). Deposited data: BEHAV_perf;

SE_meg; DI_meg; SE_miS; DI_di; NBC_miS; NBC_di.

DOI: 10.7554/eLife.24763.015
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Second, we asked whether and where the improvement in behavioral performance with an infor-

mative visual context (VI-VN) correlates with an enhancement in speech encoding or connectivity.

This revealed no significant correlations between the visual enhancement of local speech MI and per-

ceptual benefits (all T values < FWE = 0.05 threshold; Table 4). However, changes in both feed-for-

ward (HG-R fi IFGt-R; r = 0.28; Figure 5B) and feed-back connections (IFGop-R fi pSTG-R;

r = 0.37) along the ventral stream were significantly correlated with the multisensory perceptual ben-

efit (FWE = 0.05).

Changes in speech entrainment are not a result of changes in the
amplitude of brain activity
We verified that the reported condition effects on speech MI are not simply a by-product of changes

in the overall oscillatory activity. To this end we calculated the condition averaged Hilbert amplitude

for each ROI and performed a GLM analysis for condition effects as for speech entrainment

(FWE = 0.05 with correction across ROIs and frequency bands; Table 5; Figure 3—figure supple-

ment 3). This revealed a reduction of oscillatory activity during the visual informative condition in

the occipital cortex across many bands (VC-R, 4–48 Hz), in the inferior frontal cortex (IFG-R and
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Figure 5. Neuro-behavioral correlations. (A) Correlations between behavioral performance and condition-specific speech MI (perform. (r), and

correlations between the visual enhancement of performance and the visual enhancement in MI (vis. enhanc. (r). (B) Same for DI. Only those ROIs or

connections exhibiting significant correlations are shown. error-bars = ± SEM. See also Tables 2–3. Deposited data: BEHAV_perf; SE_meg; DI_meg;

SE_miS; DI_di; NBC_miS; NBC_di.
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IFGop-R, 24–48 Hz), and in the pSTG-R at 4–8 Hz and 18–24 Hz. No significant effects of SNR or

SNRxVIVN interactions were found (FWE = 0.05). Importantly, none of these VIVN effects over-

lapped with the significant changes in speech MI (0.25–4 Hz) and only the reduction in pSTG-R

power overlapped with condition effects in connectivity. All in all this suggests that the reported

changes in speech encoding and functional connectivity are not systematically related to changes in

the strength of oscillatory activity withy acoustic SNR or visual context.

Changes in directed connectivity do not reflect changes in phase-
amplitude coupling
Cross-frequency coupling between the phase and amplitudes of different rhythmic brain signals has

been implicated in mediating neural computations and communication (Canolty and Knight, 2010).

We asked whether the above results on functional connectivity are systematically related to specific

patterns of phase-amplitude coupling (PAC). We first searched for significant condition-average PAC

between each pair of ROIs across a wide range of frequency combinations. This revealed significant

PAC within VC-R, within pSTG-R and within SMG-R, as well as significant coupling of the 18–24 Hz

VC-R power with the 0.25–1 Hz IFGop-R phase (FWE = 0.05; see Table 6). However, we found no

Table 5. Changes in band-limited source signal amplitude with experimental conditions. The table

lists GLM T-statistics, participant averaged standardized regression coefficients (and SEM) for signifi-

cant VIVN effects on MEG source amplitude (FWE = 0.05 corrected across ROIs and frequency

bands).. Effects of SNR and SNRxVIVN interactions were also tested but not significant Deposited

data: SE_meg; AMP_amp.

ROI Band T(18) b(SEM)

pSTG-R 4–8 Hz �3.66 �0.38 (0.09)

pSTG-R 18–24 Hz �4.11 �0.40 (0.08)

IFGt-R 24–36 Hz �3.91 �0.40 (0.06)

IFGt-R 30–48 Hz �4.49 �0.39 (0.08)

IFGop-R 24–36 Hz �4.44 �0.40 (0.07)

IFGop-R 30–48 Hz �4.14 �0.41 (0.07)

VC-R 4–8 Hz �3.70 �0.55 (0.08)

VC-R 8–12 Hz �4.53 �0.70 (0.05)

VC-R 12–18 Hz �5.20 �0.70 (0.05)

VC-R 18–24 Hz �5.57 �0.66 (0.06)

VC-R 24–36 Hz �5.57 �0.55 (0.08)

VC-R 30–48 Hz �4.54 �0.46 (0.10)

DOI: 10.7554/eLife.24763.016

Table 6. Analysis of phase-amplitude coupling (PAC). The table lists the significant condition-aver-

aged PAC values for all pairs or ROIs and frequency bands (FWE = 0.05 corrected across pairs of

phase and power frequencies). SEM = standard error of participant average. None of these changed

significantly with conditions (no GLM effects at FWE = 0.05). Deposited data: SE_meg.

Phase ROI (band) Power ROI (band) T(18) Pac(SEM)

pSTG-R (1–4 Hz) pSTG-R (8–12 Hz) 3.26 0.22 (0.07)

SMG-R (4–8 Hz) SMG-R (30–48 Hz) 3.58 0.27 (0.07)

IFGop-R (0.25–1 Hz) VC-R (18–24 Hz) 3.08 0.22 (0.07)

VC-R (4–8 Hz) VC-R (8–12 Hz) 3.06 0.35 (0.11)

VC-R (1–4 Hz) VC-R (12–18 Hz) 3.44 0.48 (0.13)

VC-R (4–8 Hz) VC-R (24–36 Hz) 3.76 0.26 (0.07)

DOI: 10.7554/eLife.24763.017
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significant changes in PAC with experimental conditions, suggesting that the changes in functional

connectivity described above are not systematically related to specific patterns of cross-frequency

coupling.

Discussion
The present study provides a comprehensive picture of how acoustic signal quality and visual context

interact to shape the encoding of acoustic and visual speech information and the directed functional

connectivity along speech-sensitive cortex. Our results reveal a dominance of feed-forward pathways

from auditory regions to inferior frontal cortex under favorable conditions, such as during high

acoustic SNR. We also demonstrate the visual enhancement of acoustic speech encoding in auditory

cortex, as well as non-trivial interactions of acoustic quality and visual context in premotor and in

superior and inferior frontal regions. Furthermore, our results reveal the superposition of acoustic

and visual speech signals (lip movements) in association regions and the dominance of visual speech

representations in visual cortex. These patterns of local encoding were accompanied by changes in

directed connectivity along the ventral pathway and from auditory to premotor cortex. Yet, the

behavioral benefit arising from seeing the speaker’s face was not related to any region-specific visual

enhancement of acoustic speech encoding. Rather, changes in directed functional connectivity along

the ventral stream were predictive of the multisensory behavioral benefit.

Entrained auditory and visual speech representations in temporal,
parietal and frontal lobes
We observed functionally distinct patterns of speech-to-brain entrainment along the auditory path-

ways. Previous studies on speech entrainment have largely focused on the auditory cortex, where

entrainment to the speech envelope is strongest (Ding and Simon, 2013; Gross et al., 2013;

Keitel et al., 2017; Mesgarani and Chang, 2012; Zion Golumbic et al., 2013a), and only few stud-

ies have systematically compared speech entrainment along auditory pathways (Zion Golumbic

et al., 2013b). This was in part due to the difficulty to separate distinct processes reflecting entrain-

ment when contrasting only few experimental conditions (e.g. forward and reversed speech

[Ding and Simon, 2012; Gross et al., 2013]), or based on the difficulty to separate contributions

from visual (i.e. lip movements) and acoustic speech signals (Park et al., 2016). Based on the suscep-

tibility to changes in acoustic signal quality and visual context, the systematic use of region-specific

temporal lags between stimulus and brain response, and the systematic analysis of both acoustic

and visual speech signals, we here establish entrainment as a ubiquitous mechanism reflecting dis-

tinct acoustic and visual speech representations along auditory pathways.

Entrainment to the acoustic speech envelope was reduced with decreasing acoustic SNR in tem-

poral, parietal and ventral prefrontal cortex, directly reflecting the reduction in behavioral perfor-

mance in challenging environments. In contrast, entrainment was enhanced during low SNR in

superior frontal and premotor cortex. While there is strong support for a role of frontal and premo-

tor regions in speech processing (Du et al., 2014; Evans and Davis, 2015; Heim et al., 2008;

Meister et al., 2007; Morillon et al., 2015; Rauschecker and Scott, 2009; Skipper et al., 2009;

Wild et al., 2012), most evidence comes from stimulus-evoked activity rather than signatures of neu-

ral speech encoding. We directly demonstrate the specific enhancement of frontal (PMC, SFG)

speech representations during challenging conditions. This enhancement is not directly inherited

from the temporal lobe, as temporal regions exhibited either no visual facilitation (pSTG) or visual

facilitation without an interaction with SNR (HG).

We also observed significant entrainment to the temporal trajectory of lip movements in visual

cortex, the temporal lobe and frontal cortex (Figure 3—figure supplement 1). This confirms a previ-

ous study, which has specifically focused on the temporal coherence between brain activity and lip

movements (Park et al., 2016). Importantly, by comparing the local encoding of both the acoustic

and visual speech information, and conditioning out the visual signal from the speech MI, we found

that sensory cortices and the temporal lobe provide largely independent representations of the

acoustic and visual speech signals. Indeed, the information theoretic redundancy between acoustic

and visual representations was small and was significant only in association regions (SFG, IFG, PMC).

This suggests that early sensory cortices contain largely independent representations of acoustic and

visual speech information, while association regions provide a superposition of auditory and visual
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speech representations. However, the condition effects on the acoustic representation in any of the

analyzed regions did not disappear when factoring out the representation of lip movements, sug-

gesting that these auditory and visual representations are differentially influenced by sensory con-

text. These findings extend previous studies by demonstrating the co-existence of visual and

auditory speech representations along auditory pathways, but also reiterate the role of PMC as one

candidate region that directly links neural representations of lip movements with perception

(Park et al., 2016).

Multisensory enhancement of speech encoding in the frontal lobe
Visual information from the speakers’ face provides multiple cues that enhance intelligibility. In sup-

port of a behavioral multisensory benefit we found stronger entrainment to the speech envelope

during an informative visual context in multiple bilateral regions. First, we replicated the visual

enhancement of auditory cortical representations (HG) (Besle et al., 2008; Kayser et al., 2010;

Zion Golumbic et al., 2013a). Second, visual enhancement of an acoustic speech representation

was also visible in early visual areas, as suggested by prior studies (Nath and Beauchamp, 2011;

Schepers et al., 2015). Importantly, our information theoretic analysis suggests that this representa-

tion of acoustic speech is distinct from the visual representation of lip dynamics, which co-exists in

the same region. The visual enhancement of acoustic speech encoding in visual cortex was strongest

when SNR was low, unlike the encoding of lip movements, which was not affected by acoustic SNR.

Hence this effect is most likely explained by top-down signals providing acoustic feedback to visual

cortices (Vetter et al., 2014). Third, speech representations in ventral prefrontal cortex were selec-

tively involved during highly reliable multisensory conditions and were reduced in the absence of the

speakers face. These findings are in line with suggestions that the IFG facilitates comprehension

(Alho et al., 2014; Evans and Davis, 2015; Hasson et al., 2007b; Hickok and Poeppel, 2007) and

implements multisensory processes (Callan et al., 2014, 2003; Lee and Noppeney, 2011), possibly

by providing amodal phonological, syntactic and semantic processes (Clos et al., 2014; Ferstl et al.,

2008; McGettigan et al., 2012). Previous studies often reported enhanced IFG response amplitudes

under challenging conditions (Guediche et al., 2014). In contrast, by quantifying the fidelity of

speech representations, we here show that speech encoding is generally better during favorable

SNRs. This discrepancy is not necessarily surprising, if one assumes that IFG representations are

derived from those in the temporal lobe, which are also more reliable during high SNRs. Notewor-

thy, however, we found that speech representations within ventral IFG are selectively stronger dur-

ing an informative visual context, even when discounting direct co-representations of lip

movements. We thereby directly confirm the hypothesis that IFG speech encoding is enhanced by

visual context.

Furthermore, we demonstrate the visual enhancement of speech representations in premotor

regions, which could implement the mapping of audio-visual speech features onto articulatory repre-

sentations (Meister et al., 2007; Morillon et al., 2015; Morı́s Fernández et al., 2015;

Skipper et al., 2009; Wilson et al., 2004). We show that that this enhancement is inversely related

to acoustic signal quality. While this observation is in agreement with the notion that perceptual ben-

efits are strongest under adverse conditions (Ross et al., 2007; Sumby and Pollack, 1954), there

was no significant correlation between the visual enhancement of premotor encoding and behavioral

performance. Our results thereby deviate from previous work that has suggested a driving role of

premotor regions in shaping intelligibility (Alho et al., 2014; Osnes et al., 2011). Rather, we support

a modulatory influence of auditory-motor interactions (Alho et al., 2014; Callan et al., 2004;

Hickok and Poeppel, 2007; Krieger-Redwood et al., 2013; Morillon et al., 2015). In another study

we recently quantified dynamic representations of lip movements, calculated when discounting influ-

ences of the acoustic speech, and reported that left premotor activity was significantly predictive of

behavioral performance (Park et al., 2016). One explanation for this discrepancy may be the pres-

ence of a memory component in the present behavioral task, which may engage other brain regions

(e.g. IFG) more than other tasks. Another explanation could be that premotor regions contain,

besides an acoustic speech representation described here, complementary information about visual

speech that is not directly available in the acoustic speech contour, and is either genuinely visual or

correlated with more complex acoustic properties of speech. Further work is required to disentangle

the multisensory nature of speech encoding in premotor cortex.
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Finally, our results highlight an interesting role of the superior frontal gyrus, where entrainment

was strongest when sensory information was most impoverished (low SNR, visual not informative) or

when the speakers face was combined with clear speech (high SNR, visual informative). Superior

frontal cortex has been implied in high level inference processes underlying comprehension, sen-

tence level integration or the exchange with memory (Ferstl et al., 2008; Hasson et al., 2007a;

Yarkoni et al., 2008) and is sometimes considered part of the broader semantic network

(Binder et al., 2009; Gow and Olson, 2016; Price, 2012). Our data show that the SFG plays a criti-

cal role for speech encoding under challenging conditions, possibly by mediating sentence-level pro-

cesses during low SNRs or the comparison of visual prosody with acoustic inputs in multisensory

contexts.

Multisensory behavioral benefits arise from distributed network
mechanisms
To understand whether the condition-specific patterns of local speech representations emerge

within each region, or whether they are possibly established by network interactions, we investigated

the directed functional connectivity between regions of interest. While many studies have assessed

the connectivity between auditory regions (e.g. [Abrams et al., 2013; Chu et al., 2013;

Fonteneau et al., 2015; Park et al., 2015]), few have quantified the behavioral relevance of these

connections (Alho et al., 2014).

We observed significant intra-hemispheric connectivity between right temporal, parietal and fron-

tal regions, in line with the transmission of speech information from the temporal lobe along the

auditory pathways (Bornkessel-Schlesewsky et al., 2015; Hickok, 2012; Poeppel, 2014). Support-

ing the idea that acoustic representations are progressively transformed along these pathways we

found that the condition-specific patterns of functional connectivity differed systematically along the

ventral and dorsal streams. While connectivity along the ventral stream was predictive of behavioral

performance and strongest during favorable listening conditions, the inter-hemispheric connectivity

to left premotor cortex was strongest during adverse multisensory conditions, i.e. when seeing the

speakers face at low SNR. Interestingly, this pattern of functional connectivity matches the pattern of

speech entrainment in PMC, reiterating the selective and distinctive contribution of premotor

regions in speech encoding during multisensory conditions (Park et al., 2016). Our results therefore

suggest that premotor representations are informed by auditory regions (HG, pSTG), rather than

being driven by the frontal lobe, an interpretation that is supported by previous work (Alho et al.,

2014; Gow and Olson, 2016; Osnes et al., 2011).

We also observed a non-trivial pattern of connectivity between the SFG and visual cortex. Here

the condition-specific pattern of connectivity was similar to the pattern of entrainment in the SFG,

suggesting that high-level inference processes or sentence-level integration of information in the

SFG contribute to the feed-back transmission of predictive information to visual cortex

(Vetter et al., 2014). For example, the increase of connectivity with decreasing SNR during the

visual non-informative condition could serve to minimize the influence of visual speech information

when this is in apparent conflict with the acoustic information in challenging environments

(Morı́s Fernández et al., 2015).

Across conditions behavioral performance was supported both by an enhancement of speech

representations along the ventral pathway as well as enhanced functional connectivity. This

enhanced functional connectivity emerged both along feed-forward and feed-back directions

between temporal and inferior frontal regions, and was strongest (in effect size) along the feed-back

route. This underlines the hypothesis that recurrent processing, rather than a simple feed-forward

sweep, is central to speech intelligibility (Bornkessel-Schlesewsky et al., 2015; Hickok, 2012; Poep-

pel, 2014). Central to the scope of the present study, however, we found that no single region-spe-

cific effect could explain the visual behavioral benefit. Rather, the benefit arising from seeing the

speakers face was significantly correlated with the enhancement of recurrent functional connectivity

along the ventral stream (HG fi IFG fi pSTG). Our results hence point to a distributed origin of the

visual enhancement of speech intelligibility. As previously proposed (Besle et al., 2008;

Ghazanfar et al., 2005; Ghazanfar and Schroeder, 2006; Kayser et al., 2010; Zion Golumbic

et al., 2013a) this visual enhancement involves early auditory regions, but as we show here, also

relies on the recurrent transformation of speech representations between temporal and frontal

regions.
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A lack of evidence for lateralized representations
While the effects of experimental conditions on speech MI dominated in the right hemisphere we

found little evidence that these effects were indeed significantly stronger in one hemisphere. Indeed,

only the SNR effect in IFGop was significantly lateralized, while all other effects were comparable

between hemispheres. Hence care needs to be taken when interpreting our results as evidence for a

lateralization of speech encoding. At the same time we note that a potential right dominance of

speech entrainment is in agreement with the hypothesis that right temporal regions extract acoustic

information predominantly on the syllabic and prosodic time scales (Giraud and Poeppel, 2012;

Poeppel, 2003). Further, several studies have shown that the right hemisphere becomes particularly

involved in the representation of connected speech (Alexandrou et al., 2017; Bourguignon et al.,

2013; Fonteneau et al., 2015; Horowitz-Kraus et al., 2015), and one previous study directly dem-

onstrated the prevalence of speech-to-brain entrainment in delta and theta bands in the right hemi-

sphere during continuous listening (Gross et al., 2013). This makes it little surprising that the right

hemisphere becomes strongly involved in representing continuous multisensory speech. Further-

more, we a bias towards the right hemisphere may in part also be a by-product of the use of entrain-

ment as a n index to characterize speech encoding, given that the signal power of acoustic and

visual speech is highest at low frequencies (c.f. Figure 1), and given that the right hemisphere sup-

posedly has a preference for speech information at long time scales (Giraud and Poeppel, 2012;

Poeppel, 2003).

The mechanistic underpinnings of audio-visual speech encoding
Speech perception relies on mechanisms related to predictive coding, in order to fill in acoustically

masked signals and to exploit temporal regularities and cross-modal redundancies to predict when

to expect what type of syllable or phoneme (Chandrasekaran et al., 2009; Peelle and Sommers,

2015; Tavano and Scharinger, 2015). Predictions modulate auditory evoked responses in an area

specific manner, involve both the ventral and dorsal pathways (Kandylaki et al., 2016; Sohoglu and

Chait, 2016), and affect both feedforward and feedback connections (Auksztulewicz and Friston,

2016; Chennu et al., 2016). While an informative visual context facilitates the correction of predic-

tions about expected speech using incoming multisensory evidence, we can only speculate about a

direct link between the reported effects and predictive processes. Previous studies have implied

delta band activity and the dorsal auditory stream in mediating temporal predictions (Arnal and Gir-

aud, 2012; Arnal et al., 2011; Kandylaki et al., 2016). Hence, the changes in delta speech entrain-

ment across conditions seen here may well reflect changes related to the prevision of temporal

predictions.

Several computational candidate mechanisms have been proposed for how multisensory informa-

tion could be integrated at the level of neural populations (Ohshiro et al., 2011; Pouget et al.,

2002; van Atteveldt et al., 2014). The focus on rhythmic activity in the present study lends itself to

suggest a key role of the phase resetting of oscillatory process, as proposed previously

(Schroeder et al., 2008; Thorne and Debener, 2014; van Atteveldt et al., 2014). However, given

the indirect nature of the neuroimaging signals the present study can’t rule in or out the involvement

of specific neural processes.

Conclusion
Our results provide a network view on the dynamic speech representations in multisensory environ-

ments. While premotor and superior frontal regions are specifically engaged in the most challenging

environments, the visual enhancement of comprehension at intermediate SNRs seems to be medi-

ated by interactions within the core speech network along the ventral pathway. Such a distributed

neural origin of multisensory benefits is in line with the notion of a hierarchical organization of multi-

sensory processing, and the idea that comprehension is shaped by network connectivity more than

the engagement of particular brain regions.

Materials and methods
Nineteen right handed healthy adults (10 females; age from 18 to 37) participated in this study. Sub-

ject sample size was based on previous MEG/EEG studies that contrasted speech MI derived from
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rhythmic brain activity between conditions (19 and 22 participants in [Gross et al., 2013; Park et al.,

2016], respectively). All participants were tested for normal hearing, were briefed about the nature

and goal of this study, and received financial compensation for their participation. The study was

conducted in accordance with the Declaration of Helsinki and was approved by the local ethics com-

mittee (College of Science and Engineering, University of Glasgow). Written informed consent was

obtained from all participants.

Stimulus material
The stimulus material consisted of audio-visual recordings based on text transcripts taken from pub-

licly available TED talks also used in a previous study (Kayser et al., 2015) (Figure 1A; see also

[Park et al., 2016]). Acoustic (44.1 kHz sampling rate) and video recordings (25 Hz frame rate, 1920

by 1080 pixels) were obtained while a trained male native English speaker narrated these texts. The

root mean square (RMS) intensity of each audio recording was normalized using 6 s sliding windows

to ensure a constant average intensity. Across the eight texts the average speech rate was 160

words (range 138–177) per minute, and the syllabic rate was 212 syllables (range 192–226) per

minute.

Experimental design and stimulus presentation
We presented each of the eight texts as continuous 6 min sample, while manipulating the acoustic

quality and the visual relevance in a block design within each text (Figure 1B). The visual relevance

was manipulated by either presenting the video matching the respective speech (visual informative,

VI) or presenting a 3 s babble sequence that was repeated continuously (visual not informative, VN),

and which started and ended with the mouth closed to avoid transients. The signal to noise ratio

(SNR) of the acoustic speech was manipulated by presenting the speech on background cacophony

of natural sounds and scaling the relative intensity of the speech while keeping the intensity of the

background fixed. We used relative SNR values of +8, +6, +4 and +2 dB RMS intensity levels. The

acoustic background consisted of a cacophony of naturalistic sounds, created by randomly superim-

posing various naturalistic sounds from a larger database (using about 40 sounds at each moment in

time) (Kayser et al., 2016). This resulted in a total of 8 conditions (four SNR levels; visual informative

or irrelevant) that were introduced in a block design (Figure 1B). The SNR changed from minute to

minute in a pseudo-random manner (12 one minute blocks per SNR level). Visual relevance was

manipulated within 3 min sub-blocks. Texts were presented with self-paced pauses. The stimulus

presentation was controlled using the Psychophysics toolbox in Matlab (Brainard, 1997). Acoustic

stimuli were presented using an Etymotic ER-30 tubephone (tube length = 4 m) at 44.1 kHz sampling

rate and an average intensity of 65 dB RMS level, calibrated separately for each ear. Visual stimuli

were presented in grey-scale and projected onto a translucent screen at 1280 � 720 pixels at 25 fps

covering a field of view of 25 � 19 degrees.

Subjects performed a delayed comprehension tasks after each block, whereby they had to indi-

cate whether a specific word (noun) was mentioned in the previous text (six words per text) or not

(six words per text) in a two alternative forced choice task. The words chosen from the presented

text were randomly selected and covered all eight conditions. The average performance across all

trials was 73 ± 2% correct (mean and SEM across subjects), showing that subjects indeed paid atten-

tion to the stimulus. Behavioral performance for the words contained in the presented text was aver-

aged within each condition, and analyzed using a repeated measures ANOVA, with SNR and VIVN

as within-subject factors. By experimental design, the false alarm rate, i.e. the number of mistaken

recognitions of words that were not part of the stimulus, was constant across experimental condi-

tions. As a consequence, condition-specific d’ measures of word recall were strongly correlated with

condition-specific word-recall performance (mean correlation and SEM across subjects = 0.97 ± 0.06;

T(18) for significant group-average Fisher-Z transformed correlation = 32.57, p<0.001).

Pre-processing of speech envelope and lip movements
We extracted the envelope of the speech signal (not the speech plus background mixture) by com-

puting the wide-band envelope at 150 Hz temporal resolution as in previous work

(Chandrasekaran et al., 2009; Kayser et al., 2015). The speech signal was filtered (fourth order

Butterworth filter; forward and reverse) into six frequency bands (100 Hz - 4 kHz) spaced to cover
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equal widths on the cochlear map. The wide-band envelope was defined as the average of the Hil-

bert envelopes of these band-limited signals (Figure 1A). The temporal trajectory of the lip contour

was extracted by first identifying the lips based on their hue and then detecting the area of mouth-

opening between the lips (Park et al., 2016). For each video frame, the mouth aperture was subse-

quently estimated as the area covered by an ellipsoid fit to the detected lip contours, which was

then resampled to 150 Hz for further analysis (Figure 1A). We estimated the coherence between the

speech envelope and lip contour using spectral analysis (Figure 1A).

MEG data collection
MEG recordings were acquired with a 248-magnetometers whole-head MEG system (MAGNES

3600 WH, 4-D Neuroimaging) at a sampling rate of 1017.25 Hz. Participants were seated upright.

The position of five coils, marking fiducial landmarks on the head of the participants, was acquired

at the beginning and at the end of each block. Across blocks, and participants, the maximum change

in their position was 3.6 mm, on average (STD = 1.2 mm).

MEG pre-processing
Analyses were carried out in Matlab using the Fieldtrip toolbox (Oostenveld et al., 2011), SPM12,

and code for the computation of information-theoretic measures (Ince et al., 2017). Block-specific

data were pre-processed separately. Infrequent SQUID jumps (observed in 1.5% of the channels, on

average) were repaired using piecewise cubic polynomial interpolation. Environmental magnetic

noise was removed using regression based on principal components of reference channels. Both the

MEG and reference data were filtered using a forward-reverse 70 Hz FIR low-pass (�40 dB at 72.5

Hz); a 0.2 Hz elliptic high-pass (�40 dB at 0.1 Hz); and a 50 Hz FIR notch filter (�40 dB at 50 ± 1 Hz).

Across participants and blocks, 7 MEG channels were discarded as they exhibited a frequency spec-

trum deviating consistently from the median spectrum (shared variance <25%). For analysis signals

were resampled to 150 Hz and once more high-pass filtered at 0.2 Hz (forward-reverse elliptic filter).

ECG and EOG artefacts were subsequently removed using ICA in fieldtrip (runica, 40 principal com-

ponents), and were identified based on the time course and topography of IC components

(Hipp and Siegel, 2013).

Structural data and source localization
High resolution anatomical MRI scans were acquired for each participant (voxel size = 1 mm3) and

co-registered to the MEG data using a semi-automated procedure. Anatomicals were segmented

into grey and white matter and cerebro-spinal fluid (Ashburner and Friston, 2005). The parameters

for the affine registration of the anatomical to the MNI template were estimated, and used to nor-

malize the grey matter probability maps of each individual to the MNI space. A group MNI source-

projection grid with a resolution of 3 mm was prepared including only voxels associated with a

group-average grey-matter probability of at least 0.25. The projection grid excluded various subcor-

tical structures, identified using the AAL atlas (e.g., vermis, caudate, putamen and the cerebellum).

Leadfields were computed based on a single shell conductor model. Time-domain projections were

obtained on a block-by-block basis using LCMV spatial filters (regularization = 5%). A different

LCMV filter was used for each frequency band by computing the sensor covariance for the band-

pass filtered sensor signals. Further analyses focused on the maximum-variance orientation of each

dipole.

Analysis of speech and lip to brain entrainment
Motivated by previous work (Gross et al., 2013; Ng et al., 2013), we considered eight partly over-

lapping frequency bands (0.25–1 Hz, 1–4 Hz, 4–8 Hz, 8–12 Hz, 12–18 Hz, 18–24 Hz, 24–36 Hz, and

30–48 Hz), and isolated these from the full-spectrum MEG signals, the speech envelope and the lip

trajectory in each band using a forward-reverse fourth order Butterworth filter (magnitude of fre-

quency response at band limits = �6 dB). Entrainment was quantified using the mutual information

(MI) between the filtered MEG and speech envelope or lip time courses:

MI speech¼MIðMEG; speechÞ and MI lip¼MIðMEG; lipÞ (1)
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The MI was calculated using a bin-less approach based on statistical copulas, which provides

greater sensitivity than methods based on binned signals (Ince et al., 2017).

To quantify the entrainment of brain activity to the speech envelope / lip movement we first

determined the optimal time lag between MEG signals and the stimulus for individual bands and

source voxels using a permutation-based RFX estimate. Lag estimates were obtained based on a

quadratic fit, excluding lags with insignificant MI (permutation-based FDR = 0.01). Voxels without an

estimate were assigned the median estimate within the same frequency band, and volumetric maps

of the optimal lags were smoothed with a Gaussian (FWHM = 10 mm). Speech / lip MI were then

estimated for each band and voxel using the optimal lag. The significance of group-level MI values

was assessed within a permutation-based RFX framework that relied on MI values corrected for bias

at the single-subject level, and on cluster mass enhancement of the test statistics corrected for multi-

ple comparisons at the second level (Maris and Oostenveld, 2007). At the single-subject level, null

distributions were obtained by shuffling the assignment of stimulus and MEG, independently for

each participant, that is, by permuting the six speech segments within each of the eight experimen-

tal conditions (using the same permutation across bands). Participant-specific bias-corrected MI val-

ues were then defined as the actual MI minus the median MI across all 720 possible null

permutations. Group-level RFX testing relied on T-statistics for the null-hypothesis that the partici-

pant-averaged bias-corrected MI was significantly larger than zero. To this end we generated 10,000

samples of the group-averaged MI from the participant-specific null distributions, used cluster-mass

enhancement across voxels and frequencies (cluster-forming threshold T(18) = 2.1) to extract the

maximum cluster T across frequency bands and voxels, and considered as significant a cluster-

enhanced T statistic higher than the 95th percentile of the permutation distribution (corresponding

to FWE = 0.05). Significant speech MI was determined across all conditions, whereas significant lip

MI was derived only for the VI condition.

To determine whether and where speech / lip entrainment was modulated by the experimental

factors we used a permutation-based RFX GLM framework (Winkler et al., 2014). For each partici-

pant individually we considered the condition-specific bias-corrected MI averaged across repetitions

and estimated the coefficients of a GLM for predicting MI based on SNR (2, 4, 6, 8 dB), VIVN (1 =

Visual Informative; �1 = Visual Not informative), and their interaction; for lip MI we only considered

the SNR effect in the VI condition. We computed a group-level T-statistic for assessing the hypothe-

sis that the across-participant average GLM coefficient was significantly different than zero, using

cluster-mass enhancement across voxels and frequencies. Permutation testing relied on the Freed-

man-Lane procedure (Freedman and Lane, 1983). Independently for each participant and GLM

effect, we estimated the parameters of a reduced GLM that includes all of the effects but the one to

be tested and extracted the residuals of the prediction. We then permuted the condition-specific

residuals and extracted the GLM coefficient for the effect of interest estimated for these reshuffled

residuals. We obtained a permutation T statistic for the group-average GLM coefficient of interest

using the max-statistics. We considered as significant T values whose absolute value was higher than

the 95th percentile of the absolute value of 10,000 permutation samples, correcting for multiple

comparisons across voxels / bands (FWE = 0.05). We only considered significant GLM effects in con-

junction with a significant condition-average entrainment.

Analysis of directed functional connectivity
To quantify directed functional connectivity we relied on the concept of Wiener-Granger causality

and its information theoretic implementation known as Transfer Entropy or directed information (DI)

(Massey, 1990; Schreiber, 2000; Vicente et al., 2011; Wibral et al., 2011). Directed information in

its original formulation (Massey, 1990) (termed DI* here) quantifies causal connectivity by measuring

the degree to which the past of a seed predicts the future of a target signal, conditional on the past

of the target, defined at a specific lag (tBrain):

DI* tBrainð Þ ¼ I Targett ;Seedt�tjTargett�tð Þ (2)

While DI* provides a measure of the overall directed influence from seed to target, it can be sus-

ceptible to statistical biases arising from limited sampling, common inputs or signal auto-correlations

(Besserve et al., 2015, 2010; Ince et al., 2017; Panzeri et al., 2007). We regularized and made this

measure more conservative by subtracting out values of DI computed at fixed values of speech
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envelope. This subtraction removes terms – including the statistical biases described above – that

cannot possibly carry speech information (because they are computed at fixed speech envelope).

This results in an estimate that is more robust and more directly related to changes in the sensory

input than classical transfer entropy (the same measure was termed directed feature information in

[Ince et al., 2017, Ince et al., 2015]). DI was defined here as

DI tBrain;tSpeech
� �

¼DI* tBrainð Þ�DI* tBrainð ÞjSpeechðtSpeechÞ (3)

where DI*|Speech denotes the DI* conditioned on the speech envelope. Positive values of DI indicate

directed functional connectivity between seed and target at a specific brain (tBrain) and speech lag

(tSpeech). The actual DI values were furthermore Z-scored against random effects for added robust-

ness, which facilitates statistical comparisons between conditions across subjects (Besserve et al.,

2015). To this end DI, as estimated for each participant and connection from Equation 3, was

Z-scored against the distribution of DI values obtained from condition-shuffled estimates (using the

same randomization procedure as for MI). DI was computed for speech lags between 0 and 500 ms

and brain lags between 0 and 250 ms, at steps of one sample (1/150 Hz). We estimated DI on the

frequency range of 0.25–8 Hz (forward-reverse fourth order Butterworth filter), which spans all the

frequencies relevant for the condition effects on speech MI (Figure 3). The use of a single frequency

band for the connectivity analysis greatly reduced the computational burden and statistical testing

compared to the use of multiple bands, while the use of a larger bandwidth here also allowed for

greater robustness of underlying estimators (Besserve et al., 2010). Furthermore, we computed DI

by considering the bivariate MEG response defined by the band-passed source signal and its first-

order difference, as this offers additional statistical robustness (Ince et al., 2017, 2016). Seeds for

the DI analysis were the global and local peaks of the GLM-T maps quantifying the SNR, VIVN and

SNRxVIVN modulation of entrainment, and the SFG-R voxel characterized by the peak negative

effect of SNR in the visual informative condition, for a total of 8 seeds (Table 1 and Figure 3E). To

test for the significance of condition-average DI we used the same permutation-based RFX approach

as for speech MI, testing the hypothesis that bias-corrected DI > 0. We used 2D cluster-mass

enhancement of the T statistics within speech/brain lag dimensions correcting for multiple compari-

sons across speech and brain lags (FWE = 0.05). To test for significant DI effects with experimental

conditions we relied on the same GLM strategy as for MI effects, again with the same differences

pertaining to cluster enhancement and comparison correction (FWE = 0.05 across lags and seed/tar-

get pairs). We only considered DI modulations in conjunction with a significant condition-average DI.

Neuro-behavioral correlations
We used a permutation-based RFX approach to assess (1) whether an increase in condition-specific

speech-MI or DI was associated with an increase in behavioral performance, and (2) whether the

visual enhancement (VI-VN) of speech MI or DI was associated with stronger behavioral gains. We

focused on the eight regions used as seeds for the DI analysis (c.f. Figure 3E). For speech MI we ini-

tially tested whether the participant-average Fisher Z-transformed correlation between condition-

specific performance and speech-MI was significantly larger than zero. Uncorrected p-values were

computed using the percentile method, where FWE = 0.05 p-values corrected across regions were

computed using maximum statistics. We subsequently tested the positive correlation between SNR-

specific visual gains (VI-VN) in speech-MI and behavioral performance using the same approach, but

considered only those regions characterized by a significant condition-specific MI/performance asso-

ciation. For DI, we focused on those lags characterized by a significant SNR, VIVN, or SNRxVIVN DI

modulation. Significance testing proceeded as for speech MI, except that Z-transformed correlations

were computed independently for each lag and then averaged across lags (FWE = 0.05 corrected

across all seed/target pairs).

Analysis of the lateralization of entrainment and entrainment
modulation effects
We tested for a significant lateralization of the GLM effects on speech MI reported in Figure 3. To

this end we extracted participant specific GLM betas for each effect in the respective ROI and band.

We then extracted the same GLM coefficient for the contralateral voxel and computed the between-

hemispheric difference. This was tested for significance using a two-sided RFX test based on a sign-
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permutation of the across-participant T value (10,000 permutations), with maximum-statistic multiple

comparison correction across ROIs (FWE = 0.05; Table 1).

Decomposition of audio-visual information
To test whether the condition modulation of speech MI could be attributed to a co-representation

of visual lip information in the same ROI we calculated the conditional information between the

MEG and the speech envelope, factoring out the encoding of temporal dynamics common to the

speech and lip signals. With MI_speech&lip defined as MI(MEG;speech,lip), the CMI was defined as

follows

CMI ðMEG; speechjlipÞ ¼MI speech&lip�MI lip (4)

where the first term on the right-hand side denotes the information carried by the local MEG signal

about both the acoustic and visual speech, and the second term the MI about only the visual speech.

The respective CMI values were then tested for significant condition effects (Table 2).

To further test whether the local representations of acoustic and visual speech in each ROI were

independent or possibly strongly redundant (hence capturing the same aspect of sensory informa-

tion), we computed a measure of normalized information theoretic redundancy during the VI condi-

tion as follows (Belitski et al., 2010; Pola et al., 2003; et al., 2003):

Red¼ ðMI speechþMI lip�MI speech&lipÞ=ðMI speechþMI lipÞ � 100 (5)

This expresses redundancy as percentage of the total information that there would be in its

absence of any redundancy. For these analysis both speech and lip signals were extracted at their

respective optimal lag for each ROI/band and a common segment to each stimulus and the MEG

activity was used for the calculation (segment duration = 60 s – 320 ms). Statistical tests contrasting

condition-averaged information terms relied on the same RFX permutation framework and correc-

tion across all relevant dimensions as in all other analyses (FWE = 0.05). We compared condition-

averaged MI_speech with MI_lip values using a two-sided test, contrasted condition-averaged

redundancy values with their statistical bias (null-distribution), and tested for condition effects (GLM)

on the CMI values.

Analysis of condition effects on MEG signal amplitude
The amplitude within specific bands was defined as the absolute value of the instantaneous Hilbert-

transformed band-pass MEG signal beamformed to each of the ROIs (c.f. Figure 3E). For each par-

ticipant and experimental condition, we averaged the amplitude of the MEG time courses across

time and repetitions of the same condition. Significance testing of condition changes in amplitude

relied on the same RFX permutation-based approach as for the other modulation analyses, with

maximum statistic multiple comparisons correction across ROIs and frequency bands (FWE = 0.05).

Analysis of phase-amplitude couplings
We computed a measure of phase-amplitude coupling (PAC) between the oscillatory activity in dif-

ferent bands and regions. PAC was defined as

PAC¼
X

N

t¼1

AFH * ei�FL=N (6)

where AFH and qFL denote the instantaneous Hilbert amplitude and phase angle of the high- and

low-frequency MEG pass-band signal, respectively, and N is the number of time samples of the

pass-band MEG signal in a specific condition. Low-frequency phase was extracted for the 0.25–1, 1–

4, and 4–8 Hz bands. High-frequency amplitude was extracted for the 8–12, 12–18, 18–24, 24–36

and 30–48 Hz bands. We tested for both a significant condition-average PAC and for a significant

modulation of PAC with conditions. Significance testing relied on the same RFX permutation-based

approach as for the other modulation analyses, with maximum statistic correction for multiple com-

parisons across pairs of phase/power frequency pairs for the significance of condition averaged

PAC, and also across pairs of phase/power ROIs for the GLM modulation (FWE = 0.05).
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Data sharing
The data analyzed for the ROI results presented in Figures 2–5,in the figure supplements and in

Tables 1–5, as well as the speech and lip time courses analyzed in Figure 1, have been deposited

on Dryad (doi:10.5061/dryad.j4567).
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Bourguignon M, De Tiège X, de Beeck MO, Ligot N, Paquier P, Van Bogaert P, Goldman S, Hari R, Jousmäki V.
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