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This paper addresses, from both theoretical and numerical standpoints, the problem of optimal control of hyperelastic materials characterised by means of polyconvex stored energy functionals. Specifically, inspired by A. Günnel and R. Herzog, Optimal control problems in finite strain elasticity by inner pressure and fiber tension. Front. Appl. Math. Stat., 2(4), 2016, a bio-inspired type of external action or control, which resembles the electro-activation mechanism of the human heart, is considered in this paper. The main contribution resides in the consideration of alternative tracking-type cost functionals to those generally used in this field, where the L 2 norm of the distance to a given target displacement field is the preferred option. Alternatively, the Hausdorff metric is, for the first time, explored in the context of optimal control in hyperelasticity. The existence of a solution for a regularised version of the optimal control problem is proved. A gradient-based method, which makes use of the concept of shape derivative, is proposed as a numerical resolution method. A series of numerical examples are included illustrating the viability and applicability of the Hausdorff metric in this new context. Furthermore, although not pursued in this paper, it must be emphasised that in contrast to L 2 norm tracking-cost functional types, the Hausdorff metric permits the use of potentially very different computational domains for both the target and the actuated soft continuum.

1. Introduction. Since the early 1940s, the field of soft robotics has embarked in an exciting journey exploring the creation of machines with biomimetic dexterous features superseding the capabilities of humans. It is believed that this new paradigm in the broader field of robotics will pave the way for a smooth but relentless transition from current conventional hard robotics. The latter emerged in the first half of the 20th century and since then, we have witnessed an outstanding technological revolution in industrial automation, autonomous vehicles, etc., where typically heavy machines incorporating hydraulics, motors, etc. are required [START_REF] Majidi | Soft-matter engineering for soft robotics[END_REF].

Hard robots perform extraordinarily well for the specific tasks that they have been purposely designed for. Furthermore, their positioning and controllability are extremely precise, since their movements are based on rigid body motions (hence exhibiting negligible deformations). The obvious question that arises is: if the performance of these materials is so exceptional, why does it urge to pursue a completely opposite robotic paradigm? Not to mention that soft robots are made out of highly deformable materials such as elastomers, fluids and other soft matter, entailing a much higher degree of complexity in their controllability. The answer to this question dissipates any source of reluctance and it lies on their programability for a wider range of tasks and their adaptability to rapidly changing conditions while performing these tasks [START_REF] Majidi | Soft-matter engineering for soft robotics[END_REF].

As stated in the previous paragraph, the controllability of soft robots, potentially actuated by means of a wide spectrum of complex external stimuli (electric or magnetic field, mechanical pressure, osmotic pressure, etc.) is not a trivial task. Fostered by [START_REF] Günnel | Optimal control problems in finite strain elasticity by inner pressure and fiber tension[END_REF], in this paper we address from a mathematical and numerical standpoints the problem of optimal control of hyperelastic materials. Specifically, we consider a bioinspired type of external action (denoted as control in the sequel) on the soft material.

As will be shown in this paper, this action or control resembles the electro-activation mechanism of the human heart, namely, the underlying driving force that enables the contraction of the myocardium.

Besides the cited work [START_REF] Günnel | Optimal control problems in finite strain elasticity by inner pressure and fiber tension[END_REF], the literature on optimal control of hyperelastic materials adopting a rigorous mathematical prism is relatively scarce. In these works, it is well-accepted to consider polyconvex strain energy functionals [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Fig. 9. Torsion actuator. Rendering of the evolution of the domain Ω for various optimisation iterations. The last configuration corresponds to iteration 172. The transparent domain represents Ω d[END_REF]7,[START_REF]Variational methods in nonlinear elasticity[END_REF] defining the constitutive model of the soft material. Ball proved in his seminal paper [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Fig. 9. Torsion actuator. Rendering of the evolution of the domain Ω for various optimisation iterations. The last configuration corresponds to iteration 172. The transparent domain represents Ω d[END_REF] that polyconvexity and coercivity of the strain energy density entails the existence of minimisers of the total energy of the hyperelastic material. Examples of isotropic polyconvex strain energy functions are the Odgen model, the Neo-Hookean model, the Mooney-Rivlin model, etc. Polyconvex strain energy functions for all the material symmetry classes have been proposed by Schröder et al. [START_REF] Ebbing | Approximation of anisotropic elasticity tensors at the reference state with polyconvex energies[END_REF][START_REF] Schröder | Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions[END_REF].

In addition to the constitutive model, another aspect of paramount importance in the field of optimal control of soft materials is the choice of the tracking-type cost functional (or objective function) to be minimised. In most of the existing literature [START_REF] Günnel | Optimal control problems in finite strain elasticity by inner pressure and fiber tension[END_REF][START_REF] Lubkoll | An optimal control problem in polyconvex hyperelasticity[END_REF][START_REF] Martínez-Frutos | Robust optimal control in hyperelasticity[END_REF], this corresponds to the L 2 norm of the distance to a given target displacement field. One of the disadvantages of this type of cost functionals is that it requires a very similar computational domain (same number of nodes and elements) for both the target domain and the soft continuum over which the control is applied.

Alternatively, tracking-type cost functionals based on distance functions which permit to analyze the similarities between two sets (or shapes) have been previously used in the context of image analysis [START_REF] Charpiat | Approximations of shape metrics and application to shape warping and empirical shape statistics[END_REF]. Specifically, the authors in [START_REF] Charpiat | Approximations of shape metrics and application to shape warping and empirical shape statistics[END_REF] consider the Hausdorff metric for the analysis of the problem of warping a shape onto another.

Inspired by these results, in this paper, we explore the Hausdorff metric, which permits the use of potentially very different computational domains for both the target and the actuated soft continuum. In addition, in the kind of problems under consideration, the aim is to transform the given body into a prescribed one, regardless of which particular deformation realises that transformation. Therefore, functionals comparing two shapes (rather than two deformations) suit better the problems dealt with in this paper.

The outline of the paper is as follows. Section 2 presents the notion of polyconvex hyperelasticity, and introduces the type of bio-inspired control considered in this work. It also presents the strong form of the PDE governing the behaviour of a soft material subjected to the specific type of control considered hereby. The optimal control problem is formulated in Section 3. Existence of optimal controls is proved in Section 4. Details on the numerical resolution method are provided in Section 5 and numerical simulation results are presented and discussed in Section 6. Finally, Section 7 includes some concluding remarks.

Nonlinear continuum mechanics.
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Kinematics and polyconvexity.

Let Ω 0 ⊂ R N , N = 2, 3, be an open, bounded and connected domain which represents the reference (or undeformed) configuration of an elastic body. The deformation of the body Ω 0 is defined through the mapping Φ : Ω 0 → R N , which is assumed to be sufficiently smooth, injective and orientation preserving. The mapping Φ links a material particle X ∈ Ω 0 to a particle x ∈ Ω according to x = Φ (X) and Ω = Φ(Ω 0 ) (see Figure 1). Associated with the mapping Φ, the deformation tensor F is defined as

F : Ω 0 → R N ×N , F = ∇ 0 Φ(X),
where ∇ 0 (•) is the material gradient operator with respect to X ∈ Ω 0 . Associated with F , its co-factor H and its Jacobian J are defined as

H = (det F ) F -T ; J = det F .
The orientation-preserving condition is written as J (X) > 0 a.e. X ∈ Ω 0 .

In nonlinear elasticity, the constitutive information is encapsulated in the stored energy density e = e(F ) : Ω 0 → R. In this paper, we consider strain energy functions of the form

(2.1) e(F ) = W (F , H, J),
with W a convex multi-variable function with respect to the {F , H, J} variables. In other words, we consider stored energy functions which are polyconvex [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Fig. 9. Torsion actuator. Rendering of the evolution of the domain Ω for various optimisation iterations. The last configuration corresponds to iteration 172. The transparent domain represents Ω d[END_REF]. In addition, we require the strain energy function e(F ) to satisfy the coercivity inequality

(2.2) W (F , H, J) ≥ α( F 2 + H 2 + J 2 ) + β, α > 0.
A general class of materials which complies with both conditions in (2.1) and

(2.2) is that of (generalized) Mooney-Rivlin materials, whose stored energy density takes the form

(2.3) W (F , H, J) = a F 2 + b H 2 + c (J -1) 2 -2(a + 2b) log(J) -3(a + b),
where • is the Frobenius norm induced by the inner product A : B := tr A T B of matrices A, B ∈ R N ×N . Crucially, the model parameters {a, b, c} must be positive.

The final additive constant -3(a + b) normalizes the energy so that it equals zero at the identity in dimension 3.
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We assume that the boundary Γ 0 of Ω 0 is smooth and is decomposed into two (also smooth) disjoint parts: Γ 0 D and Γ 0 N . On the Dirichlet boundary Γ 0 D , it is imposed Φ = Φ 0 for a given deformation Φ 0 : Ω 0 → R N , while on Γ 0 N we impose a stress-free boundary condition. The regularity imposed on Φ 0 will be described later.

We let

V D := Φ ∈ H 1 (Ω 0 ; R N ) : Φ = Φ 0 on Γ 0 D .
2.2. Bio-inspired fiber tension control. In this work, we consider the action of a bio-inspired control on the continuum Ω 0 , introduced for the first time in the context of optimal control of hyperelastic materials in [START_REF] Günnel | Optimal control problems in finite strain elasticity by inner pressure and fiber tension[END_REF]. Specifically, the control exerts an inner fiber tension m(X) along a unitary direction a(X), i.e.,

a = a(X) : Ω 0 → R N , m = m(X) : Ω 0 → R,
with a(X) = 1. The action of the tension m(X) along the fiber a(X) can be incorporated phenomenologically by adding an extra energetic contribution to the strain energy density W in (2.3), named hereby as W m . The total strain energy density, denoted as W fiber is defined as (2.4)

W fiber (F , H(F ), J(F ), m) = W (F , H(F ), J(F )) + W m (m(X), a(X), F ); W m (m(X), a(X), F ) = - 1 2 m(X) F a(X) 2 ,
There are relevant examples in nature where this type of actuation is harnessed as a means to achieve a desired motion, such as the complex electro-activation of the human heart. The latter represents the underlying mechanism responsible for the coupling between the mechanical physics with the transmembrane potential propagating through the myocardium of the heart, and is mathematically modelled as in equation

(2.4) [START_REF] García-Blanco | Towards an efficient computational strategy for electro-activation in cardiac mechanics[END_REF][START_REF] García-Blanco | A new computational framework for electro-activation in cardiac mechanics[END_REF]. In this specific case, the energy W (F , H(F ), J(F )) corresponds with the purely mechanical or passive response of the myocardium, whereas the second term, namely W m (m(X), a(X), F ) corresponds with the coupling component, in which m represents the active cardiomyocite contraction stress responsible for the deformation of the heart tissue and a plays the role of the principal fiber f 0 in the myocardium (see Figure 2).

Equilibrium configurations associated with the density W fiber are minimizers of the total energy functional

(2.5) Π (Φ, m) := Ω0 W fiber (F , H(F ), J(F ), m) dX.
The set where the deformation Φ lies is

(2.6) U := Φ ∈ V D : Φ is injective a.e. and Ω0 W (F , H(F ), J(F )) dX < ∞ .
The requirement that Φ is injective a.e. means that the restriction of Φ to a subset of Ω 0 of full measure is injective, and is a natural non-interpenetration condition in hyperelasticity [START_REF] Müller | An existence theory for nonlinear elasticity that allows for cavita-tion[END_REF][START_REF] Henao | Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity[END_REF][START_REF] Henao | Fracture surfaces and the regularity of inverses for BV deformations[END_REF]. The fact that the integral in (2.6) is finite implies, thanks to (2.3), that H ∈ L 2 (Ω 0 , R N ×N ), J ∈ L 2 (Ω 0 ) and J > 0 a.e. We naturally assume that U is not empty, which essentially amounts to a regularity property of Φ 0 .

Let us prove the existence of such equilibrium configurations.
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2.1. If m ∈ L 2 (Ω 0 ) and (2.7) sup X∈Ω0 m(X) < 2a,
a being the first parameter in (2.3), then W fiber is polyconvex and coercive; therefore, there exists a minimizer Φ of the functional (2.5) over the class U.

Proof. According to [7, Th. 7.7-1], we must prove that W fiber , as given by (2.4), is polyconvex and coercive. It is indeed polyconvex because so is

W (F ) -a F 2 in (2.
3), and the function

G(F ) := a F 2 - 1 2 m (X) F a(X) 2
is convex. This convexity can easily be checked if we realize that G is quadratic, and for quadratic forms, convexity is equivalent to positivity. The assumption on m implies that there exists K > 0 such that K ≤ 2a -m(X) and K ≤ 2a. Therefore,

(2.8) G(F ) ≥ K F 2 .
Thus, G is convex. The coercivity of W fiber is a consequence of that of W (see [7, Th.

4.10-2]) and inequality (2.8).

Consequently, using the fact that U is not empty, the set of Φ ∈ U such that Π (Φ, m) < ∞ is also not empty. The existence of a minimizer follows.

The stationary point of the functional Π of (2.5) yields (2.9)

∂Π ∂Φ (Φ, m)(v) = Ω0 P (F , m) : ∇ 0 v dX = 0; P (F , m) = ∇ F W fiber (F ) = ∇ F W (F ) -mF a ⊗ a,
where

P : Ω 0 × R → R N ×N represents the first Piola-Kirchhoff stress tensor. Finally,
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an integration by parts in equation (2.9) leads to

DIV (P (F , m)) = 0; in Ω 0 ; (P (F , m)) N = 0; on Γ 0 N ; Φ = Φ 0 ; on Γ 0 D ,
where DIV(•) is the material divergence operator and N denotes the outward normal vector to Γ 0 in the reference configuration.

Here is the issue of the potential non-uniqueness of solutions for (2.9). It is true that every minimizer in (2.5) will be a solution of (2.9), but neither uniqueness of minimizers of (2.5) is guaranteed nor possible solutions of (2.9) that are not minimizers of (2.5). From an analytical point of view, we resolve this issue by considering, for each feasible m, all possible minimizers of (2.5). However, from the point of view of the numerical approximation, one has to work with (2.9), and non-uniqueness can be a real difficulty. It is nonetheless true that our simulations of Section 6 have not shown any particular difficulty in this regard.

3. Setting of the control problem. From now on in this paper, Ω (m) := Φ (Ω 0 ) denotes the deformation of the initial configuration Ω 0 through the mapping Φ, a minimizer of (2.5) for the tension field m. The set Ω d stands for a desired target domain, which is assumed to be measurable and bounded.

A Hausdorff distance-based cost functional.

The following trackingtype cost functional is considered

J (m) = ρ H (Ω(m), Ω d ) ,
where

(3.1) ρ H (Ω(m), Ω d ) := max sup x∈Ω d d Ω(m) (x) , sup x∈Ω(m) d Ω d (x)
is the Hausdorff distance between the sets Ω(m) and Ω d , and, for

x ∈ R N , (3.2) d Ω (x) := inf y∈Ω y -x is the usual distance function to a shape Ω ⊂ R N . Here, • denotes the Euclidean norm in R N .
Eventually, we consider, for a positive constant C, the optimal control problem

(3.3)      Minimize in m : J (m) subject to m ∈ L 2 (Ω 0 ), m(X) ≤ C a.e. X ∈ Ω 0 , Φ is a minimizer of (2.5) in U.
Although the Hausdorff distance is endowed with attractive compactness properties, its lack of differentiability prevents the use of gradient-based minimization algorithms for the numerical approximation of (3.3). Therefore, we advocate for a regularisation of the Hausdorff distance in (3.1), as in [START_REF] Charpiat | Approximations of shape metrics and application to shape warping and empirical shape statistics[END_REF].

This manuscript is for review purposes only. 3) is a critical case in dimension N = 3. In fact, most of the theory in hyperelasticity deals with stored energy functions with a coercivity of the form (2.2) but replacing F 2 with F p for some p > 2; as a matter of fact, H 2 can be replaced with H q for some q ≥ 3 2 and J 2 with J r with r > 1; see, e.g., [START_REF] Müller | On a new class of elastic deformations not allowing for cavitation[END_REF]. If the exponent p in F p were p > 2 then one could prove that Ω (m) coincides, up to a negligible set, with an open set (see [START_REF] Barchiesi | Local invertibility in Sobolev spaces with applications to nematic elastomers and magnetoelasticity[END_REF]Lemma 5.18]). Partial results for the case p = 2 are to be found in [START_REF] Henao | Lusin's condition and the distributional determinant for deformations with finite energy[END_REF][START_REF] Henao | Regularity of inverses of Sobolev deformations with finite surface energy[END_REF]. Nevertheless, at the level of numerical simulation we are not concerned with this, since automatically the computational image will be open and bounded.

Hereafter, we denote by

R + = {x ∈ R : x ≥ 0} and by R + * = {x ∈ R : x > 0}.
Following [START_REF] Charpiat | Approximations of shape metrics and application to shape warping and empirical shape statistics[END_REF], we consider a smooth approximation of the Hausdorff distance (3.1).

The goal is therefore to find smooth approximations of the inf, sup and max functions that appear in (3.1)-(3.2). The proposed approximations are based on the well-known fact that if Ω ⊂ R N is a bounded and (Lebesgue) measurable domain and

f ∈ C Ω , then lim p→+∞ 1 |Ω| Ω |f (x)| p dx 1/p = sup x∈Ω |f (x)|.
Thus, since the distance function

d Ω : R N → R + is Lipschitz continuous, (3.4) lim β→+∞ 1 |Ω d | Ω d d β Ω(m) (x) dx 1/β = sup x∈Ω d |d Ω(m) (x) |.
Now, let ϕ : R + → R + * be continuous and strictly decreasing. Then, it is clear that

sup y∈Ω(m) ϕ ( y -x ) = ϕ inf y∈Ω(m) y -x = ϕ d Ω(m) (x) .
Since ϕ -1 is also continuous and strictly decreasing,

(3.5) d Ω(m) (x) = lim α→+∞ ϕ -1   1 |Ω(m)| Ω(m) ϕ α ( y -x ) dy 1/α   .
An example of a function ϕ that satisfies the above conditions is, for a fixed ε > 0,

(3.6) ϕ : R + → ]0, 1/ε] t → ϕ(t) = 1 t+ε , ϕ -1 : ]0, 1/ε] → R + s → ϕ -1 (s) = 1 s -ε.
In fact, this instance (3.6) of function ϕ will be the one used in the numerical simulations. Finally, note that if a 1 , a 2 are positive, then

(3.7) max (a 1 , a 2 ) = lim γ→+∞ (a γ 1 + a γ 2 ) 1/γ .
In fact, the relevant inequalities for this limit are

max{a 1 , a 2 } ≤ (a γ 1 + a γ 2 ) 1/γ ≤ 2 1/γ max{a 1 , a 2 },
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so (a γ 1 + a γ 2 )

1/γ exceeds max{a 1 , a 2 }. As a consequence, we propose instead the approximation 2

-1 2γ (a γ 1 + a γ 2 ) 1/γ , which satisfies 2 -1 2γ max{a 1 , a 2 } ≤ 2 -1 2γ (a γ 1 + a γ 2 ) 1/γ ≤ 2 1 2γ max{a 1 , a 2 }.
We denote by y the independent variable of Ω d . From the limits in equations (3.4), (3.5) and (3.7), we introduce, for some α ≥ 1, the functions

I Ω(m) (y) = 1 |Ω(m)| Ω(m) ϕ α ( y -x ) dx 1/α , y ∈ Ω d I Ω d (x) = 1 |Ω d | Ω d ϕ α ( y -x ) dy 1/α , x ∈ Ω(m), (3.8) 
and propose

(3.9) dΩ(m) (y) = ϕ -1 I Ω(m) (y) , y ∈ Ω d ; dΩ d (x) = ϕ -1 (I Ω d (x)) , x ∈ Ω(m)
as approximations of d Ω(m) and d Ω d , respectively. For β > 0, the numbers 

dΩ d ,Ω(m) := 1 |Ω d | Ω d dβ Ω(m) (y) dy 1/β , dΩ(m),Ω d := 1 |Ω(m)| Ω(m) dβ Ω d (x) dx 1/β (3.
Ω(m),Ω d √ 2 1/γ
, is an approximation of ρ H (Ω (m) , Ω d ).

Let us see carefully that the above quantities are well defined. Proof. Denote by ϕ(∞) the limit of ϕ(t) as t → ∞. Since the image of ϕ is the interval ]ϕ(∞), ϕ(0)], we have that

ϕ(∞) α < 1 |Ω(m)| Ω(m) ϕ α ( y -x ) dx ≤ ϕ(0) α for each y ∈ Ω d , so ϕ(∞) < 1 |Ω(m)| Ω(m) ϕ α ( y -x ) dx 1/α ≤ ϕ(0).
In particular, the quantity

ϕ -1   1 |Ω(m)| Ω(m) ϕ α ( y -x ) dx 1/α  
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is well defined. On the other hand, since the function t → t 1/α is concave in [0, ∞), by Jensen's inequality,

1 |Ω(m)| Ω(m) ϕ α ( y -x ) dx 1/α ≥ 1 |Ω(m)| Ω(m) ϕ ( y -x ) dx.
Since ϕ -1 is decreasing, and dΩ(m) (y) is ϕ -1 applied to the left-hand side of the last inequality,

dΩ(m) (y) ≤ ϕ -1 1 |Ω(m)| Ω(m) ϕ ( y -x ) dx .
Now, since ϕ is convex and decreasing, ϕ -1 is convex too, and so again by Jensen's inequality,

ϕ -1 1 |Ω(m)| Ω(m) ϕ ( y -x ) dx ≤ 1 |Ω(m)| Ω(m) y -x dx.
Since Ω(m) and Ω d are bounded, we conclude that dΩ(m) is bounded. Similarly, dΩ d is bounded. As a consequence, the quantities dΩ d ,Ω(m) and dΩ(m),Ω d are finite, and, hence, so is ρH (Ω (m) , Ω d ).

For positive constants M and , let us consider the cost functional

(3.12) J (m) := ρH (Ω (m) , Ω d ) + M 2 Ω0 m 2 (X) dX + 2 Ω0 |∇ 0 m (X) | 2 dX.
and the optimal control problem (3.13)

     Minimize in m : J (m) subject to m ∈ H 1 (Ω 0 ), m(X) ≤ C a.e. X ∈ Ω 0 ,
Φ is a minimizer of (2.5) in U.

Remark 3.2. As is well known [START_REF] Casas | The influence of the Tikhonov term in optimal control of partial differential equations[END_REF], the Thikhonov term m 2 L 2 (Ω0) in (3.12) plays an important role both at the theoretical and numerical levels. As will be illustrated hereafter, a similar term in the gradient of m is required to prove the existence of a solution for problem (3.13).

4. Existence of optimal controls. This section is devoted to the proof of the existence of solutions for the optimal control problem (3.13). We first recall the change-of-variables formula that we will be using several times in the sequel. Note that it is made use of the facts that Φ is injective a.e. and orientation-preserving; moreover, a careful pointwise definition of Φ and Ω = Φ(Ω 0 ) is needed. 

Ω = Φ(Ω 0 ). Then, Ω ψ (x) dx = Ω0 ψ (Φ(X)) J(∇ 0 Φ(X)) dX.
Our main existence result is the following.

Theorem 4.2. Let a, C be the constants that occur in (2.3) and (3.13), respectively. If C < 2a, then there is an optimal tension field m(X) for problem (3.13).
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Proof. Let {m j } be a minimizing sequence. It is then clear that {m j } is bounded in H 1 (Ω 0 ). Thus, up to a subsequence (not relabelled), m j → m strong in L 2 (Ω 0 ).

Let {Φ j = Φ j (X)} be the sequence of states associated with {m j }. Consider the corresponding sequence of deformed configurations Ω j = Φ j (Ω 0 ) = Ω(m j ). Let us first prove that Φ j is bounded in H 1 (R n ) and that the weak limit Φ of a subsequence (not relabelled) of Φ j is the state associated with m, i.e., (Φ, m) minimizes (2.5).

Take any feasible Ψ ∈ U. Then (4.1) Π (Φ j , m j ) ≤ Π (Ψ, m j ) because Φ j is the minimizer of the functional (2.5) for m = m j . In particular, because of the uniform boundedness of {m j } in L 2 (Ω), the right-hand side in the preceding inequality is bounded by a constant independent of j. The coercivity of W fiber (Proposition 2.1) now implies that, possibly for a further subsequence not relabelled, there exists Φ ∈ H 1 Ω 0 ; R N with

F j F , H j H, J j J, in L 2 (Ω 0 ),
where F j := F (∇ 0 Φ j ), H j := H(∇ 0 Φ j ), J j := J(∇ 0 Φ j ) , and F , H and J are the ones associated with Φ. This is a consequence of the fine convergence properties of the null-Lagrangians as explained in [7, Th. 7.6-1]. In particular, since the weak lower semicontinuity of Π follows from the polyconvexity of W fiber , we obtain

(4.2) Π (Φ, m) ≤ lim inf j→∞ Π (Φ j , m j ) .
If we now take limits in j in both sides of (4.1), then

(4.3) Π (Φ, m) ≤ Π (Ψ, m)
because of (4.2) and the facts that m j → m and J j J in L 2 (Ω 0 ). The arbitrariness of Ψ in (4.3) implies that Φ is indeed the minimizer of (2.5) for the limit tension m. In order to show that Φ ∈ U we have to check that Φ has finite energy W and that is injective a.e. It has finite energy W since it has finite energy W fiber thanks to (4.3). In particular, Φ is orientation preserving. As a consequence of [12, Th. 2], Φ is injective a.e.

The result will be concluded as soon as we show that (4.4) ρH (Ω (m) , Ω d ) ≤ lim inf j→∞ ρH (Ω (m j ) , Ω d ) .

Changing variables and using again the weak convergence of the Jacobian, we find that

|Ω j | = Ω0 J j dX → Ω0 J dX = |Ω(m)| as j → ∞.
Since Φ j → Φ strong in L 2 (Ω 0 ), up to a (not relabelled) subsequence, Φ j (X) → Φ(X) for a.e. X ∈ Ω 0 . Now, since ϕ α is continuous, for any y ∈ Ω d we have

ϕ α ( y -Φ j (X) ) → ϕ α ( y -Φ(X) ) a.e. X ∈ Ω 0 , as j → ∞.
Using the fact that ϕ α is bounded, the above convergence also holds strongly in L 2 (Ω 0 ). Thus, due to the weak convergence J j J in L 2 (Ω 0 ), we find that

Ωj ϕ α ( y -x j ) dx j = Ω0 ϕ α ( y -Φ j (X) ) J j dX → Ω0 ϕ α ( y -Φ(X) ) J dX = Ω(m) ϕ α ( y -x ) dx.
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|Ω j | → |Ω(m)| and Ωj dβ Ω d (x) dx → Ω(m) dβ Ω d (x) dx as j → ∞. Consequently, dΩj,Ω d → dΩ(m)
,Ω d as j → ∞, which, together with (4.5) yields (4.4) and concludes the proof.

Numerical resolution method.

We advocate for a gradient-based optimisation method for the numerical solution of the optimal control problem (3.13).

Computation of a descent direction.

As customary in this type of methods, in order to compute a descent direction, we use the standard Lagrangian method [START_REF] Boyd | Convex optimization[END_REF]. To this end, let us consider the Lagrangian L defined as (5.1)

L Φ, p, m = J Φ, m - Ω0 P (∇ 0 Φ, m) : ∇ 0 p dX; J Φ, m = ρH Φ(Ω 0 ), Ω d + M 2 Ω0 m 2 (X) dX + ε 2 Ω0 |∇ 0 m (X) | 2 dX, which is defined for Φ, p, m ∈ H 1 R N ; R N × H 1 R N ; R N × H 1 R N . Recall that P is as in (2.9).
Let us recall the expression (3.11) for the approximated Hausdorff distance

ρH Φ(Ω 0 ), Ω d =   dγ Ω d ,Φ(Ω0) + dγ Φ(Ω0),Ω d √ 2   1/γ
, with dΩ d ,Φ(Ω0) and dΦ(Ω0),Ω d defined in (3.10).

Notice that in (5.1), Φ, p, m are considered as independent variables. The stationary condition of L (5.1) with respect to p coincides with the stationary condition of the functional Π (2.5) with respect to Φ (see equation (2.9)), i.e.,

(5.2)

∂L ∂p (Φ, p, m)(v) = ∂Π ∂Φ (Φ, m)(v) = Ω0 P (∇ 0 Φ, m) : ∇ 0 v dX = 0; ∀v ∈ V D .
Equation (5.2) above is nonlinear. A consistent linearisation of (5.2) has been carried out by means of the standard Newton-Raphson method in order to obtain the This manuscript is for review purposes only.

deformed configuration x = Φ(X). The stationary condition of the Lagrangian L of with respect to Φ yields

(5.3) ∂L ∂Φ (Φ, p, m)(v) = ∂J ∂Φ Φ, m (v) - Ω0 ∇ 0 p : C(∇ 0 Φ, m) : ∇ 0 v dX = ∂ ρH ∂Φ (Φ) (v) - Ω0 ∇ 0 p : C(∇ 0 Φ, m) : ∇ 0 v dX = 0; ∀v ∈ V D ,
C being the fourth order elasticity tensor, defined as

C iIjJ = ∇ 2 F F W (F , H(F ), J(F )) iIjJ -δ ij ma I a J ,
where δ ij denotes the ijth component of the Kronecker delta tensor, and the unit vector a = (a i ) furnishes the direction of the fiber in the reference configuration, as indicated at the beginning of Subsection 2.2. From the linear equation ( 5.3) it is possible to obtain the adjoint state p.

The directional derivative of the Lagrangian L with respect to the control m permits to obtain the descent direction. A formal computation leads to

∂L ∂m (Φ, p, m)( m) = Ω0 [ m ((F a ⊗ a) : ∇ 0 p) + M m m + ε ∇ 0 m • ∇ 0 m] dX.
The most delicate point of these calculations is the computation of

∂ ρH ∂Φ (Φ) (v)
in (5.3). From (3.8)- (3.11), it follows that the dependence of ρH on Φ takes place through integration of a fixed function over the image of the reference domain Ω 0 under Φ. Hence the derivative we would like to compute turns out to be a suitable shape derivative. To this end, consider, for a given ψ ∈ L 1 (Ω), the shape functional

(5.4) Ψ (Ω) = Ω ψ (x) dx,
and let us recall the notion of shape derivative.

Definition 5.1 (Shape derivative). Let us consider the domain Ω 0 whose de-

formed configuration is Ω, i.e., Ω = Φ(Ω 0 ). Let v ∈ W 1,∞ R N ; R N represent a
displacement field which maps a point x ∈ Ω to a further deformed configuration

(1 + v)(Ω) according to y = x + v, ∀y ∈ (1 + v)(Ω).
The shape derivative of

Ψ (Ω) at Ω is the Fréchet derivative at v = 0 in W 1,∞ R N ; R N of the mapping v → Ψ ((1 + v) (Ω)), i.e., Ψ ((1 + v)(Ω)) = Ψ (Ω) + Ψ (Ω) (v) + o (v) , with lim v→0 |o (v) | v W 1,∞ = 0, where Ψ (Ω) is a continuous linear form on W 1,∞ R N ; R N .
The following result shows the expression for the shape derivative of functionals of the form in (5.4).

Proposition 5.2. [1, Prop. 6.22] Let Ω = Φ(Ω 0 ) be a smooth bounded open domain and let ψ(x) ∈ W 1,1 R N . Then the shape functional

Ψ (Ω) = Ω ψ(x) dx
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is shape differentiable at Ω and its shape derivative is given by

(5.5) Ψ (Ω) (v) = Ω div (v(x)ψ(x)) dx = Γ v(x) • n (x) ψ(x) ds, v ∈ W 1,∞ R N ; R N ,
where div(•) represents the divergence operator in the deformed configuration and n(x), the outer normal vector to the boundary in the deformed configuration Γ.

We will apply Proposition 5.2 in the following particular cases:

∂ ∂Φ Ω ϕ α ( y -x ) dx (Φ)(v) = Γ v(x) • n (x) ϕ α ( y -x ) ds(x), y ∈ Ω d , ∂|Ω| ∂Φ (Φ)(v) = Γ v(x) • n (x) ds, ∂ ∂Φ Ω dβ Ω d (x) dx (Φ)(v) = Γ v(x) • n (x) dβ Ω d (x) ds. (5.6) 
In our context, we will formally apply (5.6) for a vector field v that vanishes on Γ D .

Expressions (5.6) and repeated applications of the chain rule enable us to obtain the expression for the shape derivative of ρH (Ω, Ω d ), i.e., ∂ ρH ∂Φ Φ(Ω 0 ), Ω d (v) as

∂ ρH ∂Φ Φ(Ω 0 ), Ω d (v) = ρ1-γ H dγ-1 Ω d ,Ω ∂ dΩ d ,Ω ∂Φ (Φ)(v) + dγ-1 Ω,Ω d ∂ dΩ,Ω d ∂Φ (Φ)(v) ,
where

∂ dΩ d ,Ω ∂Φ
can be obtained from (3.10) as

∂ dΩ d ,Ω ∂Φ (Φ)(v) = 1 |Ω d | d1-β Ω d ,Ω Ω d dβ-1 Ω (y) ∂ dΩ ∂Φ (Φ)(v) dy; ∂ dΩ
∂Φ can be obtained from (3.9) as

∂ dΩ ∂Φ (Φ)(v) = (ϕ -1 ) (I Ω (y)) ∂I Ω ∂Φ (v)
and ∂IΩ ∂Φ can be obtained from (3.8) and (5.6) as

∂I Ω ∂Φ (v) = 1 α|Ω| I 1-α Ω Γ v(x) • n (x) [ϕ α ( y -x ) -I α Ω (y)] ds(x).
Now, from (3.10) and (5.6),

∂ dΩ,Ω d ∂Φ (Φ)(v) = 1 β|Ω| d1-β Φ(Ω0),Ω d Γ v(x) • n (x) dβ Ω d (x) -dβ Ω,Ω d ds.

Numerical approximation of the integrals in the cost functional

and in its gradient. In this section we will briefly describe how the numerical integration of both the regularised Hausdorff cost functional ρH (Ω (m) , Ω d ) and its directional derivative ∂ ρH ∂Φ Φ(Ω 0 ), Ω d (v) are performed. For the sake of clarity, let us recall that both integrals include terms of the form

Ψ 1 (Ω) = Ω ψ 1 (x, y) dx; Ψ 2 (Ω d ) = Ω d ψ 2 (x, y) dy; x ∈ Ω, y ∈ Ω d .
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Although in the computation of the derivative Ψ 1 (Ω) (v) throughout Subsection 5.1

we have made use of the Gauss theorem (obtaining integrals in the boundary of Ω), the numerical integration of Ψ 1 (Ω) (v) has been carried out in Ω. Hence, only the second term in the shape derivative formula in equation (5.5) is considered, namely,

(5.7) Ψ 1 (Ω) (v) = Ω (∇ x ψ 1 (x, y)v(x) + ψ(x, y) div v(x)) dx.
Although the materials under consideration are compressible in theory, because of the term c (J -1) 2 in (2.3) and the rubber-like materials we have in mind, we do not expect changes in the volume of Ω. This assumption of nearly incompressibility permits to neglect the directional derivative of the Jacobian J. Hence, the integral in (5.7) can be approximated in the incompressible limit as for both Ω and Ω d . Furthermore, another compelling benefit of the Hausdorff cost functional is that it opens up for the possibility of employing particle-based integration for the computation of Ψ 1 (Ω), Ψ 2 (Ω), Ψ 1 (Ω) and Ψ 2 (Ω d ) (see Figure 3 b ). This means that a Finite Element mesh for Ω and Ω d is not the only possibility for the computation of the aforementioned four integrals. Alternatively, a simple collection of points can be used in order to describe Ω and Ω d , and standard particle-based discretisation can be used for numerical integration. In this work we approximate the integrals Ψ 1 (Ω) and Ψ 2 (Ω) by means of simple collocation at the cloud of points defining Ω and Ω d , namely

Ψ 1 (Ω) (v) ≈ Ω ∇ x ψ 1 (x, y)v(x) dx. (a) (b) 
(5.8) Ψ 1 (Ω) ≈ Np Ω i=1 V i ψ 1 (x i , y); Ψ 2 (Ω) ≈ Np Ω d i=1 V i ψ 2 (x, y i ),
where N pΩ and N pΩ d represent the total number of particles considered for the particle-based discretisation of Ω and Ω d , respectively. In addition V i represents the This manuscript is for review purposes only.

volume associated with particle i, so that

Np Ω i=1 V i = |Ω| and Np Ω d i=1 V i = |Ω d |. From
(5.8), the directional derivatives Ψ 1 (Ω) (v) and Ψ 2 (Ω d ) (v) are computed as

Ψ 1 (Ω) (v) ≈ Np Ω i=1 V i ∇ x ψ 1 (x i , y); Ψ 2 (Ω d ) (v) ≈ Np Ω d i=1 V i ∇ x ψ 2 (x, y i ).
6. Numerical simulation results. To keep track of the evolution of simulations during the optimisation procedure, we have introduced a sequence of discrete optimisation iterations akin to a pseudo-time parameter τ = {τ 0 , . . . , τ m }. At each discrete pseudo-time τ , the pseudo-time evolving control m(X, τ ) induces a deformation on the undeformed configuration Ω 0 , which is transformed into Ω(m(X, τ )) according to Ω(m(X, τ )) = Φ(m(X, τ ))(Ω 0 ), where Φ = Φ(m) is a minimiser of (2.5) associated with m, as described earlier (see Figure 4). for some constants m 1 , m 2 and where m 2 complies with (2.7).

6.1. Bending actuator. In this example we consider the desired or target configuration Ω d and the initial undeformed configuration Ω 0 depicted in Figure 5, where the displacement of the entire cross section at X 2 = 0 has been prescribed to zero. This manuscript is for review purposes only. 7 shows the contour plot of the applied tension m(X) for the same optimisation iterations as in Figure 6.

Torsion actuator.

In this example we consider a more challenging target configuration Ω d and the initial undeformed configuration Ω 0 depicted in Figure 8, where the displacement of the entire cross section at X 2 = 0 has been prescribed to zero. The material constitutive model (i.e., W ) considered is slightly different from that in equation (2.3). Specifically, a polyconvex transversely isotropic constitutive model characterised by a preferred direction in the undeformed configuration

f = √ 2/2 [1 1 0] T is assumed. Precisely, (6.2) 
W (F , H, J) = a F 2 + b H 2 + c F f 2 + Hf 2 + d (J -1) 2 -2(a + 2b + c) log(J) -3 a + b + 2c 3 ,
where the material parameters are {a, b, c, d} = 10 5 × {1, 0.2, 3, 10} (N/m 2 ). Notice that the polyconvex model in (6.2) satisfies the coercivity condition in equation (2.2).

Regarding the tension part of the energy, namely W m (m, a, F ) in (2.4), the fibers are oriented parallel to the OX 1 axis, so a = [1 0 0] T . The control m(X) is constrained according to (6.1) with m 1 = -1.5 × 10 6 and m 2 = 0. As a result of the combination of the action of the tension m(X) and the underlying anisotropy of the material, a combined bending and torsion will be induced in the material, as shown in Figure 9. the contour plot of the applied tension m(X) for the same optimisation iterations as in Figure 9. [START_REF] Günnel | Optimal control problems in finite strain elasticity by inner pressure and fiber tension[END_REF], in optimal control of soft materials (and, in general, in deformation problems), the target to aim is not a desired displacement field but a deformed domain Ω d itself. This target domain may be reached by different displacement fields and, a priori, there is no preferred candidate.

Conclusions. As indicated in

In this paper, the Hausdorff metric has been, for the first time, explored in the context of optimal control in hyperelasticity. Existence of solutions for a regularised version of the control problem has been proved. A gradient-based minimization algorithm has been used for the numerical resolution of the problem. Two numerical examples involving very large deformations from the initial to the target configurations have been included in order to illustrate the viability and applicability of the Hausdorff metric in this new context. Furthermore, although not pursued in this paper, the Hausdorff metric opens up the possibility for the consideration of very different computational domains for both the target and the actuated soft continuum, circumventing a classical drawback of L 2 norm (in displacements) tracking-cost functional types.

Although the control action considered in this work is by means of a tension field acting on fiber directions, the ideas and methods developed in this paper may be extended to other control mechanisms like turgor pressure [START_REF] Günnel | Optimal control problems in finite strain elasticity by inner pressure and fiber tension[END_REF] or controls acting on a part of the boundary domain [START_REF] Lubkoll | An optimal control problem in polyconvex hyperelasticity[END_REF].

As is well known, the Hausdorff distance is not the only possibility to measure This manuscript is for review purposes only. 

Fig. 1 .

 1 Fig. 1. The mapping Φ between reference Ω 0 and deformed Ω configurations. Boundary Γ 0 = Γ 0 D ∪ Γ 0 N in the undeformed configuration and its deformed counterpart Γ = Γ D ∪ Γ N .

Fig. 2 .

 2 Fig. 2. Fiber structure of heart (courtesy of "The Correlation of 3D DT-MRI Fiber Disruption with Structural and Mechanical Degeneration in Porcine Myocardium", by Zhang, S., Crow, J. A., Yang, X. et al., Ann Biomed Eng (2010) 38:3084).

Proposition

  

  10) are approximations of sup y∈Ω d |d Ω(m) (y) | and sup x∈Ω(m) |d Ω d (x) |, respectively. Finally, for γ > 0, (3.11) ρH (Ω (m) , Ω d ) = dγ Ω d ,Ω(m) + dγ

Proposition 3 . 1 .

 31 Assume Ω(m) and Ω d are bounded. Let ϕ : R + → R + * be continuous, strictly decreasing and convex. Then dΩ(m) and dΩ d are bounded, and the quantities dΩ d ,Ω(m) , dΩ(m),Ω d and ρH (Ω (m) , Ω d ) are finite.

Proposition 4 . 1 .

 41 [START_REF] Müller | An existence theory for nonlinear elasticity that allows for cavita-tion[END_REF] Prop. 2.6] Let ψ : Ω → R be continuous and bounded and

Fig. 3 .

 3 Fig. 3. (a) Mesh-based discretisation of both deformed configuration Ω and the target domain Ω d . Particle-based discretisation of both deformed configuration Ω and the target domain Ω d A critical advantage of the Hausdorff cost functional with respect to L 2 -based cost functionals is that numerical integration of the integrals Ψ 1 (Ω), Ψ 2 (Ω d ), Ψ 1 (Ω) and Ψ 2 (Ω d ) can be carried out on potentially very different computational domains Ω and Ω d . See Figure 3 a , where two different meshes (discretisations) have been considered

Fig. 4 .

 4 Fig. 4. Undeformed configuration Ω 0 ; Deformed configuration at pseudo-time τ i , reached after the application of the control m(τ )| τ =τ i ; Target or desired configuration. In the numerical examples that follow, the parameters α, β, γ and ε featuring in the regularised expression of the Hausdorff functional in Section 3.2 are: α = 4, β = 4, γ = 2 and ε = 10 -3 . Also, we put M = = 0 in (3.12). Instead, we impose pointwise lower and upper bounds on the control variable, namely (6.1) m 1 ≤ m (X) ≤ m 2 a.e. X ∈ Ω 0 ,

  The material constitutive model (i.e., W (F , H(F ), J(F ))) considered is that in(2.3), where the material parameters are {a, b, c} = 10 5 ×{1, 0.2, 3} (N/m 2 ). These material parameters are typical of the VHB 4910 elastomer. Regarding the tension part of the energy, namely W m (m, a, F ) in (2.4), the fibers are oriented parallel to the OX 1 axis, so a = [1 0 0]T . The control variable m(X) is constrained according to (6.1) with m 1 = -10 5 and m 2 = 0.Both the undeformed configuration Ω 0 and the target configuration Ω d have been discretised using hexahedral tri-quadratic (Q2) finite elements, with a total of 5555 nodes (16665 degrees of freedom) in both cases.

Fig. 5 .

 5 Fig. 5. Bending actuator. Two different views of undeformed configuration Ω 0 (green colour) and target configuration Ω d (red colour). Dimensions of Ω 0 are {L 1 , L 2 , L 3 } = {10, 2, 0.1} (m).

Figure 6

 6 Figure 6 shows the evolution of the deformed configuration Ω with the pseudotime parameter τ (optimisation iteration). It can be observed how the initially straight beam-like domain bends until a perfect agreement with the target domain Ω d is obtained. The optimisation algorithm is stopped at iteration 134 leading to ρH (Ω, Ω d ) = 4.4 × 10 -2 . Notice that the approximated Hausdorff distance ρH cannot be zero; in fact, for the parameters α, β, γ and the function ϕ chosen (recall Subsection 3.2), as well as the target domain Ω d selected, we have that ρH (Ω d , Ω d ) = 2.9 × 10 -2 , whilst the distance between Ω 0 and Ω d is ρH (Ω 0 , Ω d ) = 3.3. Therefore, the value of ρH (Ω, Ω d ) obtained above indicates an extremely good approximation of the obtained domain Ω to the target domain Ω d . Finally, Figure 7 shows the contour plot of the

  This figure illustrates the evolution of the deformed configuration Ω with the pseudotime parameter τ . It can be observed how the initially straight beam-like domain deforms until a perfect agreement with the target domain Ω d is obtained (see the last configuration in Figure9). At iteration 172 we have ρH (Ω, Ω d ) = 8.2 × 10 -3 . Moreover, ρH (Ω 0 , Ω d ) = 15.2 and ρH (Ω d , Ω d ) = 1.6 × 10 -3 . Finally, Figure10shows This manuscript is for review purposes only.

Fig. 6 .

 6 Fig. 6. Bending actuator. Rendering of the evolution of Ω for various optimisation iterations. The last configuration corresponds to iteration 134. The transparent domain represents Ω d .

Fig. 7 .

 7 Fig. 7. Bending actuator. Evolution of Ω for various optimisation iterations. The meshed domain represents Ω d . Contour plot distribution of the control variable (tension m(Φ -1 (x))).

Fig. 8 .

 8 Fig. 8. Torsion actuator. Target configuration Ω d (transparent) and undeformed configuration Ω 0 (in green). Details of both ends of Ω d . The dimensions of Ω 0 are {L 1 , L 2 , L 3 } = {50, 4, 2} (m).

  distances between domains. It would be interesting to analyse the performance, in this context, of other types of metrics, e.g., the W 1,2 distance[START_REF] Charpiat | Approximations of shape metrics and application to shape warping and empirical shape statistics[END_REF].

  

  

  

  3.2. Regularisation of the Hausdorff distance-based cost functional.We notice that the deformation Φ, being a Sobolev function, is only defined almost everywhere. Through a careful pointwise definition of Φ and Φ(Ω 0 ), one can show that the set Φ(Ω 0 ) is measurable (see[START_REF] Müller | An existence theory for nonlinear elasticity that allows for cavita-tion[END_REF] Sect. 2]). In general, one cannot assure that it is bounded: only that it has finite measure. As for being open, we first point out that the exponent 2 over F in(2.

  The continuity of ϕ -1 implies that dΩj (y) → dΩ(m) (y) for all y ∈ Ω d . Consequently, dβ Ωj (y) → dβ Ω(m) (y) , for all y ∈ Ω d .

	By Fatou's lemma,			
	Ω d	dβ Ω(m) (y) dy ≤ lim inf j→∞	Ω d	dβ Ωj (y) dy,
	so			
	(4.5)	dΩ d ,Ω(m) ≤ lim inf		

j→∞ dΩ d ,Ωj .
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