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Abstract

Soft robots are highly nonlinear systems made of deformable materials such as elastomers,

fluids and other soft matter, that often exhibit intrinsic uncertainty in their elastic responses

under large strains due to microstructural inhomogeneity. These sources of uncertainty might

cause a change in the dynamics of the system leading to a significant degree of complexity

in its controllability. This issue poses theoretical and numerical challenges in the emerging

field of optimal control of stochastic hyperelasticity. This paper states and solves the robust

averaged control in stochastic hyperelasticity where the underlying state system corresponds to

the minimization of a stochastic polyconvex strain energy function. Two bio-inspired optimal

control problems under material uncertainty are addressed. The expected value of the L2-norm

to a given target configuration is minimized to reduce the sensitivity of the spatial configuration

to variations in the material parameters. The existence of optimal solutions for the robust

averaged control problem is proved. Then the problem is solved numerically by using a gradient-

based method. Two numerical experiments illustrate both the performance of the proposed

method to ensure the robustness of the system and the significant differences that may occur

when uncertainty is incorporated in this type of control problems.

Keywords: Robust optimal control , hyperelasticity, material uncertainty, turgor pressure,

active fibers, soft robotics.

1. Introduction

Since the early 1940s, the field of soft robotics continues exploring the creation of machines

with biomimetic dexterous features superseding the capabilities of humans. This field represents

a radically different paradigm with respect to the conventional field of hard robotics. The latter,

which enabled an outstanding technological revolution in industrial automation, autonomous

vehicles, etc. perform extraordinarily well for the specific tasks that they have been purposely

designed for. The question that emerges then is therefore evident: if conventional robotics

perform exceptionally, why to pursue a completely opposite robotic paradigm? Not to mention
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that soft robotics are made out of highly deformable materials such as elastomers, fluids and

other soft matter, entailing a much higher degree of complexity in their controllability. The

answer to this question lies on the programability of soft robotics for a wider range of tasks than

their hard counterparts, along with their adaptability to rapidly changing uncertain conditions

while performing these tasks [1].

As already mentioned, the controllability of soft robots, potentially actuated by means of

a wide spectrum of complex external stimuli (electric or magnetic field, mechanical pressure,

osmotic pressure, etc.) is not a trivial task. This complexity reflects also in the numerical mod-

elling of these soft materials, specially when aleatory sources of uncertainty such as random

material properties, random geometry or random environmental conditions, are incorporated

in the numerical model. This fact, together with the development of probabilistic uncertainty

propagation methods, has fostered the interest in models represented by Partial Differential

Equations (PDEs) with random inputs [2, 3, 4]. In the context of stochastic hyperelasticity,

large random variabilities observed in the bulk and shear moduli of Ogden-type hyperelastic

materials, typically used to model elastomeric materials and soft biological tissues, are reported

by recent works in [5, 6, 7]. Stochastic versions of the polyconvex energy functionals of these

constitutive models have been proposed and validated against experimental data in those ref-

erences.

The literature on optimal control of hyperelastic materials adopting a rigorous mathematical

prism is relatively scarce even in the deterministic setting [8, 9]. In these works it is well-

accepted to consider polyconvex strain energy functionals [10, 11, 12] defining the constitutive

model of the elastomer or soft material. Ball proves in his seminal paper [10] that polyconvexity

and coercivity (i.e. growth conditions) of the strain energy density entails the existence of

minimisers of the total energy of the elastomer. Examples of isotropic polyconvex strain energy

functions are the Odgen model, the Neo-Hookean model, the Mooney-Rivlin model, etc. The

deterministic assumption made in most works concerning optimal control of highly deformable

materials might be very convenient from the analysis and numerical standpoints. However,

soft materials often exhibit intrinsic variability in their elastic responses under large strains

leading to a significant degree of complexity in its controllability. Thus, accuracy and realism

with respect to the physical response of a deformable soft material requires the incorporation

of relevant sources of uncertainty in the numerical model. In this sense, a framework, based

on information theory, for the modeling of stochastic Ogden class of stored energy functions

is presented in [5, 6, 7]. The proposed models are almost surely consistent with the theory of

nonlinear elasticity and are able to mimic the mean behavior and variability that are typically

encountered in the experimental characterization of biological tissues.

The problem of optimal control of Stochastic PDEs has sparked significant interest last

years. Existence results and, computationally efficient numerical resolution methods have been

developed during the last two decades, but only for the case of random linear PDEs. In

particular, in [13] the concept of averaged controllability was introduced and positive averaged

controllability results have been recently obtained for parameter dependent evolution PDEs
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[14, 15]. Although controlling the average of the state variable provides a first idea of robustness,

it may be useless in scenarios where the dispersion of the system response is large. In the

context of optimal control theory, the problem of controlling both the average and the variance

of the state variable has been studied in [16, 17, 18] at the theoretical and numerical points of

view. Significant differences between optimal controls minimizing only the average of the state

variable and controls minimizing both the mean and the variance of the state variable were

numerically observed in those references.

To the best of the author’s knowledge, the optimal control of soft materials governed by

stochastic hyperelastic constitutive models still remains an open issue. This paper addresses,

both from the numerical and analysis standpoints, the robust optimal control of materials

governed by stochastic hyperelastic constitutive models. A probabilistic framework is used

to characterized the random parameters of a stochastic Ogden type stored energy function.

Inspired by [8], we consider two bio-inspired types of external actions (denoted as control in the

sequel) on the elastomeric material, based on Turgor pressure and active fibers. As it will be

shown in this paper, the first resembles the Turgor-based motion in the plant kingdom, whilst

the second type of control simulates the electro-activation mechanism of muscles (e.g. the

human heart). To take into account the variability of the deformed configuration with respect

to desired target configuration, the deterministic cost functionals are averaged with respect to

the underlying probability distributions.

The layout of the paper is as follows: Section 2 introduces the notions of hyperelasticity in

the stochastic framework. In addition, it is shown how the two types of controls considered can

be additively incorporated in the stochastic stored energy function of the material. Section 3

presents the optimal control problem in both deterministic and stochastic frameworks, showing

the assumptions under which both control problems (associated with each type of control) are

well-posed. Then, existence of optimal solutions for both problems is proved in Section 3.2.

Section 4 describes the proposed, gradient-based, numerical resolution method and analyses two

numerical experiments that show the importance of considering the uncertainty of the material

parameters in the optimal control problem. Finally, Section 5 provides some concluding remarks

and open problems.

2. Stochastic nonlinear continuum mechanics

2.1. Stochastic kinematics

Let D0 ⊂ RN , N = 2, 3, be an open, bounded and connected domain which represents

the reference (or undeformed) configuration of an elastic body. Let (Ω,F ,P) be a complete

probability space, where Ω is the set of outcomes, F ⊂ 2Ω is the σ-algebra of events, and

P : F → [0, 1] is a probability measure. The random deformation of the body D0 is defined

through the mapping Φ : D0×Ω→ RN , which, for every random even ω ∈ Ω, is assumed to be

sufficiently smooth, injective and orientation preserving with respect to X ∈ D0. The mapping

Φ links a material particle X ∈ D0 to a particle x ∈ D (ω) ⊂ RN , the random deformed
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configuration, according to x = Φ (X, ω) (see Figure 1). As usual, u := x −X denotes the

displacement field.

Figure 1: Graphical illustration of the random deformation mapping Φ (·, ω) : D0 → D (ω) between reference

D0 and random deformed D (ω) configurations.

Associated with the mapping Φ, the random deformation tensor F is defined as

F : D0 × Ω→ RN×N , F = ∇0Φ(X, ω),

where ∇0(•) is the material gradient operator with respect to X ∈ D0. Associated with F , its

co-factor H and its Jacobian J are defined as

H = (detF ) (F )−T ; J = detF . (2.1)

The orientation-preserving condition is written as J (X, ω) > 0 a.e. X ∈ D0, and for every

ω ∈ Ω. We assume that the boundary of D0 is smooth and it is decomposed into two (also

smooth) disjoint parts: Γ0D and Γ0N . On the Dirichlet boundary Γ0D , it is imposed Φ = Φ0 for

a given deformation Φ0 : D0 → RN , while on Γ0N , we impose a stress-free boundary condition.

Notice that the above boundary conditions do not depend on ω ∈ Ω.

2.2. Stochastic polyconvex constitutive models

In this paper, we are interested in stochastic (also named random) versions of the classical

deterministic polyconvex stored energy densities considerered in hyperelasticity theory. For the

sake of clarity in the exposition, in the sequel, we focuss on the following compressible random

Mooney-Rivlin model

W (ω,F ) = W(ω,F ,H , J) = µ1(ω)
(
||F ||2 − 3

)
+ µ2(ω)

(
||H||2 − 3

)
− 2 (µ1(ω) + 2µ2(ω)) log J +

µ3(ω)

2
(J − 1)2,

(2.2)

where the main novelty here is that the material parameters {µ1(ω), µ2(ω), µ3(ω)} are assumed

to be random variables supported in R+
∗ := {x ∈ R : x > 0}. As a consequence of the positivity
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of these material parameters, the density W (ω,F ) in (2.2) satisfies, for each fixed ω ∈ Ω, the

following three crucial conditions (see [11, Th. 4.10-2]):

Polyconvexity: for the set V = {A,B, c} with A ∈ RN×N , B ∈ RN×N and c ∈ R+
∗ , the

following condition is satisfied

W(ω, λV1 + (1− λ)V2) ≤ λW(ω,V1) + (1− λ)W(ω,V2), (2.3)

∀λ ∈ [0, 1] and ∀ V1,V2 ∈ V .

Coerciveness:

W(ω,F ,H , J) ≥ c0(ω)
(
||F ||2 + ||H||2 + J2

)
+ c1(ω); c0(ω) > 0, c1(ω) ∈ R. (2.4)

Limit behavior 2:

lim
J→0+

W(ω,F ,H , J) = +∞. (2.5)

As in the deterministic situation, consistency with linearised elasticity in the stochastic

framework entails the following relations between the above random material parameters and

the shear µ(ω) and bulk κ(ω) moduli

µ1(ω) + µ2(ω) = 2µ(ω); 4µ2(ω) + µ3(ω) = κ(ω)− 2

3
µ(ω). (2.6)

Making use of the Maximum Entropy Principle, the authors in [5, 6] show that the random

material parameters {µ1(ω), µ2(ω), µ3(ω)} can then be given by

µ1(ω) =
µ(ω)U

2
; µ2(ω) =

µ(ω)(1− U)

2
; µ3(ω) = µ(ω)

(
2U − 8

3

)
+ κ(ω), (2.7)

where {µ(ω), κ(ω)} are statistically independent random variables of Gamma-type, and U is a

suitable Beta distributed random variable.

2.3. Bio-inspired controls

Fostered by [8], two types of bio-inspired controls are considered in the sequel. The effect of

both controls can be modeled mathematically by additively decomposing the total stochastic

stored energy density, denoted as Wtot, as

Wtot(ω,F ,m) = W (ω,F ) +Wm(X,F ); Wm(m,F ) = m(X)Ŵm(F ), (2.8)

where the first term on the right-hand side of (2.8) corresponds to the purely mechanical

contribution W in (2.2), and the second one, namely Wm, represents the energy induced by the

control m(X) : D0 → R. Notice that there exists an implicit dependence of Wm with respect

to ω ∈ Ω through the deformation gradient tensor F = F (X, ω). The explicit expression of

Ŵm(F ) for the two types of bio-inspired controls is presented next.

2The underlying justification for this condition is that it enforces the orientation-preserving condition, namely

J(X, ω) > 0 a.e X ∈ D0, and hence the local invertibility and local injectivity of the mapping Φ.
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(a) (b)
Figure 2: (a) Tendril-like soft robot based on an osmotic actuation [19]. (b) Fiber structure of heart (courtesy

of “The Correlation of 3D DT-MRI Fiber Disruption with Structural and Mechanical Degeneration in Porcine

Myocardium”)

2.3.1. Turgor-pressure type control

In this case, the control m(X) : D0 → R represents the Turgor pressure and the coupled

component Ŵm adopts the following expression

Ŵm(F ) = −J(F ) + 1. (2.9)

This type of control resembles the turgor-driven movements of plants, characterised by

efficiency and low power consumption. Based on this nature-inspired means of motion, research

labs are in the process of developing new and biomimetic actuators [19] (see Figure 2a).

It is shown next that the density Wtot, as given by (2.8), enjoys the same polyconvex and

coerciveness properties as the stored mechanical energy density W .

Proposition 2.1. For each fixed m ∈ L2(D0) and ω ∈ Ω, the total stored energy function (2.8)

for the turgor pressure control is polyconvex and coercive.

Proof. The turgor-pressure contribution Ŵm (2.9) is linear with respect to the Jacobian J .

Therefore, provided that W (ω,F ) is polyconvex, then Wtot is polyconvex. With regards to

coerciveness, from (2.4) it follows that

Wtot(ω,F ,m) ≥ c0(ω)(||F ||2 + ||H||2 + J2) + c1(ω)−m(X)(J − 1)

≥ c0(ω)

2
(||F ||2 + ||H||2 + J2) + c1(ω) +

c0(ω)

2
J2 −m(X)(J − 1).

(2.10)

The last two last terms in (2.10) are conveniently manipulated as

c0

2
J2 −m(X)(J − 1) =

c0

2

[
J − m(X)

c0

]2

+m(X)− m(X)2

2c0

≥ m(X)− m(X)2

2c0

,

which permits to conclude that

Wtot(ω,F ,m) ≥ c0(ω)

2
(||F ||2 + ||H||2 + J2) + c̃1(X, ω); c̃1(X, ω) = c1(ω) +m(X)− m(X)2

2c0(ω)
,

(2.11)

and so Wtot is coercive.
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2.3.2. Tension fiber type control

In this case, the control exerts an inner fiber tension m(X) : D0 → R along a unitary

direction a(X) : D0 → RN , with ‖a(X)‖ = 1, in the reference configuration. The energy Ŵm

is then given by

Ŵm(F ) = −1

2
||Fa||2. (2.12)

There are relevant examples in nature where this type of actuation is harnessed as a means to

achieve a desired motion, such as the complex electro-activation of the human heart, mathemat-

ically modelled as in (2.12). In that context, m represents the active cardiomyocyte contraction

stress responsible for the deformation of the heart tissue (see Figure 2b and [20, 21]).

Proposition 2.2. Let µ1(ω) > 0 be the first parameter in the stochastic version of the Mooney-

Rivlin model (2.2). Then, for each m ∈ L2 (D0) and ω ∈ Ω, with

sup
X∈D0

m(X) < 2µ1(ω), (2.13)

the total stored energy density function Wtot in (2.8), with Ŵm given by (2.12), is polyconvex

and coercive.

Proof. The energy density Wtot can be re-arranged as

Wtot(ω,F ,m) = ψ1(ω,F ) + ψ2(ω,H , J);

ψ1(ω,F ) = µ1(ω)||F ||2 − m

2
||Fa||2;

ψ2(ω,H , J) = µ2(ω)||H||2 − 2 (µ1(ω) + 2µ2(ω)) log J +
µ3

2
(J − 1)2.

(2.14)

Clearly, the function ψ2(ω,H , J) is convex with respect to H and J . Therefore, polycon-

vexity of Wtot requires convexity of ψ1(ω,F ) with respect to F . Let us define, for t ∈ R and

F 0,F ∈ RN×N , the section

g(ω, t) = ψ1(ω,F 0 + tF ) = µ1(ω)||F 0 + tF ||2 − 1

2
m(X)|| (F 0 + tF )a(X)||2,

The second derivative of g with respect to t yields

∂2g

∂t2
(ω, t) = 2µ1(ω)||F ||2 −m(X)||Fa(X)||2 ≥ (2µ1(ω)−m(X)) ||F ||2. (2.15)

It is therefore bounded from below provided that 2µ1(ω)−m(X) ≥ K > 0. As a result, ψ1(ω,F )

is convex with respect to F and the total contribution Wtot, polyconvex. Coerciveness of the

total contribution Wtot is straightforward.
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2.4. Stochastic state laws under the action of bio-inspired controls

Sections 2.3.1 and 2.3.2 have illustrated under what assumptions, stored energy functions of

the type (2.8) with Ŵm, as those in (2.9) and (2.12), respectively, are polyconvex and coercive.

As shown by Ball in his seminal paper [10], this entails the existence of minimisers Φ(X, ω)

for each m ∈ L2(D0) and ω ∈ Ω for the total energy functional

Π (ω,Φ,m) :=

∫
D0

Wtot (ω,F ,m) dX, (2.16)

over the class of mapping fields

U := { Φ(ω) ∈ VD : H(ω) ∈ L2(D0;RN×N), J(ω) ∈ L2(D0), and J(ω) > 0 a.e. in D0} ;

VD :=
{
Φ ∈ H1(D0;RN) : Φ = Φ0 on Γ0D

}
.

(2.17)

Remark 1. An additional term of the form

Πext(Φ(X, ω)) = −
∫
D0

f 0(X, ω) ·Φ(X, ω) dX −
∫

Γ0N

t0(X, ω) ·Φ(X, ω) dS, (2.18)

collecting the energy exerted by random, conservative volumetric f 0 and surface t0 loads may

be added to (2.16). For the sake of simplicity we do not consider such a term in what follows.

The stationary point Φ of the functional Π in (2.16) solves

∂Π

∂Φ
(Φ(X, ω),m)(v) =

∫
D0

P (X, ω) : ∇0v dX = 0; v ∈ H1
0 (D0;RN); (2.19)

P (X, ω) : D0 × Ω→ RN×N being the random first Piola-Kirchhoff stress tensor, defined as

P (X, ω) = ∇FWtot(ω,F ,m) = ∇FW (ω,F ) + ∇FWm(F ,m), (2.20)

where ∇FWm(F ,m) adopts the following expression for the Turgor-pressure and the tension

fiber controls in (2.9) and (2.12), respectively,

∇FWm(F ,m) = −mH ; ∇FWm(F ,m) = −m (Fa⊗ a) . (2.21)

In equation (2.21), (a⊗ b)ij = aibj, ∀a, b ∈ RN . Finally, integration by parts in (2.19)

enables to obtain the strong or local form of the conservation of the linear momentum, i.e.,

DIV (P (X, ω)) = 0; in Ω0;

(P (X, ω))N = 0; on Γ0N ;

Φ = Φ0; on Γ0D ,

(2.22)

where DIV(•) represents the material divergence operator, and N , the outward vector to the

undeformed boundary Γ0.
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Here is the issue of the potential non-uniqueness of solutions for (2.22). It is true that every

minimizer in (2.16) is a solution of (2.22), but neither uniqueness of minimizers of (2.16) is

guaranteed nor possible solutions of (2.22) that are not minimizers of (2.16). From an analytical

point of view, we resolve this issue by considering, for each feasible m, all possible minimizers of

(2.16). However, from the point of view of the numerical approximation, one has to work with

(2.22), and non-uniqueness can be a real difficulty. It is nonetheless true that our numerical

simulations of Section 4.2 have not shown any particular difficulty in this regard.

3. The control problem under uncertainty

The objective of the optimal control problem considered in this paper is two-fold: (a) to

find a distribution of the control m(X) (Turgor pressure or fiber tension) that exerts a de-

formation on the undeformed domain D0, modifying its shape and deforming it into a desired

target deformation Φd ; (b) to minimise the effect of the uncertainty of the material param-

eters {µi(ω), 1 ≤ i ≤ 3}, for the Mooney-Rivlin model (2.2) in the attainability of the target

deformation.

3.1. Formulation of the optimal control problem

In this paper, we are mainly interested in the numerical approximation of robust optimal

control problems for state laws of the form (2.22) . Thus, we introduce a discrete setting and

so we assume that uncertainty in the material properties {µ1, µ2, µ3} is quantified by means of

a multivariate and discrete random variable Z, with scenarios zi = (zi1, z
i
2, z

i
3) ∈ R := R3

+ and

probabilities πi, 1 ≤ i ≤ I. Continuous distributions may be recovered in the limit I → ∞
(see, e.g. [22]).

The random variable Z induces a probability distribution PZ of the form

PZ =
I∑

i=1

πiδzi , 0 < πi ≤ 1,
I∑

i=1

πi = 1,

where δzi is a Dirac mass located at zi.

In the context of robust optimal control problems with continuous random variables and/or

random fields, a similar discretisation process as the one proposed hereafter takes place (see

[18, Chap. 4]). In this case, the robustness of the optimal control is achieved by incorporating

a robustness criterion in the functional cost which typically involves the first two statistical mo-

ments of the performance. These statistical moments often require the numerical computation

of multi-dimensional integrals that cannot be evaluated analytically. This issue has motivated

the development of efficient methods to address the problem (such as dimension reduction

methods and sparse grid collocation methods) which discretize the continuous random domain

in a finite set of stochastic nodes zi and an associated weights πi.

For each scenario zi ∈ R, 1 ≤ i ≤ I, we denote by W i (F) the stored energy density

W i(F ) = zi1
(
||F ||2 − 3

)
+ zi2

(
||H||2 − 3

)
− 2

(
zi1 + 2zi2(ω)

)
log J +

zi3
2

(J − 1)2, (3.1)
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the total energy density W i
tot(F ,m) = W i(F ) + Wm(X,F ), with Wm(X,F ) given by (2.8),

and finally the total energy functional

Πi (Φ,m) :=

∫
D0

W i
tot (F ,m) dX, Φ ∈ U. (3.2)

Let Γ0 be a (measurable) part of the free boundary Γ0N in the undeformed configuration

D0 and let Φd : Γ0 → RN be a desired deformation. Then, for m ∈ H1 (D0), the following

tracking-type in surface deformations functional is considered:

J (m) :=
I∑

i=1

πi

∫
Γ0

‖Φi(X)−Φd(X)‖2 dS (X) +
M

2

∫
D0

m(X)2 dX +
ε

2

∫
D0

|∇m(X)|2 dX,

(3.3)

where Φi is a minimizer of (3.2). Eventually, the robust optimal control problem reads as:{
Minimize in m ∈ H1(D0) : J (m)

subject to Φi is a minimizer of (3.2), 1 ≤ i ≤ I. (3.4)

3.2. Existence of optimal controls

The goal of this section is to prove the following existence result:

Theorem 3.1. There is at least an optimal control m(X) for problem (3.4).

For the sake of clarity, this will be carried out in the deterministic case and later extended

to the stochastic setting.

3.2.1. Deterministic case

Throughout this subsection it is assumed that I = 1.

Proof. We carefully describe all the steps necessary to prove Theorem 3.1.

(i) Let {mj} be a minimizing sequence for the control problem (3.4), and let {Φj(X)}
(Φj ∈ U) be their corresponding mapping fields which are minimizers of the total energy

functional (3.2), which throughout this subsection is denoted by Π (recall that I = 1).

Let F j := ∇0Φj, and Hj and Jj be the co-factor and Jacobian of F j, respectively.

The regularising part of the objective function J entails uniform boundedness of {mj}
in H1(D0). Hence, for a non-relabelled subsequence, mj ⇀ m in H1(D0) and mj → m in

L2(D0), for some feasible m.

(ii) Take any feasible Φ̂ ∈ U and let F̂ := ∇0Φ̂. Since Φj is a minimiser of Π(mj), then

Π(Φj,mj) ≤ Π(Φ̂,mj). (3.5)

The uniform boundedness of {mj} in L2(D0) implies the existence of a constant D in-

dependent of j which bounds the right-hand side of (3.5). Coerciveness of Wtot then
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implies that Φj is uniformly bounded in H1 (D0). Hence, by [11, Th. 7.6-1], there exists

Φ ∈ H1
(
D0;RN

)
, such that for a not relabelled subsequence,

F j ⇀ F , Hj ⇀H , Jj ⇀ J in L2(D0), (3.6)

where F := F (∇0Φ), H := H(∇0Φ), J := J(∇0Φ).

(iii) Inequality (3.5) may be rewritten as

Π(Φj,m) +

∫
D0

(mj −m) Ŵ (F j) dX ≤ Π(Φ̂,m) +

∫
D0

(mj −m) Ŵ (F̂ ) dX. (3.7)

Using the strong convergence mj → m in L2(D0), the weak convergences (3.6), the

polyconvexity of Wtot and passing to the limit in (3.7) we conclude that

Π(Φ,m) ≤ Π(Φ̂,m) (3.8)

The arbitrariness of Φ̂ implies that Φ is a minimiser of Π(m). By using Mazur’s theorem,

the compactness of the trace operator and following the same lines as in the proof of [11,

Th. 4.10-2], one proves that J > 0 a.e. in D0 and that Φ = Φ0 on Γ0D . Therefore, Φ ∈ U
is a minimiser of Π for the limit control m.

(iv) Finally, the weakly lower semicontinuity of the three contributions in the cost functional

(3.3) implies that m is indeed a minimiser of problem (3.4).

Remark 2. Notice that the term involving the gradient of the control m(X) in J ensures the

strong convergence mj → m, which is of crucial importance in the previous proof. The same

conclusion may be obtained if lower and upper point-wise constraints on m, and boundedness

of ∇m in L2 (D0)N are imposed.

3.2.2. Stochastic case

Proof. The proof follows along the same lines as in the deterministic case, given that we only

have a finite number of possible scenarios. We highlight the specific ingredients brought by the

probabilistic framework.

Let {mj(X)} be minimizing for problem (3.4) and let {Φi
j(X}, 1 ≤ i ≤ I, be their

corresponding mapping fields which are minimizers of the functional Πi in (3.2) for m = mj.

Similarly to the deterministic case, mj ⇀ m in H1(D0) and mj → m in L2(D0), for some m.

From the proof of the deterministic case, it follows that for each 1 ≤ i ≤ I, there exists

Φi, weak limit in VD of (a subsequence of) Φi
j, that minimizes Πi in (3.2) for the limit control

m(X). Since there is only a finite number of possibilities 1 ≤ i ≤ I, we can select a subsequence

j, not relabelled, which is valid for all such i simultaneously, and

mj ⇀ m, Φi
j ⇀ Φi, in H1(D0)

for all i. The result then follows taking into account that all the terms involved in the cost

functional J (m), as given by (3.3), are weakly lower semicontinuous.
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4. Numerical resolution method and numerical experiments

4.1. Gradient-based optimisation algorithm

In this paper, we advocate for a gradient-based optimisation method for the numerical

approximation of the robust optimal control problem (3.4). As customary in this type of

methods, in order to compute a descent direction, we use the standard Lagrangian method. To

this end, let us consider the Lagrangian L defined as

L(Φ,p,m) =
I∑

i=1

πi

∫
Γ0

‖Φi
(X)−Φd(X)‖2 dS (X) +

M

2

∫
D0

m(X)2 dX +
ε

2

∫
D0

|∇m(X)|2 dX

−
I∑

i=1

∫
D0

P
i

: ∇0p
i dX,

(4.1)

where Φ =
(

Φ
1
, · · · ,ΦI

)
,p =

(
p1, · · · ,pI

)
∈
(
H1
(
D0;RN

))I
, and P

i
is the first Piola-

Kirchhoff stress tensors associated with scenario i, 1 ≤ i ≤ I, as given by (2.20) with ω

replaced by zi and F by F i = ∇0Φ
i
.

Notice that in (4.1), (Φ,p,m) are considered as independent variables.

Let (Φ,p,m) be a stationary point of L. The stationary condition of L with respect to

pi coincides with the stationary condition of the functional Π (2.16) with respect to Φ (see

equation (2.19)) for each scenario zi, 1 ≤ i ≤ I, i.e.

∂L
∂pi (Φ,p,m)(v) = −

∫
D0

P i : ∇0v dX = 0, ∀v ∈ H1
0 (D0). (4.2)

Equation (4.2) is nonlinear. A consistent linearisation of (4.2) is carried out by means of the

standard Newton-Raphson method.

The stationary condition of the Lagrangian L with respect to Φ
i

yields∫
D0

∇0p
i : Ci : ∇0v dX =

I∑
i=1

πi

∫
Γ0

(
Φi −Φd

)
· v dS (X) , ∀v ∈ H1

0 (D0), (4.3)

Ci = Ci(X, zi,m) being the fourth order elasticity tensor, defined as

Ci(X, zi,m) = ∇2
FFW (zi,F i) + ∂2

FFWm(X,F i), (4.4)

where the expression for ∂2
FFWm(X,F ) for both the Turgor-pressure and fiber tension control

contributions are

∂2
FFWm(X,F ) = −m

J
(HiIHjJ −HiJHjI) ; ∂2

FFWm(X,F ) = −δijmaIaJ , (4.5)

respectively, and where δij denotes the ijth component of the Kronecker Delta tensor.
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Finally, the directional derivative of the Lagrangian L with respect to the control m in the

direction m̂ permits to obtain the descend direction. Precisely,

∂L
∂m

(Φ,p,m)(m̂) =
∑I

i=1

(∫
D0

∂(∂FWm)(X,F i)
∂m

(m̂) : ∇0p
i dX

)
+M

∫
D0
mm̂dX + ε

∫
D0

∇0m ·∇0m̂ dX,
(4.6)

where the expression of ∂(∂FWm(X,F ))
∂m

(m̂) for both the Turgor-pressure and fiber tension control

contributions in (2.9) and (2.12) are, respectively

∂ (∂FWm)

∂m
(m̂) = −m̂H ;

∂ (∂FWm)

∂m
(m̂) = −m̂ (Fa⊗ a) . (4.7)

4.2. Numerical experiments

To keep track of the evolution of simulations during the optimisation procedure, we have

introduced a sequence of discrete optimisation iterations akin to a pseudo-time parameter

τ = {τ0, . . . , τm}. At each discrete pseudo-time τ , the pseudo-time evolving control m(X, τ)

induces a random deformation on the undeformed configuration D0. For a random realization

zi of the material parameters, the undeformed configuration is transformed into Di(m(X, τ))

according to

Di(m(X, τ)) = Φi(m(X, τ))(D0),

where Φi = Φi(m) is a minimiser of (2.16) associated with m, as described earlier (see Figure

3).

Figure 3: Undeformed configuration D0; Deformed configurations at pseudo-time τj for random realizations of

z (blue dotted lines), reached after the application of the control m(τ)|τ=τj ; Target or desired configuration.

In the two numerical experiments that follow, for simplicity, the material parameter µ2 in

(2.2) has been taken igual to zero. µ1 and µ3 are modeled as two independent random variables

following a Gamma distribution with means 1 and 3, and standard deviations 0.15 and 0.45,
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respectively. The continuous Gamma distributions are discretized by means of an isotropic

sparse grid stochastic collocation method [23] leading to a finite set of scenarios zi depicted

in Figure 4. Very similar cualitative results are obtained when the number stochastic nodes is

increased.

0.4 0.6 0.8 1 1.2 1.4 1.6
1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 4: Nodes of the considered isotropic sparse grid for uncertainty quantification in the material parameters

µ1 and µ3 in (2.2).

4.2.1. Numerical experiment 1: Turgor pressure control

In this example, a Turgor-pressure type control (see equation (2.9)) is considered. Lower

and upper bounds are imposed on the control variable, namely, −1 ≤ m(X) ≤ 1 for all X ∈ D0.

The undeformed configuration D0 is shown in Figure 5. The prismatic-shaped domain D0 has

lengths {LX , Ly, Lz} = {10, 3, 1} parallel to the {OX,OY,OZ} axis. The design domain is

tessellated using a 24 × 4 × 2 regular mesh of linear hexahedral elements. D0 is completely

fixed in the surface corresponding to the minimum X coordinate. The image of the target

configuration Φd is also shown in Figure 5 (see black surface labeled as Target Surface (Spatial

configuration)). Γ0 is denoted by Material configuration in Figure 5.

Figure 6 represents the deformed configuration obtained by means of the deterministic

control, i.e. taking the material parameters µ1 = 1 and µ3 = 3. In this case, the controllable

part Γ0 of the boundary perfectly matches the target configuration (both are overlapped) and
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xy

z

Fixed Surface

Target Surface
(Spatial configuration)

Target Surface
(Material configuration)

Figure 5: Numerical experiment 1: Problem configuration.

a value of the objective function of J = 1.28e− 3 is obtained.

Figure 6: Numerical example 1. Deformed configuration after application of the optuimal control in the deter-

ministic setting. Contour plot distribution of the L2 norm of the displacement field u := x−X.

Figures 7a and 7b show the mean deformed configuration for the deterministic control after

computing all the deformed configurations associated with all the realizations zi. The value

of the averaged objective function J in this case is J = 0.0193. Clearly, the mean deformed

configuration of the Γ0 is now considerably far from the target configuration. On the contrary,

Figures 7c and 7d show the mean deformed configuration for the robust control after computing

all the deformed configurations associated with all the scenarios zi. In this case, the mean

deformed configuration of Γ0 is extremely close to the target (they seem overlapped in the

Figure), resulting in a value of the averaged cost functional of J = 0.0107. Crucially, this

indicates that, as expected, the robust control (which takes into account the stochastic nature
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of the material parameters is less sensitive to dispersion in their random values. This is also

corroborated by the lower value of the variance of the L2 norm of the displacement field u :=

x−X in Figure 7d (for robust control) and opposed to Figure 7b (deterministic control).

Furthermore, Figure 8 shows the contour plot distribution of the control for the deterministic

and robust cases from two different geometrical perspectives.

(a) (b)

(c) (d)

Figure 7: Numerical example 1. Mean deformed configuration after evaluating all the realizations zi of the

material parameters for deterministic control (first row) and robust control (second row). The transparent

configurations represent the deformed configurations associated with all the realizations zi. Control plot distri-

bution of: mean of the L2 norm of u for (a) deterministic and (c) robust control; variance of the L2 norm of u

for (b) deterministic and (d) robust control.

4.3. Numerical experiment 2: Active Fibers control

In this experiment, a fiber tension type control (see equation (2.12)) is considered. Fibers

are oriented along the longitudinal direction (see Figure 11). The control variable is constrained

according to 0 ≤ m(X) ≤ 1. The undeformed configuration D0, shown in Figure 9, is com-

posed of four prismatic-shaped branches with lengths {LX , Ly, Lz} = {10, 3, 1} parallel to the

{OX,OY,OZ} axis. Similarly to experiment 1, each branch of the domain is tessellated using

a 24× 4× 2 regular mesh of linear hexahedral elements. The target surface (black surface la-

beled as Target Surface (Spatial configuration)) and zero Dirichlet boundary conditions (Fixed

surface) are shown in Figure 9.

Figures 10a and 10b show the mean deformed configuration for the deterministic control

after computing all the deformed configurations associated with all the realizations zi. The
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(a) (b)

(c) (d)

Figure 8: Numerical example 2. First row: mean deformed configuration for deterministic control; Second row:

mean deformed configuration for robust control. Top (a) and bottom (b) view for the deterministic control;

Top (c) and bottom (d) view for the robust control.

Target surface

Fixed surface

(Spatial configuration)

Target surface
(Material configuration)

Figure 9: Numerical experiment 2: Problem configuration.
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value of the averaged objective function J in this case is J = 0.0140. Clearly, the mean

deformed configuration of the controllable portion Γ0 is now considerably far from the target

configuration. On the contrary, Figures 10c and 10d show the mean deformed configuration

for the robust control after computing all the deformed configurations associated with all the

realizations zi. In this case, the mean deformed configuration of Γ0 is extremely close to the

target, resulting in a value of the averaged cost functional of J = 0.0074. As in the previous

example, but now with a different type of control, this indicates that the robust control is less

sensitive to dispersion in the values of the material parameters. This is also corroborated by

the lower value of the variance of the L2 norm of the displacement field in Figure 10d (for robust

control) and opposed to Figure 10b (deterministic control).

Finally, Figures 11a and 11b show the mean deformed configuration for the deterministic and

robust controls, respectively after computing all the deformed configurations associated with

all the realizations zi, seeing from a different geometrical perspective as in Figure 10. Notice

also that the results have been rotated after applying rotations of {π/2, π,−π/2} with respect

to the OZ axis, resulting in the four-legged actuator shown in Figure 11. In this Figure, the

contour plot distribution of the control (in the deformed configuration, i.e., m (Φ−1 (x))) for

both deterministic and robust settings is shown.

5. Conclusions and perspectives

This paper is a first step towards the very challenging problem of mathematical analysis

and numerical approximation of robust optimal control problems constrained by the system of

nonlinear elasticity with uncertainty in the material parameters. Precisely, we have analysed

two types of bio-inspired controls: turgor pressure and fiber tension. Although the deterministic

situation was numerically explored for the first time in [8], a rigorous mathematical proof of

existence of optimal solutions for both problems in the deterministic and stochastic frameworks

is presented in this manuscript. Although we have only considered a tracking-type in surface

deformations cost functional, the theoretical results and numerical methods here exposed may

be extended to other cost functional like the desired direction functional introduced in [8].

The analysis carried out in this paper focuses on the case of discrete distributions for the

material parameters. A more sophisticated study is required in order to examine the more

challenging cases of continuous distributions and random fields. A number of difficulties appear

in the case of continuous randon variables and fields. Among them, the smooth selection of

minimisers (in particular, measurability of the equilibrium configurations Φ (X, ω) with respect

to the random parameter ω, which is required to be able to compute statistical moments of

such configurations) and the existence itself of optimal solutions for the underlying optimal

control problem.

Also, as is well-known in the case case of linear PDEs [2] convergence of stochastic collocation

methods is a consequence of the regularity of the solution of the underlying PDE with respect

to the random paramter. This regularity issue is a very challenging and open problem in the
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(a) (b)

(c) (d)

Figure 10: Numerical example 2. Mean deformed configuration after evaluating all the realizations zi of the

material parameters for deterministic control (first row) and robust control (second row). The transparent

configurations represent the deformed configurations associated with all the realizations zi. Control plot distri-

bution of: mean of the L2 norm of u for (a) deterministic and (c) robust control; variance of the L2 norm of u

for (b) deterministic and (d) robust control.

(a) (b)

Figure 11: Numerical example 2. Mean deformed configuration for deterministic control; Second row: mean

deformed configuration or robust control. Control plot distribution of the (a) deterministic and (b) robust

control along the fibers in the deformed configuration.
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nonlinear situation considered in this paper. Nonetheless, the examples analysed in Subsection

4 show numerical evidence that convergence of stochastic collocation methods holds, as the

consideration of finer discrete probability distributions do not introduce numerical instabilities.
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